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Abstract

Automatic scene understanding from multimodal data is a key task in the design
of fully autonomous vehicles. The theory of belief functions has proved effective
for fusing information from several sensors at the superpixel level. Here, we pro-
pose a novel framework, called evidential grammars, which extends stochastic
grammars by replacing probabilities by belief functions. This framework allows
us to fuse local information with prior and contextual information, also mod-
eled as belief functions. The use of belief functions in a compositional model is
shown to allow for better representation of the uncertainty on the priors and for
greater flexibility of the model. The relevance of our approach is demonstrated
on multi-modal traffic scene data from the KITTI benchmark suite.

Keywords: Machine learning, Computer vision, Belief functions,
Dempster-Shafer theory

1. Introduction

The ability of the human visual system to rapidly analyze a complex visual
scene is remarkable. In the recent years, several problems related to the under-
standing of the visual content of an image have been tackled. While significant
progress has been made in the categorization and localization of isolated objects5

in recent years, automatic understanding of real-world scenes is still considered
as highly challenging. There is a consensus in the computer vision community
that the so-called semantic gap [1] (between a raw image and the underlying
visual class) is too wide to be crossed in one single step of inference. Gradually
transforming raw pixels into higher level of representations through deep learn-10

ing methods [2] gives very promising results. Several recent methods [3, 4, 5]
enhance state-of-the-art semantic image segmentation on datasets like PASCAL
VOC [6] or ImageNet [7] using deep convolutional networks.
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Other classical structured model that take into account dependencies or con-
straints between output variables can tackle the issue of image understanding.15

They generally proceed by decomposing the scene into objects, then into parts
and subparts, down to the pixels. Since such models require expert knowledge,
they have been initially applied to specific categories of scenes. However, in
[8], the authors present a more ambitious use of and/or graph-based visual
grammars to model the decomposition of wide varieties of scenes into objects,20

parts-of-objects and visual words called primitives. This compositional model
contains a large amount of human-provided visual knowledge and is augmented
with a set of probabilities estimated thanks to an annotated set of training
images.

As a contribution to the development of efficient Advanced Driver Assistance25

Systems (ADAS), we aim in this paper at labeling the visual classes that are
present in the neighborhood of an intelligent vehicle containing several types of
sensors (LIDAR, cameras, etc.). Indeed, since traffic scenes are highly cluttered,
have varying lighting conditions and contain many occlusions, autonomous ve-
hicles need to fuse several sources of information to get a correct understanding30

of their complex environment.
Xu et al. [9] demonstrated that belief functions (or mass functions) [10]

outmatch other state-of-the-art methods for the task of multimodal information
fusion on driving scenes. Mass functions are basically extensions of Bayesian
probabilities that carry an explicit representation of ignorance and allow efficient35

fusion of independent sources of information by reasoning on sets of elements
rather than on single elements. To illustrate the practical importance of rea-
soning on subsets, let us take the example of a pedestrian detector processing
an image. Assuming this pedestrian detector cannot discriminate female from
male pedestrians, the corresponding belief on the pedestrian class should not40

be distributed among subclasses. A uniform probability distribution would be
misleading as it implies that there are as many male pedestrians as female ones,
which for some reason may not be true. This better representation of ignorance
is very useful to process multimodal data. For instance, a LIDAR is efficient at
detecting an obstacle, but it is of little help for discriminating the type of this45

obstacle.
In [9], Xu et al. perform an oversegmentation of the image (coming from a

camera set on the intelligent vehicles) and independent classification modules
are supposed to process sensor information. For each segment of the image,
mass functions are used to represent the output of each module and are fused50

using Dempster’s combination rule. This method is robust as sensor failure
merely results in some mass functions to be vacuous. The system can therefore
continue to operate in degraded mode. The method is also flexible: new classes
can be added to the discernment space with almost no impact on the system as
the evidence can be simply transferred to the refined classes. These advantages55

are of the highest importance for a real world perception system.
The output of the previous method is an oversegmented image. The mass

function that describes the class of each segment is computed from multimodal
but purely local information. Indeed, this mass is obtained through the analysis
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of the pixels contained in the particular segment. This evidence can be refined60

through fusion with prior and contextual information, which can be seen as clues
to enhance weak detection or prevent false detection. For instance, considering
again the example of an obstacle detected by a LIDAR, shape or neighboring
information can help discriminate the type of the obstacle. Consequently, we
propose a compositional model augmented with mass functions called evidential65

grammars. This model can deal with input data described by mass functions,
and fuse them with priors also represented by mass functions. This model
thus benefits from the previously mentioned advantages of mass functions over
traditional stochastic visual grammars: it allows for better representation of
the uncertainty of the priors as compared to probabilities, and it provides more70

flexibility to add new priors or to refine the discernment space.

1.1. Related Work

Many graphical stochastic models have been proposed in recent years to
refine a local labeling and ensure its spatial consistency. In [11], Conditional
Random Fields (CRFs) are introduced at several levels of a stochastic hierarchi-75

cal model in order to integrate features extracted at different scales. Sudderth
et al. [12] propose a sophisticated model containing parts that are shared by a
set of object categories: for each category, the distribution and layout of these
parts are characterized by parameters estimated from an annotated database.
Hierarchical models can also incorporate coarser features. Choi et al. [13]80

achieve impressive results in scene interpretation by using a tree-based model
that incorporates global image features, dependencies between object categories
as well as outputs of local detectors into a single probabilistic model. In [14],
the authors consider a set of rules for ranking alternative parsing hypotheses
of the scene using the spatial layout of the objects. The relative importance of85

these rules is estimated from the training data using a structural SVM.
Using rules to decompose a scene into objects and objects into parts is the

core of visual grammars. They have been used recently to perform scene parsing
[15]. In [16], a novel object detection framework is introduced with a grammar
formalism making it possible to decompose an object into parts and subparts,90

while taking into account placement and appearance. A scoring derivation is
then defined and maximized to find the best parsing. However, this model
can only detect a single object. In [17], this grammar framework is augmented
with a probability distribution and used to localize faces in images. A belief
propagation scheme combines bottom-up and top-down contextual information95

to aggregate evidence for robust understanding of a visual scene. In [18], a
grammar-like generative model is introduced to provide a globally consistent
interpretation of an image. This model is based on a hierarchy of reusable parts
and compositional grouping rules.

In [19], the authors perform automatic image parsing using an And/Or100

graph-based visual grammar. The Or nodes correspond to the “kind-of” re-
lationship and provide a semantic organization of the visual classes into more
general or more specific concepts. The And nodes correspond to the “composed-
of” type of relation, which lists the possible components of a visual object. The
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graph is augmented with energy-based probabilities to rank the alternative de-105

compositions, so that it is possible to represent deformable objects.
However, three major difficulties clearly stand out to process multimodal

traffic scenes:

1. First, none of these methods can deal with input represented by mass
functions. The uncertainty of the low-level features and of the interme-110

diate classes are usually represented using probabilities, whereas there is
strong evidence that mass functions are essential to process multimodal
data [9].

