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Abstract

We study heat fluctuations in the two-time measurement framework. For bounded pertur-
bations, we give sufficient ultraviolet regularity conditions on the perturbation for the moments
of the heat variation to be uniformly bounded in time, and for the Fourier transform of the heat
variation distribution to be analytic and uniformly bounded in time in a complex neighborhood
of 0.

On a set of canonical examples, with bounded and unbounded perturbations, we show that
our ultraviolet conditions are essentially necessary. If the form factor of the perturbation does
not meet our assumptions, the heat variation distribution exhibits heavy tails. The tails can be
as heavy as preventing the existence of a fourth moment of the heat variation.

1 Introduction

Experimental advances in the control of mesoscopic systems are fueling the interest for the study
of fluctuations of thermodynamic quantities. Indeed, while the number of degrees of freedom in
mesoscopic systems is large enough to justify a thermodynamical analysis, it is still small enough
that fluctuations of thermodynamic quantities about their mean are relevant. In this paper we are
interested in the fluctuations of the quantities entering the first law of thermodynamics for isolated
locally perturbed systems. We are more precisely focusing on heat fluctuations in quantum systems.

In isolated systems — both classical and quantum — energy conservation holds almost surely,
which is typically written as ∆U = 0 in the context of thermodynamics. In classical systems, the
first law of thermodynamics can then be expressed more precisely as the almost sure equality between
the work W and the heat ∆Q random variables: 0 = ∆U = ∆Q −W . For quantum systems, the
translation of the definitions of such thermodynamic random variables is not straightforward. In
particular, depending on the definition, different classical thermodynamic relations may fail to hold
beyond the level of averages.

Typically, a naive quantization of the classical definition, while preserving ∆Q = W in law, is hard
to interpret physically and leads to a failure of the celebrated classical fluctuation relations [ECM93,
GC95a, GC95b, Jar97, Cro99]; see [TLH07, JOPP11]. To circumvent this issue, Kurchan [Kur00]
and Tasaki [Tas00] proposed in 2000 a defintion of thermodynamic random variables as differences
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between two outcomes of energy measurement. We will call this approach the two-time measurement
(TTM) framework.1 This definition has a clear physical interpretation and fluctuation relations can
easily be derived in this framework. It thus has grown into a lively research subject; see the reviews
[EHM09, CHT11] and [JOPP11] for a more mathematically oriented approach. Although successful
with regard to fluctuation relations, and while preserving equality of the mean work and heat, the
TTM definitions give distinct laws to ∆Q and W . Therefore, statistical fluctuations of heat and
work have to be studied independently.

The above picture motivates the study of heat fluctuations alone that we provide in this contri-
bution. More precisely, we are interested in controlling the tails of the distribution of heat variations.
We particularly aim at highlighting the difference between the classical framework and the quantum
TTM framework. The work fluctuations are of minor interest to us since, for a bounded perturba-
tion, work is almost surely uniformly bounded in time — in classical systems and for both the naive
quantization and TTM definitions in quantum systems.

For an isolated classical system — whose dynamics is governed by a time-independent perturbed
Hamiltonian Hλ = H0 + λV generating a flow (Ξtλ)t∈R — the heat variation ∆Q := H0 ◦ Ξtλ −H0

is equal to the work W = −(λV ◦ Ξtλ − λV ) by the invariance of Hλ under the flow (Ξtλ)t∈R.
Following standard classical thermodynamics, the work is defined as an integral along a trajectory,

that is W := −
∫ t

0
λ d

dtV (xt) dt. The equivalence of those two definitions of work follows from the

fundamental theorem of calculus.
Clearly, if the perturbation V is bounded, the work W is surely bounded uniformly in time. So is

the heat variation ∆Q, by their sure equality. Therefore, boundedness of the perturbation V implies
that the distribution Pt of heat variation is compactly supported. If V is unbounded, the tails of Pt
are expected to be controlled by the strength parameter λ. We illustrate this with two examples in
Section 2.

For a quantum system, the heat variation is defined in the TTM framework according to the
following Gedankenexperiment. A first measurement of H0, the unperturbed Hamiltonian, is per-
formed at an initial time, yielding a result E ∈ specH0; the system then evolves according to Hλ, the
perturbed Hamiltonian, for a time t; and H0 is once again measured, yielding a result E′ ∈ specH0.
The resulting heat variation is defined as the difference ∆Q := E′−E between the two measurement
outcomes.

For confined systems, where the unperturbed Hamiltonian H0 and the density matrix ρ rep-
resenting the initial state are commuting matrices, the characteristic function of the measure Pt
assigning probabilities to the differences ∆Q in the above thought experiment is

Et(α) := tr(eitHλeiαH0e−itHλe−iαH0ρ).

A rewriting of this expression in terms of algebraic objects that survive the thermodynamic limit
serves as the basis for the construction of the generalization of this measure to infinitely extended
systems; see Section 3.1.

Mirroring the classical equality W = −(λV ◦ Ξtλ − λV ), we define the work W in the TTM
framework according to a similar Gedankenexperiment, but with measurements of −λV instead
of H0.2 This definition ensures that ∆Q = W in mean regardless of the initial state ρ. This
equality in mean however does not extend to an equality in law. The characteristic function of
these two probability measures are, in general, not equal. Hence, while V being bounded implies
|W | ≤ 2|λ|‖V ‖ almost surely, it does not imply a control of the tails of Pt. Other arguments are
needed. Certainly motivated by the classical picture, it is colloquially assumed that, in the TTM

framework, the tails of Pt are still mainly controlled by λ; see [EHM09, §III.B.3]. In this contribution,

1It is also, sometimes, called full counting statistics.
2In the expression of the characteristic function ρ also needs to be substituted for its projection onto the matrices

commuting with V .
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we challenge this assumption. We provide sufficient conditions, in the thermodynamic limit, for the
control of the tails of Pt that do not involve the value of λ as long as V is bounded. We furthermore
test the necessity of these conditions in different canonical models of quantum statistical mechanics.
We aim at conveying that smallness of λ is not the relevant condition to impose in order to prevent
large heat fluctuations. Instead, a crucial role is played by the ultraviolet (UV) regularity of V .

A sufficient condition for the exponential control of the tails of Pt has been introduced in our
partly co-authored work [BJP+15]. There, we considered quantum dynamical systems arising as
the limit of a sequence of finite dimensional systems. In the present article, we work directly in the
thermodynamic limit, via the operator algebraic formulation of quantum statistical mechanics. Let δ
be the generator of the unperturbed dynamics on the C∗-algebra O of observables of the system
(in finite dimension, δ( · ) = i[H0, · ]). Assume that the initial state ω over O is invariant under the
unperturbed dynamics, i.e. ω ◦ etδ = ω for all t ∈ R. Let V be a self-adjoint element of O defining
the perturbation. In the language of the present paper, the result of [BJP+15] can be summarized
by the implication

V ∈ Dom ei 12γδ ∩Dom e−i 12γδ =⇒ sup
t∈R

Et(eγ|∆Q|) <∞ (1)

with Et the expectation with respect to Pt and γ ∈ R+. We provide a proof of this implication in
our context in Section 3. In terms of control of the tails, Markov’s inequality implies that if the
left-hand side of (1) holds for some γ > 0, then there exists C > 0 such that

sup
t∈R

Pt(|∆Q| > E) ≤ Ce−γE

for any E > 0.
It follows trivially from (1) that if the left-hand side holds, any moment Et(|∆Q|m) is uniformly

bounded in time. In Theorem 3.5, we show that such a uniform bound for the moments holds under
weaker conditions:

V ∈ Dom δn =⇒ sup
t∈R

Et(∆Q2n+2) <∞ (2)

for any n ∈ N. In terms of control of the tails, Markov’s inequality implies that if V ∈ Dom δn for
some n ∈ N, then there exists C > 0 such that

sup
t∈R

Pt(|∆Q| > E) ≤ C E−2n−2

for any E > 0.
Remark that both the left-hand side of (1) and (2) do not depend on the initial state. To obtain

these implications, we merely assume the initial state is invariant under the unperturbed dynamics.
In particular, the implications hold even if the system is not initially at equilibrium. Furthermore,
in each statement, the left-hand side does not depend on λ; only the value of the supremum in the
corresponding right-hand side depends on it.