2. The second difficulty concerns the training of the model: capturing compo-
sitional visual knowledge using stochastic models requires the introduction115

of a large number of parameters. These parameters need to be estimated,
since we need to know the likelihood of every two parts to be in every
possible spatial layout (hinges, borders, surrounds, etc.). The maximum
likelihood estimator then consists in counting the occurrence frequency of
every pair of objects in every particular layout [8]. The parameters are120

consequently estimated with a very unbalanced amount of training sam-
ples, especially those corresponding to different levels of hierarchy. Prior
information should be taken into account.

3. Finally, the flexibility of the model is an important requirement for a fully
operational system: the set of classes should evolve without impacting the125

whole framework. New priors should be added easily.

1.2. Contributions

The core of the method presented in this paper consists in augmenting a
visual grammar with belief functions rather than probabilities. Instead of a
stochastic grammar, the resulting framework is called evidential grammar ; its130

theoretical basis has been explained in [20]. The present paper introduces two
essential contributions for applying evidential grammars to real world data: a
training method to estimate the parameters of the belief functions of an eviden-
tial grammar from a set of occurrence frequencies, and an optimization method
to determine the optimal parse graph for a given image with fast belief com-135

putation. By exploiting the strengths of this theory, we show that evidential
grammars provide an answer to the three major difficulties of stochastic com-
positional models.

Handling input data represented by mass functions. Dempster-Shafer mass func-
tions extend probabilities by assigning probability masses to sets, called focal140

elements. As will be detailed in Section 2, the combination of two mass func-
tions transfers belief masses to the intersections of the focal elements. As a
result, combining an input represented by a mass function with priors repre-
sented by probabilities results a probability mass function, since all the belief is
transferred to singletons. Consequently, the priors must be expressed as mass145

functions in order to take full advantage of the representation of imprecision
captured by mass functions at the segment level.
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Taking into account prior uncertainty. By using results on parameter estima-
tion with belief functions, the ignorance on the value of the parameters can be
explicitly captured and taken into account using mass functions. When all pa-150

rameters are estimated with a high number of training samples, this approach
is equivalent to the Bayesian approach. However, in the case of compositional
models, we have previously shown that the various parameters are very likely to
be estimated with an unbalanced amount of samples. Our approach provides an
elegant solution to this problem by formulating the problem of scene interpreta-155

tion as the fusion of sources of information, which we assume to be independent.
Essentially, our approach considers the whole set of spatial relationships in the
scene, the elicited or estimated composition rules, and the extracted low-level
features as independent pieces of information, which are finally fused in order
to reach the most consistent configuration.160

Flexibility of the model. Treating scene understanding as a fusion process also
leads to much greater flexibility and modularity as compared to traditional
stochastic compositional models. Indeed, grammar rules are seen as independent
pieces of information that can easily be added or removed. Moreover, the fact
that mass functions are defined on sets make it possible to refine or coarsen165

the considered classes with minor impact on the model. In particular, the
parameters do not require to be re-estimated. This is particularly important
when dealing with visual systems that have to be upgraded regularly.

Our method takes place after a first step of scene understanding, described
in [9] and referred to as “local fusion” (Figure 1). During this stage, several clas-170

sifiers and detectors independently process the output of a multi-sensor system
including a stereo camera and a LIDAR. The left image of the stereo camera
is initially oversegmented and the supposed class of each segment is coded by
a belief function. This belief function is estimated by transforming the output
of each module into a belief function, and by fusing these belief functions using175

Dempster’s rule.
The output mass function of a segment is thus built only from the infor-

mation pertaining to that segment; it is used as the input of our method. Our
method aims at combining the beliefs of neighboring segments using prior knowl-
edge in order to boost them as well as infer more complex objects. As the prior180

is expressed using mass functions, this second stage of image understanding is
considered as a “global” fusion process.

The paper is organized as follows. Section 2 defines mass functions and intro-
duces the most common operations that are required to handle them. In Section
3, the evidential grammar framework will be recalled with a particular emphasis185

on the differences with the corresponding stochastic grammar framework, and
the training of the parameters of the model will be detailed. In Section 4, the
algorithm to find the optimal optimization will be presented. Finally, in Section
5, we will demonstrate the viability of our approach using traffic scene images
from the KITTI benchmark suite [21].190
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Fig 1: Illustration of the local and global fusion steps. Local fusion is performed at the segment
(superpixel) level, combining outputs from different detectors. In a second stage, the masses
assigned to each individual segment are combined with compositional rules for consolidation
and inference of more complex objects.
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2. Theory of belief functions

The Dempster-Shafer theory of belief function [10] generalizes Probability
theory by allowing probability masses to be assigned to sets. Formally, let Ω
be the set of all the considered classes supposed to be mutually exclusive. A
mass function is a function m : 2Ω → [0, 1] verifying the following normalization
property: ∑

A⊆Ω

m(A) = 1. (1)

A particular case is total ignorance, which can be represented by the vacuous
mass function: m(Ω) = 1. A variable X whose distribution is defined by a mass
function is called an evidential variable. Let us focus again on the example of a
pedestrian detector used previously, and let X be an evidential variable defined195

on the discernment frame Ω = {woman,man}. Its mass function mX may
encode prior information on the ratio of male and female pedestrians at a given
location. Complete ignorance would lead to defining mX as a vacuous mass
function. However, if some statistical information shows that the proportion of
women in this context is, say, between 30% and 70%, a more committed mass200

could be used: mX({woman}) = 0.3, mX({man}) = 0.3, mX(Ω) = 0.4.

2.1. Information fusion using belief functions

Given two mass functions m1 and m2 corresponding to two independent
sources of information, the conjunctive fusion rule provides a new mass function
m1∩2 that combines the information of the previous masses:

∀A ∈ 2Ω, m1∩2(A) =
∑

B∩C=A,B⊆Ω,C⊆Ω

m1(B)m2(C). (2)

This combination rule is commutative and associative. The vacuous mass
function is the neutral element and the mass function verifying m(∅) = 1 is the
absorbing element.205

Let us notice that this combination rule generalizes set-intersection, since the
mass is transferred to the intersection of the focal elements. Conflict appears
when two pieces of information are inconsistent, which is explicitly represented
by the mass on the empty set: m(∅) > 0 means that the fused pieces of evidence
are conflicting. Conflict may have two causes: either a divergence of point of210

view between experts, or a an incorrect model. In our approach, conflict will be
an essential tool to quantify the consistency between a scene model and sensor
data.

To prevent the propagation of conflict during the fusion process, Dempster
proposed to add a normalization step to the conjunctive fusion to transfer the
conflict to the focal elements. The resulting operator, called Dempster’s rule of
combination is considered as the reference operator to combine belief functions:

∀A ∈ 2Ω, A 6= ∅,m1⊕2(A) =
m1∩2(A)

1−m1∩2(∅)
, ( if m1∩2(∅) < 1), (3)
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and
m1⊕2(∅) = 0. (4)

If there is no conflict between m1 and m2, the output mass function is the
same as that computed by the conjunctive fusion rule.215

Let us emphasize that the fundamental assumption underlying Dempster’s
rule is the independence and reliability of the sources of evidence. Other fusion
operators have been proposed to deal with dependent sources [22]; they can be
useful for specific modeling requirements.

2.2. Multivariable reasoning with belief functions220

For our present problem, it is necessary to handle belief masses defined on
a product space with several evidential variables. In this section, the usual
operations required for this purpose are introduced. Two evidential variables
X and Y defined, respectively, on the discernment spaces ΩX and ΩY , are
considered.225

Marginalization. This operation consists in transferring to ΩX the belief of the
joint mass mXY defined on ΩXY = ΩX × ΩY . The resulting mass function is
denoted mXY ↓X :

∀B ⊂ ΩX , mXY ↓X(B) =
∑

A⊂ΩXY / A↓ΩX=B

mXY (A), (5)

where A ↓ ΩX stands for the projection of A on the set ΩX . It can be easily
verified that this operation generalizes Bayesian marginalization.

Vacuous Extension. This is the inverse operation of marginalization: it ex-
tends a mass function mX defined on ΩX to the product space ΩXY . However,
there exists actually several mass functions, the marginalization of which pro-
vides mX . To select one of them, the theory of Belief Functions uses the least
commitment principle, which states that the least informative mass should be
chosen. The resulting mass function, denoted by mX↑XY , is thus defined by
transferring the mass of every focal element of mX to its cylindrical extension:

∀B ⊂ ΩX , mX↑XY (A) = mX(B), A = B × ΩY . (6)

Conditioning. Given a mass functionmXY and the assumption thatX ∈ B,B ⊂
ΩX , the conditioning operation aims at quantifying the belief about Y . For this
purpose, let mB

X be the mass function defined by mB
X(B) = 1. The vacuous

extension is first applied to mB
X , then combined with mXY and the resulting

mass is finally marginalized on ΩY . More formally:

mY |X∈B = (mB
X↑XY ∩mXY )XY ↓Y . (7)

If mXY is a Bayesian mass function and pXY the corresponding joint proba-
bility distribution, it can be easily verified that the previous operation produces
a Bayesian mass function corresponding to pY |X .230
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Deconditioning. This is the inverse of the marginalization operation; it consists
in extending a conditional mass function mY |X∈B to the product space. The
least informative function providing mY |X∈B when conditioned relatively to B
has to be chosen. The resulting mass mXY is thus defined for each subset
A ⊂ ΩY as

mXY (C) =

{
mY |X∈B(A), C = (B ×A) ∪ (B × ΩY ),
0 otherwise .

(8)

Equation (8) can be interpreted as follows: mY |X∈B carries information on
Y when X ∈ B, and the least informative mass is the one which carries complete
ignorance when X 6∈ B.

2.3. Decision using mass functions

The plausibility function pl measures the level of plausibility one has for a
given evidential variable X. It is computed from mass function m as

∀A ⊂ ΩX , pl(A) =
∑

B⊂ΩX |B∩A6=∅

m(B). (9)

Plausibility is a higher bound of a mass function since pl(A) represents the235

amount of evidence not contradicting the hypothesis X ∈ A. It is standard to
transform masses into plausibility functions in the final step before classification
[23].

2.4. Evidential Networks

Evidential networks [24, 25] generalize Bayesian networks by representing240

graphically the dependencies between mass functions with an hypergraph. An
evidential network is composed of a set of evidential variables and a set of
edges, each one of them connecting possibly several variables. Variables that
are connected by an edge in the hypergraph can have their joint belief function
expressed independently from the other evidential variables.245

Formally, let U be the set of evidential variables, and O = {U1, . . . , Ur} a
collection of subsets of evidential variables of U . For every set Ui, a joint mass
function mUi

is defined on the discernment space of Ui. If M = {mU1
, . . . ,mUr

}
denotes the set of all these mass functions, the 3-tuple (U,O,M) defines an
evidential network.250

For instance, let us consider the task of estimating the joint mass function
of U , which stands for the set of evidential variables {X,X1, X2, X11, X12}.
The computation of mU requires to combine five mass functions, which might
be costly since the number of operations to compute Dempster’s rule increases
exponentially with the size of the product space. To reduce this complexity,255

one can use the evidential network represented in Figure 2, which stands for an
assumption of independence of the joint belief functions for U1 = {X,X1, X2}
and U2 = {X1, X11, X12}. This makes it possible to compute mU1

and mU2

first, then the desired mass function mu = mU1↑U ⊕mU2↑U . Using this method,
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Fig 2: Example of evidential network.

only the final combination is computed on the product space of U , since the260

computations of mU1 and mU2 are performed on smaller product spaces, which
leads to more efficient computation.

3. Evidential Grammars and Image Interpretation

In textual or visual data, some low-level signal elements co-occur frequently.
The main idea of grammar-based methods is to group such co-occurring units265

to form higher-order elements. For instance, wheels or headlights are likely to
be reusable elements in a database of driving scenes since they will be shared
by different types of vehicles. Grammars are thus an interesting and powerful
framework to perform hierarchical analysis of images.

3.1. Visual grammars270

Definition. The modern formalization of grammars can be attributed to Chom-
sky [26]. A formal grammar G is defined as a 4-tuple {S, VN , VT ,Γ} where S
is the starting symbol, VN a finite set of non-terminal symbols, VT a finite set
of terminal symbols, and Γ is a set of production (or derivation) rules rewriting
a set of symbols (containing at least one non-terminal symbol) into another set275

of symbols. Grammars were initially tools to verify the validity of a sequence.
They define a generative process which starts with the S symbol and finishes
when the resulting sequence, denoted w, is only composed of terminal sym-
bols. However, when switching from textual data to visual data, the natural
left-to-right ordering of textual data does not exist, and visual grammars are280

consequently augmented with a set of spatial relationships denoted Ξ. Many
different spatial relations can indeed occur at all levels of vision, like butting,
surrounding, adjacent etc.

The whole set of symbols VN ∪ VT is structured by the production rules Γ.
This structure is often represented graphically using nodes as classes and edges285
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Fig 3: Example of a simple And-Or graph for a street scene database

as production rules, as illustrated using a simple example in Figure 3. Zhu et al.
[8] showed that And/Or graphs are generic structures that can represent almost
any type of visual scene. An And/Or graph embodies a recursive structure
containing two sets of nodes: a set of And nodes V And and a set of Or nodes
V Or:290

• An And node defines the compositional nature of a node and corresponds
to the rule: A→ A1A2 . . . An(A), where the number of sub-components of
A is denoted by n(A). Some spatial relationships are imposed to enforce
spatial consistency in the image decomposition. In the example of Figure
3, a scene is decomposed into vehicles, pedestrians, ground and building.295

Buildings, vehicles and pedestrians have to stand on the ground, while
pedestrians and buildings can occlude each others.