The implications of (1) on the large deviations of Pt were discussed in [BJP+15]. In [BPP], two
of us and Y. Pautrat discuss the implications of an assumption akin to the left-hand side of (1) on
the large deviations of heat currents in autonomous out of equilibrium open systems. In particular,
we prove a translation symmetry of the cumulant generating function, first proposed in [AGMT09].
We relate it to the large deviations of the conservation of heat currents and derive a part of the
fluctuation-dissipation theorem under a time-reversal invariance assumption.

Both implications (1) and (2) establish sufficient conditions for the control of the tails of Pt. In the
third part of the paper, starting in Section 4, we establish an essential necessity of these conditions
for different usual models of quantum statistical mechanics, with V bounded or unbounded. Our first
model corresponds to a fermionic impurity interacting with a quasi-free Fermi gas at equilibrium.
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The second model is the bosonic counterpart of the first one and is similar to the interaction of an
harmonic oscillator with a quasi-free Bose gas. The third model is a van Hove Hamiltonian which
corresponds to a quasi-free Bose gas at equilibrium interacting with prescribed classical charges.
The classical counterparts of these two last models of bosons are discussed in Sections 2.1 and 2.2
respectively.

In the first model, a quasi-free Fermi gas, V is bounded and, in Theorem 4.3, we show the
equivalence

V ∈ Dom δn ⇐⇒ ∃ t1 < t2 :

∫ t2

t1

Et(∆Q2n+2) dt <∞

⇐⇒ sup
t∈R

Et(∆Q2n+2) <∞.
(3)

In this model, the assumption V ∈ Dom δn is equivalent to
∫
R+

e2n|f(e)|2 de <∞ with e 7→ |f(e)|2
the form factor of the perturbation V , where e ∈ R+ is the energy. Similarly, the assumption
V ∈ Dom ei 12γδ ∩Dom e−i 12γδ is equivalent to

∫
R+

eγe|f(e)|2 de <∞. Hence the left-hand side of (1)

and (2) indeed correspond to UV regularity conditions. It is with similar models in mind that we
choose to refer to the left-hand sides of (1) and (2) as UV regularity conditions. Note however that for
quantum spin systems, these conditions are typically the consequence of some locality assumptions
for V and H0; see [BR97, §6.2] and [BPP, §4.1].

In the second and third models, V is unbounded and e 7→ |f(e)|2 is again its form factor. For
both these models, we prove the equivalence∫

R+

e2n|f(e)|2 de <∞ ⇐⇒ ∃ t1 < t2 :

∫ t2

t1

Et(∆Q2n+2) dt <∞

⇐⇒ sup
t∈R

Et(∆Q2n+2) <∞.
(4)

For the first bosonic model, we prove an implication similar to (1), namely∫
R+

eγe|f(e)|2 de <∞ =⇒ ∃ γ′ ∈ (0, γ) : sup
t∈R

Et(eγ
′|∆Q|) <∞. (5)

For the second bosonic model, we prove the equivalence∫
R+

eγe|f(e)|2 de <∞ ⇐⇒ ∃ t1 < t2 :

∫ t2

t1

Et(eγ|∆Q|) dt <∞

⇐⇒ sup
t∈R

Et(eγ|∆Q|) <∞.
(6)

For this last model, we moreover prove that Pt is the law of an inhomogeneous Poisson process for
every t, while its classical counterpart is the law of a Gaussian random variable.

The existence of these equivalences highlights the contrast between classical statistical mechanics
and the quantum TTM framework. For a quantum system, if one aims at controlling the tails of the
heat variation, before discussing the value of λ, one has to assume that the interaction has sufficient
UV regularity. Typically, if one uses a cutoff f(e) = 0 for e large enough, completely preventing the
contribution of energy scales at which the validity of the model is no longer guaranteed, then the
left-hand side of (1) holds for any γ > 0. This discussion is not necessary for classical systems.

Heuristically speaking, the physical picture can be understood in terms of the Fermi golden rule.
According to this rule, the transition rates between different energy levels E and E′ is given roughly
by T (E′, E) := |〈E′, V E〉|2 with {|E〉}E the energy eigenstates of H0. The underlying physical
intuition for the left-hand side of (1) [resp. (2)] is roughly a condition controlling T (E′, E)eγ|E

′−E|
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[resp. T (E′, E)|E′ − E|2n] for large values of |E − E′|. Hence, these assumptions control the decay
of the transition rates as |E′ − E| goes to ∞.

Note that, while important for the control of the tails at finite λ, the UV regularisation assump-
tions become irrelevant in the limit t → ∞ and then λ → 0, if one assumes return to equilibrium.
Indeed, adapting [JPPP15], it can be shown that in this limit Pt converges weakly to a Dirac measure
in 0.

As pointed out in the conclusion of [BFJP16], though Pt is generally thought not directly ac-
cessible as it involves the projective measurement of non-local quantities, proposals have emerged
allowing for a sampling of Pt using an interaction with an auxiliary qubit [DCH+13, MDCP13,
CBK+13, RCP14]. The proposal of [DCH+13] involves only a local interaction between the qubit
and the system and therefore appears more appropriate for thermodynamic systems. Hence, Pt may
be experimentally accessible indirectly and a phenomenon akin to heavy tails may be observed.

Structure. The paper is organised as follows. In Section 2, we discuss shortly classical systems
with emphasis on two models with V unbounded whose quantum counterpart will be studied in
Section 4. In Section 3, we introduce the C∗-algebraic formalism of quantum statistical mechanics
and prove (1) and (2). In Section 4, we introduce the three models for which we test the necessity
of the UV regularity conditions. The proof of the implication (5) and the equivalences (3), (4)
and (6) for these models are postponed to Section 5. Appendix A contains technical results on
the self-adjointness of some operators involved in the definition of Pt for unbounded V . Finally, in
Appendix B, we show that the measure Pt defined in our models through the algebraic formalism
indeed emerges as the thermodynamic limit of measures describing two-time measurement protocols
for some finite dimensional systems.

Acknowledgements. We would like to thank Vojkan Jakšić for informative discussions and sug-
gestions about this project, and Claude-Alain Pillet and Yan Pautrat for useful comments about our
work. The research of T.B. has been supported by ANR-11-LABX-0040-CIMI within the program
ANR-11-IDEX-0002-02 and ANR project StoQ (ANR-14-CE25-0003-01). The research of A.P. was
partially supported by ANR project SQFT (ANR-12-JS01-0008-01) and ANR grant NONSTOPS
(ANR-17-CE40-0006-01, ANR17-CE40-0006-02, ANR-17-CE40-0006-03). The research of R.R. was
partially supported by NSERC and FRQNT. R.R. would like to thank the Laboratoire de physique
théorique at Université Paul Sabatier, where part of this research was conducted, for its support
and hospitality.