• An ”Or” node defines a set of alternative subclasses and corresponds to the
rule: B → B1 or B2 . . . or Bn(B), where n(B) stands for the number of
sub-categories of B. In the example of Figure 3, a pedestrian is modeled300

as being either an adult or a child.

After the visual words in the whole image have been computed, they are
connected in a planar graph of adjacency w. The sequence of rules generating
w is called a parse tree and will be denoted in this paper pt(w). It can be
augmented to a parse graph pg(w) = (pt(w), E), where E stands for the set of305

relationships between the And nodes.
A parse graph can be considered as a hierarchic interpretation of an image

such that every pixel is explained by an object category and its parts with spatial
relationships between them (cf Figure 4). The set of all the possible sequences
of terminals that can be derived from G is called its language L(G). The com-310

positional power of grammars comes from the fact that the following inequality
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Fig 4: Illustration of a parse graph: sequence of production rules from the starting symbol S
to pixels augmented with spatial relationships between child nodes.

is often true in practice: | L(G) |>>| VT | + | VN |. Indeed, grammars focus on
structural compositions rather than listing all the possible configurations.

Stochastic visual grammars. To deal with real-world data, visual grammars in-
clude a large number of rules in order to be flexible enough to parse images315

containing a lot of irregular patterns. Therefore, many valid parse graphs can
be derived in practice for a given image. To rank these alternative interpreta-
tions, visual grammars are traditionally augmented with a set of probabilities
P. For an and/or graph model, P contains two types of parameters:

1. The probabilities of the spatial pairwise relations between the children of320

an And -node: let A be a non-terminal symbol with the following produc-
tion rules: A → A1A2 . . . An(A). A probability parameter is assigned to
every pair of symbols Ai and Aj to be linked by a spatial relationships
ek conditionally on the father symbol A, denoted P (ek | Ai, Aj , A). For
instance, the relationships between a building and a vehicle could be char-325

acterized by assessing that the probability for a vehicle to be occluded by
a building is 0.1, while the probability for a vehicle to occlude a building
is 0.9, all other relationships having zero probability.

2. The probabilities of the alternative productions for the Or-nodes: let B
be a non-terminal element with the following production rules: B → B1 |330

· · · | Bn(B). Each possible rewriting has a probability P (γi) = P (B → Bi)

such that
∑n(B)
i=1 P (B → Bi) = 1. The possible rewriting of a vehicle can
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be, for instance, ranked as follows: P (vehicle→ car) = 0.8, P (vehicle→
bike) = 0.2.

To estimate the parameters, the maximum likelihood estimator is used. On
an annotated database, it consists in the computation of relative frequencies of
occurrences of every relation and alternative rewriting:

P (B → Bi) =
#(B → Bi)∑n(B)
j=1 #(B → Bj)

, (10)

where #(B → Bi) is the number of times that the node B is derived in Bi in
the training set. Similarly,

P (ek | Ai, Aj , A) =
#(ek(Ai, Aj , A))∑n(e)
l=1 #(el(Ai, Aj , A))

, (11)

where #(el(Ai, Aj , A)) is the number of times the nodes Ai and Aj are linked335

with the relation el and are children of A, and n(e) is the number of possible
configurations between Ai and Aj .

3.2. Evidential grammars

Evidential grammars augment visual grammars with a set of mass functions
M instead of a set of probabilities [20]. An evidential grammar is thus defined by340

a 6-tuple {VN , VT ,Γ, S,M,Ξ} with every production rule associated to a condi-
tional mass function. Since a mass function is the generalization of a Bayesian
probability distribution, evidential grammars generalize stochastic grammars.
Indeed, if all the mass functions included in M are defined only on singletons,
the evidential grammar boils down to a stochastic grammar. An advantage of345

the representation of rules by conditional mass functions is greater flexibility. In
particular, refining a class needs no reestimation of the parameters since the be-
lief can be transferred to the union of the refined classes. Moreover, rules can be
easily updated by combining estimates and expert assessments by Dempster’s
rule.350

3.2.1. Image model using evidential grammars

As a preliminary step to image interpretation, the image is oversegmented in
a partition of small regions containing approximately 250 pixels called segments.

Parse trees are used to decompose a scene down to the segments and we
constrain a parse tree to embody a recursive And/Or structure. Set VN is355

thus split in two subsets V Or and V And. Each And -node is linked to a set of
Or -nodes using a composition relationship and every Or -node is linked to an
And -node using a specification link. Each node covers an area of the image and
is augmented with an evidential variable that describes the class contained inside
the region. To simplify the vocabulary, we will refer indifferently to the node, the360

region it covers, or its class variable. An evidential variable is also introduced
to describe the shape of any node except the terminal ones. Evidential variables
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(a) (b)

Fig 5: (a) Decomposition of a region into subregions and the corresponding spatial relation-
ships between adjacent regions (b) Representation by a planar graph.

are also used to model the spatial relationships between every pair of adjacent
nodes related to the same parent node.

Three domains are defined for the evidential variables: one for the values365

of the object classes, one for the spatial relationships, and one for the region
shapes. Moreover, the edges of the parse tree define the structure of an evi-
dential network structuring the variables. Let U be the set of evidential vari-
ables describing the hierarchy (classes of the regions, relationships, shapes), and
O = {U1, . . . , Ur} a set of subsets of variables in U linked in the parse tree by370

a specification or a composition relationship. Every set Ui is associated to a
joint mass function mUi . If M = {mU1 , . . . ,mUr}, the 3-tuple (U,O,M) is the
evidential network built from a parse graph.

3.2.2. Production rules

The production rules in Γ are formalized as conditional mass functions pro-375

viding prior information on the joint mass functions mUi
of the evidential net-

work. Different priors are considered depending on the type of the parent node.

Specification link. Let R be a region whose class is described by two evidential
variables X and Y . Every class ω ∈ V Or is characterized by the specification
mass mY |X=ω. This conditional mass function is then deconditioned to get a
mass mω in a two-dimensional product space. For instance, the rewriting of a
pedestrian could be:

mY |X=pedestrian({adult}) = 0.3,

mY |X=pedestrian({child}) = 0.1,

mY |X=pedestrian({adult, child}) = 0.6.
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Composition link. Let R be a region of an image and X an evidential variable
describing the class contained in this region. Region R is partitioned into k
regions R1, R2, . . . , Rk and the class contained in each region Ri is defined380

by the evidential variable Yi. The evidential variables describing the spatial
relationship between every pair of adjacent regions are denoted by ξi. The set
of regions and their spatial relationships can be represented by a planar graph
as illustrated in Figure 5. Another variable for the shape description is denoted
by σ.385

A class ω ∈ V And is characterized by three types of conditional mass func-
tions:

1. A compositional mass function mY1,...,Yk|X=ω , describing the classes of k
subcomponents of an object of class ω. This conditional mass function is
then deconditioned to get a mass mcomp in a k + 1 dimensional product
space. For instance, the decomposition of a simple traffic scene can be
written with a categorical mass function:

mY1,Y2,Y3|X=Scene({pedestrian} × {ground} × {vehicle}) = 1.

2. A spatial mass function mξ|Yi=ωi,Yj=ωj ,X=ω describing the possible rela-
tionships between two adjacent subcomponents of respective classes ωi
and ωj of a given object of class ω. This conditional mass function is then
deconditioned to get a mass mspat in a 4-dimensional product set. For
instance, the spatial relationship between a vehicle and the ground in a
scene could be written as

mξ|Y1=vehicle,Yj=ground,X=scene({over}) = 1.

3. A shape mass function mσ|X=ω describing the shape appearance of region
R. This conditional mass function is then deconditioned to get a mass
mshape in a two-dimensional product set. For instance, the compactness
of a vehicle could be modeled as

mσ|X=vehicle([0.6, 0.9]) = 1.

3.3. Training of evidential grammars

3.3.1. Dempster’s model

Let us consider a Bernoulli trial with success probability p ∈ [0, 1] and N1

the number of successful samples on N experiments. The maximum likelihood
estimate of p is p̂ = N1/N . Dempster’s model [27] is quite similar to the Laplace
estimator; it defines the belief one can have on the chance of success from the
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N experiments using the following mass function,

mD({1}) =
N1

N + 1
,

mD({0}) =
N −N1

N + 1
,

mD({0, 1}) =
1

N + 1
.

The belief on {0, 1} accounts for the uncertainty of the estimator and tends390

to 0 when the number N of training samples increases; the ratio mD({1})/p̂
thus converges asymptotically to 1. In the particular case where N = 0, no
training sample is available and there is a belief 1 on {0, 1}. Mass function mD

is then vacuous, which reflects complete ignorance on the value of p.
If a set of n > 2 elements is considered, Dempster’s model can be applied in a395

one against all settings to get n estimators that are then fused using Dempster’s
rule. This method provides better result than probabilistic fusion, especially
when the estimators have been trained with an unbalanced number of samples
[28].

3.3.2. Estimation of evidential grammar parameters400

The mass function mcomp is supposed to be provided by experts during the
definition of the non-terminal nodes. For the three other types of production
rules, these mass functions are estimated with Dempster’s model from a set of
parse graphs provided with the training dataset.

1. Specification mass function: For every node ω in V Or, the specification
mass function mY |X=ω is estimated using Dempster’s model and then
deconditioned to obtain a mass mω. The final specification mass function
mOr can then be computed using Dempster’s rule:

mOr = ⊕
ω∈V or

mω. (12)

2. Spatial mass function: For every 3-tuple (ωi, ωj , ω) ∈ V Or ×V Or ×V And,
the spatial mass functionmξ|Yi=ωi,Yj=ωj ,X=ω is estimated using the Demp-
ster model and then deconditioned to obtain a mass mωi,ωj ,ω. The final
specification mass function mspat can then be computed using Dempster’s
rule:

mspat = ⊕
(ωi,ωj ,ω)∈VOr×VOr×VAnd

mωi,ωj ,ω. (13)

3. Shape mass function: the shape variable is supposed to be defined on a405

discrete collection; as for the specification mass function, a conditional
mass function mσ|X=A is estimated for every And -node A. These mass

functions are deconditioned and combined to get the final mass mshape.

Example: The principle for parameter estimation is similar for these three
kinds of rules. Consequently, we only give instances of spatial mass function
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estimation for the example of Section 3.1. The first conditional mass function
is written using Dempster’s model applied to the Bernoulli trial “pedestrian
occludes a building” against all the other spatial relationships. As this trial
contains three success and one failure, the mass function is defined as

m1
ξ|X1=pedestrian,X2=building,X=Scene({occludes}) = 0.6,

m1
ξ|X1=pedestrian,X2=building,X=Scene(Ξ \ {occludes}) = 0.2,

m1
ξ|X1=pedestrian,X2=building,X=Scene(Ξ) = 0.2.

The second conditional mass can be built from the Bernoulli trial “pedestrian
adjacent to a building”, which includes one success and three failures:

m2
ξ|X1=pedestrian,X2=building,X=Scene({adjacent}) = 0.2,

m2
ξ|X1=pedestrian,X2=building,X=Scene(Ξ \ {adjacent}) = 0.6,

m2
ξ|X1=pedestrian,X2=building,X=Scene(Ξ) = 0.2.

All the information incoming from the data for the relationship between these
two entities is contained in these two mass functions. The resulting conditional
mass function associated to the knowledge is obtained by combining them with
Dempster’s rule. We finally obtain

mξ|X1=pedestrian,X2=building,X=Scene({occludes}) = 0.545,

mξ|X1=pedestrian,X2=building,X=Scene({adjacent}) = 0.093,

mξ|X1=pedestrian,X2=building,X=Scene(Ξ \ {occludes}) = 0.045,

mξ|X1=pedestrian,X2=building,X=Scene(Ξ \ {adjacent}) = 0.136,

mξ|X1=pedestrian,X2=building,X=Scene(Ξ \ {adjacent, occluded}) = 0.136,

mξ|X1=pedestrian,X2=building,X=Scene(Ξ) = 0.045.

Because of the small number of training samples, the conditional mass func-
tion above is highly uncertain. When the sample size increases, the mass func-410

tion converges asymptotically to the probabilistic estimator.

4. Scene interpretation using evidential grammars

A parse graph represents an interpretation of an image that can be derived
from a grammar model. Many possible parse graphs are possible in practice for
a given image and the goal of the inference task is to find the optimal parse415

graph according to some relevance criterion. In [20], the criterion proposed is
the minimization of the conflict of the root node, since this particular node
aggregates the overall conflict of the evidential network. Indeed, it was shown
that conflict appears in the evidential network when the structure of the parse
tree is not consistent with the observed image primitives and the grammar rules.420

The belief masses of the leaf nodes are assumed to be known from sensor
information. To evaluate a given parse tree, belief has to be propagated from
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the leaves to the root in a bottom-up process following the grammar rules.

4.1. Belief Propagation

Let {U,O,M} be an evidential network. By definition, every element Ui ∈ O425

contains a parent node and its children. The proposed bottom-up inference
process consists in recursively evaluating the mass function of the parent node
by fusing the masses of the children with the prior mass of the grammar rules.

4.1.1. Bottom-up propagation

Inference of an Or-node. Let Ui = {X,Y } be a set of variables containing an
Or-node X and its child node Y . Mass function mY is assumed to be known
and mX has to be inferred. The vacuous extension is first applied to mY to
obtain a joint mass mXY , which is then combined to the specification mass,

mUi = (mOr ∩mY ↑Ui). (14)

Mass function mX is finally evaluated by marginalization of the joint mass:430

mX = mUi↓X .