2 A short classical detour

To give some perspective on our results we first make a short detour through classical statistical
mechanics. We refer the reader to [Thi12, §3] for a detailed definition of classical Hamiltonian
dynamical systems and to [CM76] for an overview of the possible problems arising when considering
an infinite-dimensional phase space.

Let (K,$) be a connected smooth symplectic manifold. The manifold K is endowed with the
meaning of a classical system phase space. Since we are concerned with a thermodynamic setting,
the manifold K is not assumed to be finite dimensional. The unperturbed Hamiltonian of the system
is a continuously differentiable function H0 : K → R. The perturbation is a second continuously
differentiable function V : K → R, giving rise to the perturbed Hamiltonian H := H0 + V .

Under minimal technical assumptions on H, it defines a continuous Hamiltonian flow (Ξt)t∈R
defined on K, and the evolution of any sufficiently regular function g satisfies

d

dt
(g ◦ Ξt) = {g,H} ◦ Ξt,
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where { · , · } is the Poisson bracket induced by $; see the general conservation theorem in [CM76].
We define the heat variation between times 0 and t as the difference between the unperturbed

energy at times t and 0: ∆Q := H0 ◦Ξt−H0. We give some arguments for this choice in Remark 2.4.
Since H ◦ Ξt = H and H = H0 + V , equivalently,

∆Q := V − V ◦ Ξt. (7)

Note that under minimal technical assumptions3 on V ,

∆Q = −
∫ t

0

d

ds
V ◦ Ξs ds = −

∫ t

0

{V,H0} ◦ Ξs ds.

This equality is the expression of the first law of thermodynamics for a closed system, the right-hand
side being the work.

This definition through the work and the first law is useful when one is concerned with thermody-
namic systems. Indeed, in some standard examples, the phase space needs to be enlarged to K̄ ⊃ K,
a measurable space in which K is dense (see for example [JP98, SL77]). Then, the functions H0 and
V , and the flow Ξt are typically extended by continuity to K̄. Though H0 may be infinite at some
points in K̄, we assume that the perturbation V remains finite everywhere on K̄. The function ∆Q
on K is then extended by continuity to a function on K̄ using the extensions of V and Ξt.

With these definitions in mind, we introduce the statistical aspect of the model: the initial state
of the system is a probability measure µ on the phase space K̄ and the heat variation ∆Q becomes
a random variable. We are interested in characterizing the law Pt of ∆Q with respect to µ.

Remark 2.1. We denote Et the expectation with respect to Pt. The random variable ∆Q is denoted
without index t to highlight that we do not study a stochastic process but only a family (Pt)t∈R of
measures on R.

Remark 2.2. Whenever the initial definition ∆Q = H0 ◦Ξt−H0 makes sense, Pt has characteristic
function

Et(eiα∆Q) = µ(eiα(H0◦Ξt−H0)) = µ(eiαH0 ◦ Ξt e−iαH0). (8)

This formula parallels an expression we will encounter for quantum systems (see Remark 3.2).

The following proposition is a trivial consequence of the definition of ∆Q.

Proposition 2.3. If C := supx∈K̄ |V (x)| <∞, then for all t ∈ R, |∆Q| < 2C surely.

As soon as the perturbation is bounded, the heat fluctuations are surely uniformly controlled in
time. We will see in Section 4.1 that this implication is false in the context of quantum two-time
measurements.

Remark 2.4. The separation between work and heat involves a certain amount of arbitrariness.
More precisely, the choice of H0 and V such that H = H0 +V is partly arbitrary. There is no reason
another couple of functions would not be preferred. For example, if Ṽ : K → R is a continuously
differentiable function that remains finite on K̄, then H0 + Ṽ and V − Ṽ could also be a suitable
couple of functions. The choice of H0 in the definition of heat must therefore be motivated by other
arguments that are a priori model dependent.

Nevertheless, since H is not time dependent, a quite interesting generic argument is given by
the entropy balance equation. Assume, if it exists, that µ is the Gibbs measure at inverse tempera-
ture β > 0 for the Hamiltonian H0. Then the choice of the splitting H = H0 + V for the definition
of ∆Q is motivated by the µ-almost sure validity of the entropy balance equation

β∆Q = − log
dµ−t
dµ

, (9)

3See the conservation theorems in [CM76].
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where µs := µ ◦Ξ−s is the time evolution of the measure µ induced by the flow (Ξs)s∈R. Averaging,
we recover the mean entropy balance equation

βEt(∆Q) = −
∫

log
dµ−t
dµ

dµ = S(µ|µ−t) (10)

where S(µ|ν) is the relative entropy of µ with respect to ν. A similar argument holds for composite
systems with different parts at different inverse temperatures.

If another choice of splitting of H is made, Equation (9) does not hold exactly and some boundary
terms may have non-trivial asymptotic contributions; see [JPS16].

To the authors’ knowledge, if V is unbounded, the existence of the moments or the extension to
an open set of C of the Fourier transform of Pt can only be discussed on a model-by-model basis. In
the next two subsections, we discuss two models with unbounded V that can be studied using only
properties of Gaussian random variables.

2.1 Harmonic systems

Let Y be a real separable Hilbert space. Let B be a normal operator on Y with domain DomB and
trivial kernel. Let X be the completion of DomB with respect to the norm ‖B · ‖Y . We also denote
the extension of B to X by the letter B. We interpret the vector space K = Y ⊕ X as the phase
space of a collection of harmonic oscillators. We endow K with the Hilbert space structure given by
the inner product

〈π ⊕ φ, π′ ⊕ φ′〉 := 〈π, π′〉Y + 〈Bφ,Bφ′〉Y .

Let $ be the symplectic bilinear form on K defined by $(x, y) = 〈L−1
0 x, y〉, where

L0 :=

(
0 −B∗B
1 0

)
.

The operator L0 is skew-adjoint with domain Dom(L0) = {(π, φ) ∈ K : π ∈ DomB,Bφ ∈ DomB∗}.
The space (K,$) is our symplectic (Hilbert) manifold.

Let the unperturbed Hamiltonian be defined on K by

H0 : x 7→ 1
2‖x‖

2.

Let v be a trace class self-adjoint operator on K such that ‖L0v‖ < ∞. The perturbation V is
then defined on K as

V : x 7→ 1
2 〈x, vx〉,

and H(x) = 1
2 〈x, (1 + v)x〉.

Let L = L0(1 + v). Since L0 is skew-adjoint and ‖L0v‖ < ∞, perturbation theory implies
that (etL)t∈R is a semigroup of bounded operators on K. It is easy to check that the flow (Ξt)t∈R
associated to H is then given by Ξt(x) = etLx for any x ∈ K. Moreover, using the inequality
‖A∗TA‖tr ≤ ‖A‖2‖T‖tr for A ∈ B(K) and T trace class, vt := etL

∗
vetL remains trace class for any

t ∈ R. Here, ‖ · ‖tr denotes the trace norm.

We turn to the construction of Gaussian states. First, K needs to be enlarged. Since it is
separable by assumption, there exists an orthonormal basis (ui)i∈N of K. Any such countable
orthonormal basis (ONB) induces an isomorphism of K into `2(N; R): K 3 x 7→ (〈ui, x〉)i∈N. Let
(li)i∈N be a sequence of strictly positive numbers such that

∑
i∈N li = 1. Let 〈 · , · 〉l be the inner

product on K defined by

〈x, y〉l :=
∑
i∈N

li 〈ui, x〉 〈ui, y〉
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and let K̄ be the completion of K with respect to the norm induced by 〈 · , · 〉l.
Consider a positive definite bounded linear operator D on K. As pointed out for example

in [JPRB11], by Kolmogorov’s extension Theorem, there is a unique measure µD on K̄ whose
restriction to linspan{ui}i∈I , with I ⊂ N a finite set, is the centered Gaussian measure with inverse
covariance matrix [〈ui, Duj〉]i,j∈I . The fact that µD is indeed concentrated on K̄ is guaranteed by
the estimate

∑
n∈I ln 〈un, Dun〉 ≤ ‖D‖. By uniqueness of the measure, the inclusion suppµD ⊆ K̄

does not depend on the choice of (ui)i∈N and (li)i∈N.
The measure µD then has characteristic function

ξD : y 7→ e−
1
2 〈y,Dy〉,

defined on K̄∗ ⊂ K, the dual of K̄.
Conversely, the measure µD can equivalently be constructed directly using the above character-

istic function and the Bochner–Minlos Theorem, see for example [JP98, SL77].
Since the choice of ONB (ui)i∈N and sequence (li)i∈N is arbitrary, we can choose, for any self-

adjoint trace class operator a with trivial kernel, (ui)i∈N an ONB diagonalizing |a|, and (li)i∈N
its eigenvalues divided by tr |a|. We then have supx∈K̄ |〈x, ax〉|/‖x‖K̄ < tr |a|. Hence x 7→ 〈x, ax〉
extends by continuity to a finite function on suppµD ⊂ K̄. This procedure is easily adapted for a
any trace class operator.

Since v is trace class, V can be extended by continuity to suppµD 3 x 7→ 〈x, vx〉 ∈ R. Similarly
suppµD 3 x 7→ 〈x, vtx〉 ∈ R is extended by continuity from K to suppµD. On the contrary, the
extension of the unperturbed Hamiltonian can take infinite values on suppµD.

Definition 2.5. The probability distribution Pt describing the heat variation is the law of the
random variable ∆Q defined in Equation (7) with respect to µD. Namely, Pt is the law of

x 7→ 〈x, vx〉 − 〈etLx, vetLx〉 ,

with respect to µD.

Remark 2.6. Because v and etL
∗
vetL are trace class, this random variable is µD-integrable.

In this quadratic model, the Fourier transform of Pt extends analytically to an open neighborhood
of R in C. Hence, all the moments of ∆Q exist. A finer study of the following proposition, including
a proof of a large deviation principle with linear rate function can be found in [BJP17].

Proposition 2.7. Given Pt of Definition 2.5, for all t ∈ R, there exists γt > 0 such that

Et[eγt|∆Q|] <∞. (11)

Moreover, if −1 6∈ sp v, then there exists γ > 0 such that,

sup
t∈R+

Et[eγ|∆Q|] <∞. (12)

Proof. Since Et[eγ|∆Q|] ≤ Et[eγ∆Q]+Et[e−γ∆Q], the first bound (11) follows directly from properties
of Gaussian measures and the fact that v − etL

∗
vetL is trace class. The uniform bound (12) follows

from the fact that −1 6∈ sp v implies v − etL
∗
vetL is uniformly bounded with respect to t. Indeed,

in that case, 1 + v is invertible with bounded inverse so that etL
∗
(1 + v)etL = 1 + v implies

‖etL‖2 ≤ ‖1 + v‖‖(1 + v)−1‖.

Remark 2.8. Note that the size of the interval of γ ∈ R+ for which (12) holds is typically de-
creasing in ‖v‖. This model then illustrates the expectation stated in the Introduction that the
heat fluctuations are controlled by λ when V is unbounded. Further discussion of the relationship
between λ and γ for such harmonic models can be found in [BJP17].
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Corollary 2.9. Given Pt of Definition 2.5,

Et[|∆Q|k] <∞

for all k ∈ N and any t ∈ R+. Moreover, if −1 6∈ sp v, then

sup
t∈R

Et[|∆Q|k] <∞

for all k ∈ N.

We will see in Section 4.2 that, for the quantum harmonic oscillator in the context of quantum
two-time measurement, further assumptions on V are needed to prove analogues of Proposition 2.7
and Corollary 2.9.

Example 2.10. We give an example of this abstract setting that can be compared with the quantum
harmonic oscillator of Section 4.2. We consider a single harmonic oscillator interacting with a
Gaussian 1-dimensional thermal bath at inverse temperature β > 0. The oscillator has Hilbert
space Kosc = R⊕R with inner product

〈(p, q), (p′, q′)〉osc = pp′ + qq′.

Let Ḣ1(R) be the completion of H1(R) with respect to the norm ‖∇ · ‖. Then the bath Hilbert
space is the vector space Kbath := L2(R)⊕ Ḣ1(R) equipped with the inner product

〈(π, φ), (π′, φ′)〉bath = 〈π, π′〉L2 + 〈∇φ,∇φ′〉L2 .

The Hilbert space for the compound system is then K = Kosc⊕Kbath with unperturbed Hamiltonian

H0 : Kosc ⊕Kbath → R

(p, q, π, φ) 7→ 1
2 (‖(p, q)‖2osc + ‖(π, φ)‖2bath).

We take as an initial state the measure µD for the bounded operator D = β−11 on K. With
ψo = (0, 1, 0, 0) and ψf = (0, 0, 0, f) for some non-zero f ∈ H2(R), we consider

v = ψo 〈ψf , ·〉+ ψf 〈ψo, ·〉 .

The corresponding perturbed Liouvillean is then

L =


0 −1 0 −〈f, ·〉H1

1 0 0 0
0 ∆f 0 ∆
0 0 1 0

 .

The assumption −1 6∈ sp v is satisfied if and only if ‖∇f‖L2 6= 1.

2.2 Linear perturbations

Consider the setting of the previous subsection but let V : K 7→ R instead be a real linear form
defined by

V (x) := 〈f, x〉

with f ∈ K. The perturbed Hamiltonian on K is then

H : x 7→ 1
2‖x‖

2 + 〈f, x〉.

9



Remark 2.11. With an appropriate choice of gauge, these definitions correspond to the Hamilto-
nian description of the electromagnetic field x in presence of a charge current encoded in f . The
hypothesis f ∈ K corresponds to a mild UV regularity condition that prevents the apparition of
infinite electrostatic energy. It is necessary to properly define the model. Physically, this condition
is justified by taking into account that charges are not point like but have some “volume” [Spo04,
§2.3].

The technical condition f ∈ K here is analogous to the assumption f ∈ Dom ê in the quantum
counter part to this model discussed in Section 4.3, and is significantly weaker than the essentially
necessary UV conditions that are used to control the tails of Pt there.

It is again easy to show that the flow defined by the perturbed Hamiltonian H is given by

Ξt(x) = etL0x+ (etL0 − 1)f

for any t ∈ R and x ∈ K.

Definition 2.12. The probability distribution Pt describing the heat variation is the law of the
random variable ∆Q defined in Equation (7) with respect to µD. Namely, Pt is the law of the
random variable

x 7→ 〈f, (1− etL0)(f + x)〉

with respect to the measure µD.

The following propositions are straightforward consequences of the properties of Gaussian random
variables and show that the fluctuations of heat are in some sense trivial in this model.

Proposition 2.13. For any t ∈ R, Pt is a Gaussian probability measure with mean 〈f, (1− etL0)f〉
and variance ‖D 1

2 (1− e−tL0)f‖2.