Inference of an And-node. Let us consider a set of variables

Ui = {X,X1, . . . , Xl, ξ1, . . . , ξr, σ}.

Variables Xj , ξk and σ are assumed to be known, respectively, through the
masses mXj

, mξk , and mσ and the parent node X has to be inferred. Let t1(j)
and t2(j) stand for the indices of the two adjacent regions linked by the spatial
relationship ξj . We denote by mspat

j the spatial mass function defined on the
discernment frame {ξj , Xt1(j), Xt2(j), X}. The mass function of the variables
and the grammar rules are extended to Ui and then marginalized:

mUi = ∩rj=1mξj↑Ui ∩rk=1 m
spat
k ∩lp=1 mXp↑Ui ∩m

comp
↑Ui

∩mshape
↑Ui

. (15)

Mass function mX is finally computed by marginalizing the joint mass fnuction:
mX = mUi↓X .

4.1.2. Top-down propagation

After performing the bottom-up propagation, any joint mass mUi can be
marginalized on a particular variable Xj ∈ Ui to obtain the belief on its class,
which only takes into account the information lying inside the region described
by the discernment frame Ui. However, the context of the whole image can be
exploited by first fusing the mass functions mUi

on the discernment frame U
before marginalization:

mXj
= (∪ni=1mUi↑U )↓Xj

.

The same process is also applied to compute the evaluation criterion mXs
(∅).435

Once the optimal parse tree has been computed, the maximum plausibility
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Fig 6: A region R, with class and shape described by evidential variables X and σ. Region
R is partitioned into two regions R1 and R2 whose classes are described, respectively, by X1

and X2.

criterion is used to make a decision on the class lying in every region of the
parse tree.

4.2. An example of belief propagation

We illustrate the belief propagation process on the simple example shown in440

Figure 6. The goal is to infer knowledge on the value of the Y variable describing
the class of the region R, and to propagate it back on the value of X1 and X2.
The whole set of variables is U1 = {ξ,X1, X2, X, σ}.

Let us define the rules that will be used for that purpose. For the sake of
clarity of the notations, only two classes will be considered: pedestrian (denoted
by P) and vehicle (denoted by V ). These classes are formed by grouping a set of
parts-of pedestrians (denoted by POP) and parts-of vehicle (denoted by POV ),
respectively. The latter information is written using the compositional mass
function:

mcomp
X1,X2,X

(POP × POP × P ∪ POV × POV × V ) = 1.

Let us state that for the parts to become a whole single object, the corresponding
segments have to be adjacent:

mspat
ξ,X1,X2,X

({adjacent}×POP×POP×P∪{adjacent}×POV ×POV ×V ) = 1.

Let us assume finally that a confidence interval on the value of compactness has
been evaluated from a training dataset:

mshape
X,σ (P × [0.3, 0.5] ∪ V × [0.7, 1]) = 1.

Then, the values of X1, X2 and ξ are used as input to the belief propagation.
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First, the spatial relationship ξ is assumed to be adjacent: mξ({adjacent}) = 1.
Second, the values of the classes lying inside R1 and R2 are assumed to come
from the output of a weak detection prior to this step (fusion of vehicle and
pedestrian detectors for example):

mX1
({POP}) = 0.4,

mX1
({Ω}) = 0.6,

mX2
({POP,POV }) = 0.5,

mX2
({Ω}) = 0.5,

mσ(0.8) = 1.

4.2.1. Bottom-up propagation

The vacuous extension is performed on U1 to the seven previous mass func-
tions:

mcomp
X1,X2,X↑U1

(Ω× POP × POP × P × [0, 1] ∪
Ω× POV × POV × V × [0, 1]) = 1,

mspat
ξ,X1,X2,X↑U1

({adjacent} × POP × POP × P × [0, 1] ∪
{adjacent} × POV × POV × V × [0, 1]) = 1,

mshape
σ,X↑U1

(Ω× Ω× Ω× P × [0.3, 0.5] ∪ Ω× Ω× Ω× V × [0.7, 1]) = 1,

mξ↑U1
({adjacent} × Ω× Ω× Ω× [0, 1]) = 1,

mX1↑U1
(Ω× {POP} × Ω× Ω× [0, 1]) = 0.4,

mX1↑U1
(Ω× Ω× Ω× Ω× [0, 1]) = 0.6,

mX2↑U1
(Ω× Ω× {POP,POV } × Ω× [0, 1]) = 0.5,

mX2↑U1
(Ω× Ω× Ω× Ω× [0, 1]) = 0.5,

mσ↑U1
(Ω× Ω× {P, V } × Ω× 0.8) = 1.

By combining all these mass functions with the conjunctive rule, we obtain

mU1(∅) = 0.4, mU1({adjacent} × POV × POV × V × 0.8) = 0.6.

Marginalizing on X the previous joint mass function yields

mX(∅) = 0, 4, mX(V ) = 0.6.

This result means that, according to the rule and the input information, the445

class lying in R is a vehicle. The mass 0.4 on the empty set is due to conflict
between the input information and the rules, which results from a false detection
of pedestrian in R1.
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4.2.2. Top-down propagation

To propagate the knowledge obtained by the fusion of the rules and the input
mass functions back to the segments, the mass mU1

is first computed as in the
previous step but using Dempster’s rule (to remove the mass on the empty set):

mU1({adjacent} × POV × POV × V × 0.8) = 1. (16)

This mass function is then marginalized on X1 and X2 to get

mX1
(POV ) = 1, mX2

(POV ) = 1.

These mass functions are very different from the original ones since a lot of450

contextual information has been exploited during the bottom-up and top-down
propagation.

4.3. Optimization process using MCMC

The goal of the optimization process is to find the parse graph pg minimizing
the conflict of the root node C(pg). Let Σ be the set of all the valid parse455

graphs whose leaf nodes are the terminal symbols of a test image. This set
has an enormous number of local maxima and we propose to explore Σ with a
reversible jump Markov Chain Monte Carlo (MCMC) algorithm [29]. For this
purpose, the solution space is modeled by a Markov chain structure: every valid
hierarchy defines a state of the chain and transitions are defined by considering460

three dynamics:

1. Merging: two nodes are merged in one single node, the children of which
are the union of the children of the initial nodes.

2. Splitting: the children of a node (containing more than one child node)
are split in two nodes.465

3. Boundary competition: this type of modification between two adjacent
nodes changes the attribution of their children located besides their com-
mon boundary.

The initial state is defined by creating an object for each superpixel: all the
terminal nodes are linked directly to the root node. The Metropolis-Hastings470

(MH) algorithm is then used with the following two probability distribution: the
stationary distribution π defined by the Boltzman energy distribution π(H) =
exp(−C(pg))

Z(Σ) , where Z(Σ) is the partition function, and the transition probabili-

ties. For the latter, similar transition probabilities as in [30] are chosen for the
three dynamics mentioned above, as the Data Driven MCMC scheme yielded475

successful results for low-level segmentation as well as for grammar-based image
parsing. For faster convergence, the probabilities to choose each of the three
dynamics have been modified to encourage the algorithm to choose fusion with
higher probability when the number of regions is high.