Proof. By definition µD is such that any projection of x on a finite dimensional subspace of K is
a centered Gaussian random vector with same dimension as the subspace and covariance given by
the projection of D on this subspace. Hence, considering the projection of x on the one dimensional
linear subspace spanned by (1− etL0)f , for any α ∈ R,

Et(eiα∆Q) = eiα〈f,(1−etL0 )f〉− 1
2α

2‖D
1
2 (1−e−tL0 )f‖2 .

Remark 2.14. If DL0 = L0D, the variance is 2〈D 1
2 f, (1− cosh(tL0))D

1
2 f〉.

Corollary 2.15. For any γ > 0,
sup
t∈R

Et(eγ|∆Q|) <∞.

Proof. The probability measure Pt being Gaussian, the proposition follows from the fact that the
Fourier transform of Pt is entire analytic, and from the inequalities | 〈f, (1− etL0)f〉 | ≤ 2‖f‖2,

‖D 1
2 (1− e−tL0)f‖ ≤ 2‖D 1

2 ‖‖f‖ and e|x| ≤ ex + e−x.

Remark 2.16. Even if the Fourier transform of Pt is analytic on C, the variance is quadratic
in ‖f‖. Hence this model illustrates again the control of the heat fluctuations by λ as written in the
Introduction.

In Section 4.3, we will see that both Proposition 2.13 and Corollary 2.15 do not hold for the
similar quantized model in the two-time measurement framework. In the quantum case, Pt is the
probability measure of an inhomogeneous Poisson process, not of a Gaussian random variable. The
existence of a uniform bound similar to the one obtained in Corollary 2.15, depends then on the
properties of the Poisson process’ intensity.
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3 Control of the tails for bounded perturbations

3.1 Setup

Let us first briefly introduce the operator algebraic definition of quantum dynamical systems that we
adopt. We refer the reader to [BR87, §2–3] for a thorough exposition of this mathematical formalism.

A C∗-dynamical system is a triplet (O, τ, ω), where O is a unital C∗-algebra, (τs)s∈R is a strongly
continuous one-parameter group of ∗-automorphisms of O, and ω is a state, i.e. a positive linear
functional on O satisfying ω(1) = 1. We furthermore assume ω to be faithful and τ -invariant.4

Namely, we require that ω(A∗A) = 0 implies A = 0, and that

ω = ω ◦ τs

for all s ∈ R. We denote the generator of (τs)s∈R by δ. From the representation theory of C∗-
algebras, there exists a Hilbert space H, a ∗-isomorphism π : O → B(H), and a unit vector Ω ∈ H
such that

ω(A) = 〈Ω, π(A)Ω〉 (13)

for all A ∈ O and such that the vector Ω is cyclic for π(O). This triple (H, π,Ω) is called a GNS
representation of O associated to the state ω and is unique up to unitary equivalence; see for example
[BR87, §2.3.3]. On this Hilbert space H, there exists a unique self-adjoint operator L satisfying

LΩ = 0 (14)

and
π(τs(A)) = eisLπ(A)e−isL (15)

for all A ∈ O and s ∈ R. The self-adjoint operator L is referred to as the ω-Liouvillean of (τs)s∈R, or
simply the Liouvillean, and is typically not bounded, nor semi-bounded, for thermodynamic systems.

Finally, to a self-adjoint element V of O we associate a perturbed dynamics (τsV )s∈R generated
by δV := δ+ i[V, · ]. Both δ and δV are derivations on O. We refer to V as a (bounded) perturbation
and associate to it a measure that is the central object of this paper. Note that, in the GNS
representation, the perturbed dynamics is implemented by L+ π(V ) in the sense that

π(τsV (A)) = eis(L+π(V ))π(A)e−is(L+π(V ))

for all A ∈ O and all s ∈ R.

Definition 3.1. The probability distribution Pt describing the heat variation between times 0 and t
associated to (O, τ, ω) and the self-adjoint perturbation V ∈ O is the spectral measure of the operator

L+ π(V )− π(τ tV (V )) (16)

with respect to the vector Ω. Equivalently, it is the unique probability measure with characteristic
function

Et(α) = 〈Ω, eiα(L+π(V )−π(τtV (V )))Ω〉 . (17)

For a non-negative Borel function g, we will use Et(g(∆Q)) to denote the integral
∫
R
g(∆Q) dPt(∆Q)

with value in [0,∞].

Remark 3.2. If O is finite dimensional, Pt is the probability distribution of the heat variation as
defined by the two-time measurement protocol outlined in the introduction.

To see this, let O = Mn×n(C), with an unperturbed dynamics defined in the Heisenberg picture
by τ t(A) = eitH0Ae−itH0 for all A ∈ O and where the Hamiltonian H0 is a self-adjoint element
of Mn×n(C). Let ω(A) := tr(Aω̂) with ω̂ a full-rank density matrix that commutes with H0.

4We restrict ourselves to a faithful ω for simplicity. Up to some technical details, this assumption can be lifted.
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As presented in [JOPP11, §4.3.11]5, an associated GNS representation for this system is known
as the standard GNS representation: it has Hilbert space H = Mn×n(C) equipped with the
inner-product 〈A,B〉 = tr(A∗B) and the representation π is given by left matrix multiplication:
(π(A))(B) = AB. The vector representative Ω of ω is the matrix ω̂1/2. Then, the Liouvillean is
L = [H0, · ] and Definition 3.1, for a self-adjoint perturbation V ∈Mn×n(C), reads

Et(α) = 〈Ω, eiα(π(H0)+π(V )−π(τtV (V )))e−iαπ(H0)Ω〉
= tr(ω̂1/2eit(H0+V )eiα(H0+V−V )e−it(H0+V )e−iαH0 ω̂1/2)

= tr(eiαeit(H0+V )H0e−it(H0+V )

e−iαH0 ω̂).

In the first equality we used [H0, ω̂] = 0 to change ω̂1/2e−iαH0 to e−iαH0 ω̂1/2. The last expression of
the characteristic function is the quantum equivalent of (8) for classical systems.

Using the spectral decomposition H0 =:
∑
j εjPj where {Pj}j is a resolution of the identity, we

obtain that

Et(α) =
∑
i,j

tr(eiαεjPje
−it(H0+V )e−iαεiPiω̂eit(H0+V ))

=
∑

∆Q∈spH0−spH0

eiα∆Q
∑
i,j

εj−εi=∆Q

tr(Pje
−it(H0+V )Piω̂eit(H0+V ))

is the characteristic function of the probability measure

Pt({∆Q}) =
∑
i,j

εj−εi=∆Q

tr(Pje
−it(H0+V )Piω̂Pie

it(H0+V )Pj).

Hence, Pt is indeed the probability measure of the heat variation defined as the result of a two-time
measurement protocol of the Hamiltonian H0 [Kur00, Tas00, JOPP11, EHM09, CHT11].

Relevant models of infinitely extended quantum systems are obtained as the thermodynamic limit
of a sequence of such confined systems. As conveyed e.g. in [JOPP11], [JPPP15] and [BJP+15],
mild assumptions ensure that the corresponding sequence of probability measures converges weakly
to the measure Pt of Definition 3.1 on the limiting infinitely extended system. In Appendix B, we
provide proofs of this weak convergence for the models studied in Section 4.

Remark 3.3. As we pointed out in Remark 2.4 for classical systems, the choice of operator whose
spectral measure defines Pt is partly arbitrary. But as in the classical case, the choice of L+π(V )−
π(τ tV (V )) can be motivated by the entropy balance equation when ω is a (τ, β)-KMS state.

Indeed, in the framework of Tomita–Takesaki theory, if ω is a (τ, β)-KMS state, the Liouvillean
is L = −β−1 log ∆ω, where ∆ω denotes the modular operator for the state ω. With ∆ω−t|ω denot-
ing the relative modular operator (non-commutative analogue of the Radon–Nikodym derivative)
between the states ω−t := ω ◦ τ−tV and ω, one then has the identity [JPPP15]

β(L+ π(V )− π(τ tV (V ))) = − log ∆ω−t|ω. (18)

Hence, defining the distribution Pt of heat variation as the spectral measure for the operator L +
π(V )− π(τ tV (V )) with respect to Ω amounts to lifting the classical entropy balance equation (9) to
the level of the operators defining the distributions of heat on one side and entropy production on
the other. Indeed, upon taking expectation with respect Ω, the above identity reduces to

βEt(∆Q) = −〈Ω, log ∆ω−t|ωΩ〉 , (19)

where the right-hand side is identified as the relative entropy between ω and ω−t, exactly as in (10).
5Section 4.3.11. The standard representations of O of the published version corresponds to Section 2.11 of the

version available on the arXiv.
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Remark 3.4. Definition 3.1 extends naturally to the case of W ∗-dynamical system (M, τ, ω) to-
gether with a bounded self-adjoint perturbation V ∈M. Theorems 3.5 and 3.6 then also generalise
to this case. When considering V merely affiliated to the W ∗-algebra M, one may in some cases
mimic the construction Definition 3.1 and obtain results analogous to the ones for C∗-algebras. We
do not discuss the general theory of heat variation for such unbounded perturbations, but treat some
examples in Sections 4.2 and 4.3.

3.2 Results

Our two main general results for C∗-dynamical systems with bounded perturbations describe the
control of the tails of Pt. The first one gives a sufficient condition for the existence and uniform
boundedness in time of even moments; the second, for the existence and uniform boundedness of an
analytic extension of the Fourier transform to a neighborhood of 0 in C.

Theorem 3.5. Let (O, τ, ω) be a C∗-dynamical system, V ∈ O a self-adjoint perturbation, and Pt
the probability measure of Definition 3.1. If V ∈ Dom δn, then

sup
t∈R

Et[∆Q2n+2] <∞.

Theorem 3.6. In the same setting, if V ∈ Dom ei γ2 δ ∩Dom e−i γ2 δ for γ > 0, then

sup
t∈R

Et[eγ|∆Q|] <∞.

Remark 3.7. A similar result was already presented in [BJP+15]. It was proved via the thermo-
dynamic limit. Below, we provide a proof in the present framework.

Remark 3.8. The assumptions V ∈ Dom δn(V ) and V ∈ Dom ei γ2 δ∩Dom e−i γ2 δ can be reformulated
in terms of regularity of the map t 7→ τ t(V ). We have V ∈ Dom δn(V ) if and only if t 7→ τ t(V ) is n
times norm differentiable and V ∈ Dom ei γ2 δ ∩Dom e−i γ2 δ if and only if t 7→ τ t(V ) admits a bounded
analytic extension to the strip {z ∈ C : | Im z| < γ

2 }.

3.3 Proofs

Recall that, given V ∈ O, the one-parameter group (τ tV )t∈R is the perturbed dynamics whose
generator is given by δV = δ + i[·, V ]. We start with some useful properties of derivations, the first
two being easily proved by induction.

Lemma 3.9. Let δ be a derivation on an algebra O and A,B ∈ Dom(δn), n ∈ N. Then

δn(AB) =

n∑
k=0

(
n

k

)
δn−k(A)δk(B).

Lemma 3.10. Let δ be a derivation on a C∗-algebra O and let Vt ∈ Dom(δn) and supt ‖δn(Vt)‖ <
∞. Then V pt ∈ Dom(δn) for all p ∈ N and supt ‖δn(V pt )‖ <∞.

Lemma 3.11. If V ∈ Dom δn, then V − τ tV (V ) ∈ Dom δn and

sup
t∈R
‖δn(V − τ tV (V ))‖ <∞.
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Proof. Using a Dyson expansion of V − τ tV (V ), it is easy to show that V − τ tV (V ) ∈ Dom(δn). It
remains to show that the norm of δn(V − τ tV (V )) is uniformly bounded in t.

Since ‖δn(V )‖ <∞ is independent of t, it suffices to show uniform boundedness of ‖δn(τ tV (V ))‖.
We proceed by induction on n, noting that because δ is a strongly continuous group generator, V ∈
Dom δn implies V ∈ Dom δk for k = 1, . . . , n− 1, n. For convenience let cn := supt∈R ‖δn(τ tV (V ))‖.

For n = 1, by definition of τ tV from δV = δ + i[V, ·],

δ1(τ tV (V )) = τ tV (δ(V ))− i[V, τ tV (V )]

and thus

‖δ1(τ tV (V ))‖ ≤ ‖τ tV (δ(V ))‖+ ‖[V, τ tV (V )]‖ ≤ ‖δ(V )‖+ 2‖V ‖2.

Hence c1 ≤ ‖δ(V )‖+ 2‖V ‖2.
Now suppose that the statement holds for k and that V ∈ Dom δk+1. Then,

δk+1(τ tV (V )) = τ tV (δk+1
V (V ))− i

k∑
l=0

δlV [V, δk−l(τ tV (V ))]

and thus, using Lemma 3.9,

‖δk+1(τ tV (V ))‖ ≤ ‖δk+1
V (V )‖+

k∑
l=0

l∑
j=0

(
l

j

)
2‖δjV (V )‖‖δl−jV δk−l(τ tV (V ))‖.

By repeated application of the product rule of Lemma 3.9, this may in turn be bounded uniformly
in t by a combination of powers of c1, . . . , ck, ‖V ‖, ‖δ(V )‖, . . . , ‖δk(V )‖ and ‖δk+1(V )‖, which are
all finite by induction hypothesis.

In the following, L and W are operators on a Hilbert space, with L possibly unbounded. We
denote by adL(W ) the commutator [L,W ]. We set ad0

LW = W . The following formula can be
easily proven by induction. We will then be ready to prove Theorems 3.5 and 3.6.

Lemma 3.12. Let L and W be two linear operators on a Hilbert space. Assume that adkL(W )
extends to a bounded operator for all k with 0 ≤ k ≤ n. Then,

LnW =

n∑
k=0

(
n
k

)
adkL(W )Ln−k.

Proof of Theorem 3.5. Set Xt := π(V −τ tV (V )). By definition of Pt as a spectral measure, and since
LΩ = 0, we have ∫

R

|∆Q|2n+2 dPt(∆Q) = ‖(L+Xt)
n+1Ω‖2 = ‖ (L+Xt)

n
XtΩ‖2.

Now,

(L+Xt)
nXt =

∑
Ai=L,Xt

A1A2 · · ·AnXt.

Each term in the sum can be written as

Lα1Xβ1

t · · ·LαmX
βm
t Xt

with
∑
i αi +

∑
i βi = n. Using repeatedly Lemma 3.12 and LΩ = 0,

(L+Xt)
nXtΩ = PtXtΩ
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with Pt a non-commutative polynomial of variables adkLX
p
t with k + p ≤ n.