The exploration is finally performed using simulated annealing. At every480

step of the algorithm, a neighboring state is chosen and the conflict of the root
node of this state is computed. At every iteration of the MCMC algorithm, the
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Fig 7: Example for fast computation of the root conflict. R stands for a region that is
decomposed into three sub-regions R1, R2 and R3. Evidential variables X and σ describe
respectively the class and shape of region R. Evidential variables X1, X2, X3 describe the
classes that lie respectively in R1, R2 and R3, while ξ12 and ξ23 contain the belief one has on
the nature of the relationship between respectively regions R1 and R2, and between regions
R2 and R3.

conflict of the root node has to be estimated. For this purpose, it is necessary
to evaluate (mU )↓XS

. This operation is the bottleneck of the algorithm and is
crucial for the practical use of evidential grammars.485

4.4. Computational complexity analysis

Let N be the total number of nodes in the hierarchy. The belief on each
region is described by an evidential variable as well as all the pairwise rela-
tionships between adjacent regions and the shape of every non-terminal node
(except the root node). Since all the regions are assumed to be connex, repre-490

senting every region by a node and an adjacency relationship by an edge linking
two nodes leads to a planar graph. Using Euler’s formula for planar graphs, the
number of edges is at most 3 times the number of nodes. Consequently, since
two evidential variables are introduced for every node (one for the shape, one
for its class) and one for every spatial relationship, the number of evidential495

variables in the network is bounded by 5N .
For a domain of size n (which is considered here to be the number of ob-

ject classes), combining two mass functions with Dempster’s rule has a worst-
case complexity O(22n). Computing Dempster’s rule on a product space in-
creases exponentially the complexity, and the double exponentiality of the di-500

rect combination-marginalisation proposed in Equation (15) makes this process
intractable.

However, the fusion algorithm [31] allows the exact computation of the
marginal on a subset of variables without evaluating the joint mass function
on the whole discernment frame. It is a much more efficient alternative to the505

straightforward computation mentioned above. The fundamental operation is
to delete iteratively the variables from the network. Finding the optimal elimi-
nation sequence is a NP-hard problem, but several methods have been proposed
to find a good elimination sequence [32].
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Let us consider the example illustrated in Figure 7 with discernment space510

U1 = {X,X1, X2, X3, ξ12, ξ23, σ}. Instead of performing the bottom-up process
of inference of the mass function mX presented in Section 4.1.1 by combining
all the mass functions on the discernment space U1, it is possible to reduce the
computational load by performing the combination on local domains followed by
elimination of variables. First, spatial relation ξ12 can be eliminated by combin-515

ing the two only pieces of evidence for this variable, which are mξ12↑{ξ12,X1,X2,X}
and the prior mspat

ξ12,X1,X2,X
, and then marginalizing the obtained mass function

on {X1, X2, X}. We will denote this intermediate mass function as minter
X1,X2,X

.
The same reasoning can be applied to eliminate the spatial relation ξ23. The
class variables corresponding to the regions with minimal number of neighbors520

are then eliminated iteratively. Variable X1 can thus be eliminated by first
combining mX1↑{X1,X2,X} with the two other pieces of evidence describing X1,
namely, minter

X1,X2,X
and the prior mcomp

X1,X2,X
, and then marginalizing the obtained

mass function on {X2, X}. The previous combination has been performed on a
discernment space of three variables. Eliminating variable X2 first would have525

been less efficient, since the region R2 has two neighboring regions and the re-
quired combination has to be performed on {X1, X2, X3, X}. After the class
variables have all been eliminated, the remaining mass function mX,σ is com-

bined with the shape prior mshape
X,Σ and marginalized to obtain the overall class

mX .530

More generally, the inference scheme consists in first eliminating the spatial
mass functions, then eliminating iteratively the class mass functions correspond-
ing to the regions with minimal number of neighbors, and finally the shape mass
functions. The bottleneck operation is the elimination of the class mass func-
tions since the combination operation is performed on a discernment space of535

size 2 + number of neighbours. A theorem from planar graph theory states that
it is possible to find a region with less than five neighbors [33]. The overall
computational complexity for the exact inference is thus lower than 4N27n.

Despite being considerably reduced, the complexity remains too high for ex-
act inference. However, Bauer [34] showed that for some applications, efficient540

decision can be performed with belief functions by removing focal elements and
redistributing the corresponding masses to a reduced number of focal elements.
We actually observe that, in practice, the handled mass functions contain only
a small number of focal sets containing a significant belief mass. We can thus
constrain the mass functions to a fix amount f of focal sets using the D1 al-545

gorithm presented in [34], which concentrates the mass on the focal elements
that are strongly supported by the original evidence. We verified that, for 16
object classes and f = 15, the impact on the performances was negligible while
the computational load was considerably reduced. The upper bound on the
complexity is thus reduced to 4Nf7. In practice, the complexity is much lower:550

when a local modification (split, merge, competition) is applied to a node, only
some of the information has to be updated because only the newly created nodes
and their parents are impacted.
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5. Experiments

5.1. Architecture of the system555

The system we consider is composed of several sensors observing an urban
scene, including stereo cameras used to produce an oversegmented image and
the disparity map. The average size of the segments is chosen to be large enough
so that relevant features can be computed from their pixels, and small enough so
that a same segment does not contain several classes. The sensors provide data560

to a set of classifiers running totally or partially in parallel. For each segment,
belief functions are provided by each sensor and are fused using Dempster’s
rule. The pieces of information provided by the classifiers are supposed to be
independent. This assumption makes sense in a multimodal framework, since
different sensors provide different types of information. Xu et al. demonstrated565

in [9] that this fusion approach has significant advantages over other fusion
methods. Indeed, reasoning on a subset allows us to fuse the information of
classifiers reasoning in different discernment frames (for instance, a pedestrian
detector and a ground detector) and to refine the classes without any impact
on the system. Moreover, it provides a better representation of the uncertainty570

of the different classifiers relatively to their performance. The belief functions
associated to each segment of the image will be used as the input data of our
evidential grammar.

5.2. Database575

To our knowledge, no multimodal database is annotated at the pixel level.
We annotated manually 300 images of size 1242×375 from the KITTI benchmark
suite (Figure 8) using 14 labels. This database contains four different types of
street scenes: campus, residential area, city, road. The data were collected
from a Velodyne LIDAR, a GPS localization system, and two high-resolution580

color and grayscale cameras. The left grayscale image was chosen for manual
annotation; 140 images were annotated at pixel level, and 160 at superpixel level.
One hundred and sixty images were also annotated with object identification
for the training of the production rules.