By Lemmas 3.10 and 3.11, ‖δk((V −τ tV (V ))p)‖ is uniformly bounded for all p and all k ≤ n. Since

adkL(Xp
t ) = π(δk((V − τ tV (V ))p)), it implies adkL(Xp

t ) is uniformly bounded. Hence supt ‖Pt‖ < ∞,
and (L+Xt)

n+1Ω = PtΩ proves the theorem.

Proof of Theorem 3.6. By hypothesis, for each N ∈ N, the function of s ∈ R defined by the trun-
cated Araki–Dyson series

E
(N)
V (s) := 1 +

N∑
n=1

in
∫ s

0

· · ·
∫ sn−1

0

π(τsn(V )) · · ·π(τs1(V )) dsn · · · ds1 (20)

has an analytic extension to the complex open neighborhood S0 := {z ∈ C : |Im z| < 1
2γ}. Moreover,

sup
N∈N

‖E(N)
V (z)‖ ≤ e|z|v0

with v0 := supz∈S0
‖τz(V )‖. Hence, by the Vitali–Porter convergence theorem and equivalence

of the weak and strong analyticity, (20) converges on S0 to a norm-analytic π(O)-valued function
S0 3 z 7→ EV (z) satisfying

‖EV (z)‖ ≤ e|z|v0 .

On the other hand, the truncated Araki–Dyson series (20) converges to eis(L+π(V ))e−isL for all s ∈ R.
Then we have

e−is(L+π(V )−π(τtV (V )))Ω = e−is(L+π(V )−eit(L+π(V ))π(V )e−it(L+π(V )))Ω

= eit(L+π(V ))e−isLeis(L+π(V ))e−it(L+π(V ))e−is(L+π(V ))Ω

= eit(L+π(V ))EV (−s)∗e−it(L+π(V ))EV (−s)Ω,

with the operators on the right-hand side admitting analytic extensions as functions of s to the
set S0. Therefore,

Et[eγ|∆Q|] ≤ Et[e−γ∆Q] + Et[eγ∆Q]

= ‖EV (− i
2γ)∗e−it(L+π(V ))EV (− i

2γ)Ω‖2

+ ‖EV ( i
2γ0)∗e−it(L+π(V ))EV ( i

2γ)Ω‖2

≤ ‖τ tV (EV (− i
2γ)∗)‖2‖EV (− i

2γ)‖2‖Ω‖2

+ ‖τ tV (EV ( i
2γ)∗)‖2‖EV ( i

2γ)‖2‖Ω‖2

≤ 2e2γv0 .

4 Heavy tails in some quasi-free gas models

In the present section, we study some models with V bounded and unbounded where the assumptions
of Theorems 3.5 and 3.6 are related to explicit UV regularity conditions. We moreover prove some
converse implications in each model. The results presented in this section are proved in Section 5.

In Section 4.1, in a model of quasi-free fermions, we show that the 2n+ 2nd moment of Pt exists
essentially if and only if V ∈ Dom δn.

In Section 4.2, we study a model that can be seen as the bosonic analogue of the previous one
or as a quantization of the classical model of Section 2.1. We show that, even if V is unbounded in
this model, results similar to Theorems 3.5 and 3.6 hold, with a converse to Theorem 3.5.
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In Section 4.3, we study a model that can be seen as a quantization of the classical model of
Section 2.2. First we show that Pt is the law of an inhomogeneous Poisson process, in sharp contrast
with its classical counterpart for which Pt is the law of a Gaussian random variable. Building on
that result, we again show that, even if V is unbounded in this model, analogues of Theorems 3.5
and 3.6 hold. Moreover, we prove that the implications in both of these theorems have converses.

Before we give the details on these three models, we introduce common notations. Given a
Hilbert space h, we denote by Γ−(h) [resp. Γ+(h)] the anti-symmetric [resp. symmetric] Fock space
associated to h; by a and a∗, the usual annihilation and creation operators there; and by dΓ(b)
the second quantization of the one-particle operator b on h. Since it is clear from the context,
we use the same letter for the fermionic and the bosonic ones. The expression a] stands either
for the creation a∗ or for the annihilation a. We denote by ϕ the corresponding field operators
ϕ(ψ) := 1√

2
(a(ψ) + a∗(ψ)).

4.1 Impurity in a quasi-free Fermi gas

We consider a fermionic impurity interacting with a quasi-free Fermi gas. The corresponding unital
C∗-algebra O is generated by {a(φ) : φ ∈ h} with the one-particle Hilbert space h = C⊕L2(R+,de).
The unperturbed dynamic is given by the extension of

τs(a](φ)) = a](eish0φ) (21)

for φ ∈ h, where h0 := εo ⊕ ê on h, to a group of ∗-automorphisms of O. Here and in what follows,
(êφ)(e) = eφ(e) and εo > 0.

The intial state ω is taken to be the quasi-free state on O generated by the Fermi–Dirac density
T = (1 + eβh0)−1 for some inverse temperature β > 0. Then, ω is a (τ, β)-KMS state. We refer the
reader to [BR97, §5] or [RS75, §X.7] for more details.

The impurity–gas interaction is given by the bounded perturbation

V = a∗(ψf )a(ψo) + a∗(ψo)a(ψf ),

where ψf = 0 ⊕ f ∈ C ⊕ L2(R+,de) and ψo = 1 ⊕ 0 ∈ C ⊕ L2(R+,de). Note that V = dΓ(v) for
the one-particle rank two operator

v = ψo 〈ψf , ·〉+ ψf 〈ψo, ·〉 .

Remark 4.1. The space L2(R+,de) with the unperturbed one-particle Hamiltonian ê is chosen for
simplicity. This choice captures the essential features of our problem. Our proofs can be adapted to
more general separable Hilbert spaces as long as the unperturbed one-particle Hamiltonian is lower
bounded and one works in the representation where it is a multiplication operator.

Remark 4.2. If there exists γ > 0 such that f ∈ Dom e
1
2γê, the norm equality ‖a(φ)‖ = ‖φ‖ implies

that Theorem 3.6 holds for said γ. If one defines V using a sharp UV cutoff, namely if there exists
Λ > 0 such that f(e) = 0 for all e > Λ, then f ∈ Dom e

1
2γ for any γ ∈ R+ and Theorem 3.6 holds

for arbitrarily large γ. Next theorem shows that UV regularization conditions are not only sufficient
but necessary for the existence of moments of Pt.

Theorem 4.3. Let Pt be the probability measure of Definition 3.1 for (O, τ, ω) and V defined in
this section. Then, for any n ∈ N, the following are equivalent

(i) supt∈R Et[∆Q2n+2] <∞;

(ii) there exists t1 < t2 such that
∫ t2
t1

Et[∆Q2n+2] dt <∞;

(iii) f ∈ Dom ên.
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Remark 4.4. In this setup, since δ(a](φ)) = a](ih0φ), and ‖a(φ)‖ = ‖φ‖, f ∈ Dom ên implies
V ∈ Dom δn. Hence the condition V ∈ Dom δn is equivalent to an UV regularity condition on the
form factor f .

Remark 4.5. If there exists n ∈ N such that f 6∈ Dom ên, then the 2n+2nd moment of Pt essentially
never exists and Pt is then heavy-tailed.

4.2 Quantum Open Harmonic Oscillator

We consider a quantum harmonic oscillator coupled to a gas of quasi-free scalar bosons. Our model
is similar to the one studied in [Ara81, Dav73]. It is the bosonic analogue of the model of the
previous section and the quantum analogue of the classical model of Section 2.1.