5.3. Benchmark test585

The efficiency of evidential grammars was compared with that of two other
methods. First, we studied the performance improvement induced by the use
of evidential framework by comparing our approach with traditional stochastic
grammars. Second, we performed comparison with a state-of-the-art Markov
Random Field-based framework, like the one implemented in the Automatic590

Labelling Environment (ALE) [35]. Cross-validation was performed by splitting
the database into three parts while keeping a similar ratio of the different types
of scenes.
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(a) (b)

Fig 8: Ground truth. Top: Residential area, Bottom: City area. Data available at
https://www.hds.utc.fr/∼xuphilip/dokuwiki/en/data

.

5.3.1. Grammar model for street scenes

Street scenes were modeled using an And-Or graph composed of four levels595

of hierarchy. At the top lies the root node S (Scene), which is decomposed into
14 And -nodes corresponding to the object-level classes that will be used for the
method evaluation. They were decomposed into a set of Or -nodes represent-
ing more specific categories or different points of view (car from the side, car
from the front, etc.). These Or -nodes were then decomposed into the terminal600

symbols of the grammar; they describe the class lying in a segment of the im-
age. Three spatial relationships, based on 3D distance, topological relation and
orientation information, were considered to characterize pairwise object-level re-
lationship. For segment-level nodes, only the 3D distance was considered since
the average size of segments (100 pixels) makes more sophisticated relationships605

too little informative. The shape of the object-level nodes was also character-
ized using size and compactness parameters. However, these parameters were
only estimated for the things type of objects. For stuff types of objects, the
shape mass function was defined as a vacuous mass function. A total of 264
mass functions related to the grammar information were estimated during the610

training stage.

5.3.2. Implementation and parameter settings

In a first step, the left grayscale image was oversegmented into 9000 segments
using the SLIC algorithm [36]. The disparity map was then computed from the
two grayscale images and used to evaluate the distance between segments. A615

mass function was used to describe the class lying in each segment. For this
purpose, the following modules were used to provide mass functions for each
segment:

• Ground detection module based on plane detection in the disparity map
[9];620

• Ground detection module based on LIDAR information and the disparity
map [9];

• Ground and sky detection module proposed by [37].
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a) b) c)

d) e) f)

Fig 9: (a) Raw image, (b) Stochastic grammar annotation, (c) Evidential grammar annotation,
(d) Ground truth, (e) Local annotation, (f) ALE annotation.

a) b) c)

d) e) f)

Fig 10: (a) Raw image, (b) Stochastic grammar annotation, (c) Evidential grammar annota-
tion, (d) Ground truth, (e) Local annotation, (f) ALE annotation.

Three independent multiclass detection modules were also added, based
on Local Binary Patterns (LBP) [38] and Gabor and Scale Invariant Features625

(CSIFT) [39]. These features were first extracted densely in the database and
then quantized. For every segment of the image an histogram was then com-
puted and a SVM were trained in a one-against-all setting. The SVM score was
converted into a belief function using the method described in [40].

As 14 classes were considered at each level of the hierarchy, an array of size630

214 would have been necessary to store the whole information of a single mass.
To avoid excessive memory usage, only the belief masses assigned to the focal
elements were coded using a list structure. All the nodes of the image were also
implemented using a single common C++ class. Objects and segments were
realized as instances of this class.635

5.4. Results

From Table I, we can see that ALE globally has higher annotation accuracy
on stuff type of classes. This result is due to the fact that ALE integrates image
position information, which improves the annotation accuracy of stuff classes,
while spatial rules are less informative for classes with no particular spatial640

extent. However, the image position highly depends on the database, which
makes the ALE framework less flexible. For object classes, grammars globally
show higher performance.

This result was expected as visual grammars allow object-level description
and make use of depth information. Moreover, ALE performs a segmentation645
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Table 1: Performance of four different methods on KITTI benchmark suite using Pixel-wise
percentage accuracy

method Building Tree Sky Car/Bus Bike Traffic sign Road
ALE 82,1 80,2 96,5 75,1 30,7 38,8 92,2
Local fusion 74,2 68 92,4 66,9 22,3 27,8 95,1
Evid. Gram. 78,7 74,1 94,6 78,3 35,7 45,4 95,6
Stoch. Gram. 78,5 73,9 94,7 75,4 33,9 40 95,4

method Pedestrian Fence Sidewalk Bicyclist Railways Grass Plants
ALE 31,6 48,4 76,9 27,1 91,3 88,6 65
Local fusion 23,4 39,7 60,8 21,3 85,7 81,4 62,7
Evid. Gram. 35,3 45,8 62,1 28,2 83,1 82,3 64,1
Stoch. Gram. 29,6 46 60,3 23,1 84,4 81,1 64,2

of test images based on the class of the pixels but does not identify the number
of object instances. We observe that grammars generally provide more accurate
object boundaries than ALE when the depth information is reliable (see Figure
10). However, depth and shape information do not always allow to correctly
separate distant objects.650

We also see that evidential grammars perform slightly better detection of
thing classes than do stochastic grammars. The difference is more important
for classes with low occurrence in the database like bikes and pedestrians, which
evidential grammars detect better. It can be observed in Figures 9 and 10 that
weak detection of pedestrians, bikes and poles tend to be pruned by ALE and655

stochastic grammars. We interpret this effect as the result of careful prior
information encoded in the evidential grammar rules, regarding classes with
higher occurrence in the database. This observation validates our approach,
which consists in taking into account uncertainty in the grammar rules.

However, this slightly better detection accuracy comes with a heavier com-660

putational load. After feature extraction, it took ALE 24 seconds on average
to annotate one image of our database, against 645 and 1057 seconds for, re-
spectively, stochastic and evidential grammars on an Intel i7-3720QM 2.60 GHz
CPU.

6. Conclusion665

In this work, we have proposed a compositional framework for scene under-
standing based on the theory of belief functions. This approach has two strong
advantages. First, it provides very flexible knowledge representation, as it allows
us to evolve the model by adding compositional rules or refining the set of classes
without requiring an additional training step. This is particularly useful with670

many kinds of embedded systems. Second, we have established the importance
of taking into account uncertainty in the production rules used to model the
scene composition. Indeed, when the relationships between pairs of objects are
estimated with very unbalanced data, belief functions model the uncertainty in
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the estimation of the parameters. Evidential grammars thus provide an elegant675

and efficient solution to the problem of overfitting in compositional models.
The experiments performed on the KITTI benchmark suite prove the effi-

ciency of the evidential grammars framework. However, the system presented
in this article is still far from an online system that could be embedded in
autonomous vehicles. The main reason is the computational load of this ap-680

proach, which is higher than that of the state of the art. However, we believe
that the running time could be considerably reduced by further optimization in
the inference algorithm.

More information can be embedded as well in the visual model: models
depending on the scale of objects, more object classes, more types of relation-685

ships, and another layer of reusable parts-of-objects (wheels, head, etc.). More-
over, only deterministic relationships have been considered in this work, but
taking into account uncertainty in that aspect can be fruitful. We also plan to
integrate object detectors in our framework, which would imply changing the
inference process in order to remain consistent with the superpixel independence690

assumption.
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