Consider the Hilbert space

Γ+(C)⊗ Γ+(L2(R+,de)) ∼= L2(R)⊗ Γ+(L2(R+,de))

with unperturbed Hamiltonian
dΓ(εo)⊗ 1 + 1⊗ dΓ(ê).

The oscillator–gas interaction is given by the unbounded perturbation

a∗(1)⊗ a(f) + a(1)⊗ a∗(f)

with f ∈ Dom ê−1/2 ∩Dom ê.6

By the usual identification Γ+(C)⊗Γ+(L2(R+,de)) ∼= Γ+(C⊕L2(R+,de)), we obtain unitarily
equivalents dΓ(h0) and V := a∗(ψf )a(ψo)+a∗(ψo)a(ψf ) on Γ+(h) where ψf = 0⊕f ∈ C⊕L2(R+,de)
and ψo = 1⊕ 0 ∈ C⊕ L2(R+,de).

Let ρ = (eβh0 − 1)−1 be the Bose–Einstein density for some inverse temperature β > 0. Let
us introduce a representation of the canonical commutation relations (CCR) algebra over Dom ρ1/2

known as the (glued left) Araki–Woods representation, which in its earliest form goes back to [AW63].
This representation is determined by

WAW : Dom ρ1/2 → B(Γ+(h⊕ h))

φ 7→W (
√

1 + ρ φ⊕√ρφ), (22)

where W denotes the Weyl operators on the symmetric Fock space Γ+(h⊕ h) and φ̄ is the complex
conjugation of φ. These operators satisfy the Weyl form of the CCR:

WAW(φ)WAW(ψ) = e−
i
2 Im〈φ,ψ〉WAW(φ+ ψ) (23)

for all φ and ψ in Dom ρ1/2. Also, we have the evaluation identity

〈Ω,WAW(φ)Ω〉 = e−
1
4 〈φ,φ〉−

1
2 〈φ,ρφ〉 (24)

for all φ in Dom ρ1/2.

Let MAW ⊆ B(Γ+(h⊕ h)) be the von Neumann algebra generated by

{WAW(φ) : φ ∈ Dom ρ1/2}.

The maps defined by
τs(WAW(φ)) = WAW(eish0φ) (25)

6The assumption f ∈ Dom ê−1/2 ∩ Dom ê is a technical IR/UV regularity condition needed to have a properly
defined model.
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for all φ ∈ Dom ρ1/2 extend to a W ∗-dynamics (τs)s∈R on MAW i.e. a σ-weakly continuous one-
parameter group of ∗-automorphisms of MAW. We consider the state ω : A 7→ 〈Ω, AΩ〉 on MAW

where Ω is the vacuum in Γ+(h⊕ h). Then, ω is a (τ, β)-KMS state on MAW and the corresponding
Liouvillean is L = dΓ(h0 ⊕−h0). For proofs of these facts, we refer the reader to [DG13, §17] and
[Der06, §9].

For each φ ∈ Dom ρ1/2, the map R 3 s 7→ WAW(sφ) is strongly continuous and we will denote
its generator by ϕAW(φ). It is explicitly given on the Fock space Γ+(h⊕ h) by

ϕAW(φ) = ϕ(
√

1 + ρ φ⊕√ρφ).

The affiliated creation and annihilation operators, aAW∗(φ) and aAW(φ), are related to ϕAW(φ) by
the formula ϕAW(φ) = 1√

2
(aAW∗(φ) + aAW(φ)) and [aAW(φ), aAW∗(ψ)] = 〈φ, ψ〉. They are explicitly

given by the formula

aAW(φ) = a(
√

1 + ρ φ⊕ 0) + a∗(0⊕√ρφ).

The perturbation V is represented by an operator V AW affiliated to MAW given by

V AW = aAW∗(ψo)aAW(ψf ) + aAW∗(ψf )aAW(ψo),

where ψf = 0⊕ f ∈ Dom ρ1/2 ⊂ h since f ∈ Dom ê−1/2 and ψo = 1⊕ 0 ∈ h.
Since f ∈ Dom ê−1/2 ∩Dom ê, the operator

L+ V AW (26)

is essentially self-adjoint on DomL ∩ DomV AW by Lemma A.1 and the family of maps (τsV )s∈R
defined by

τsV (WAW(φ)) = eit(L+V AW)WAW(φ)e−it(L+V AW)

for φ ∈ Dom ρ
1
2 extends to a W ∗-dynamics on MAW [DJP03]. Again with the one-particle operator

v = ψo 〈ψf , ·〉+ ψf 〈ψo, ·〉, we have

τsV (WAW(φ)) = WAW(eis(h0+v)φ)

for all φ ∈ Dom ρ1/2.
The operator

L+ V AW − eit(L+V AW)V AWe−it(L+V AW)

is well-defined and self-adjoint. Its self-ajointness follows from Lemma A.1 and the observation

L+ V AW − eit(L+V AW)V AWe−it(L+V AW) = eit(L+V AW)Le−it(L+V AW).

Hence the following definition is sound.

Definition 4.6. The distribution Pt of heat variation is the spectral measure of

L+ V AW − eit(L+V AW)V e−it(L+V AW)

with respect to Ω.

Theorem 4.7. Assume f ∈ Dom ê−1/2 ∩ Dom ê and ‖ê−1/2f‖ 6= ε
1/2
o . Let Pt be the probability

measure of Definition 4.6. Then, for any n ∈ N the following are equivalent

(i) supt∈R Et[∆Q2n+2] <∞;
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(ii) there exist t1 < t2 such that
∫ t2
t1

Et[∆Q2n+2] dt <∞;

(iii) f ∈ Dom ên.

Remark 4.8. As one can see in the proof, without the assumption ‖ê−1/2f‖ 6= ε
1/2
o , the second

statement still implies the third one, and the third statement implies the second one for all time
intervals (t1, t2).

Proposition 4.9. Let Pt be the probability measure of Definition 4.6. If there exists γ > 0 such
that f ∈ Dom e

1
2γê, then there exists γ′ ∈ (0, γ) such that

sup
t∈R

Et[eγ
′|∆Q|] <∞. (27)

4.3 van Hove Hamiltonian

We consider a quasi-free gas of scalar bosons interacting with a prescribed classical external scalar
field. This model is the quantum counterpart to the classical model of Section 2.2. It typically
models the interaction of an electromagnetic field with some prescribed classical charges.

The one-particle Hilbert space is h = L2(R+,de) and the one-particle Hamiltonian is h0 = ê.
The unperturbed Hamiltonian is dΓ(ê) on the Fock space Γ(L2(R+,de)). The prescribed classical
external field induces a perturbation V := ϕ(f). The perturbated Hamiltonian is

dΓ(ê) + ϕ(f)

with f ∈ Dom ê ∩ ê−1/2.
Hamiltonians of this type are often called van Hove Hamiltonians [Der03]. We cast this into the

W ∗-algebraic framework again through the Araki–Woods representation.
Let ρ be the Bose–Einstein density at inverse temperature β > 0, ρ := (eβh0 − 1)−1. In the

corresponding Araki–Woods representation (22), the dynamics τ is again given by (25) and we
consider the quasi-free state ω associated to ρ. Recall that ω is a (τ, β)-KMS state. The CCR (23)
and the evaluation identity (24) still hold.

Since f ∈ Dom ê ∩Dom ê−1/2, the van Hove perturbation

L+ ϕAW (f) (28)

of the Liouvillean is essentially self-adjoint on DomL ∩DomϕAW (f) by Lemma A.2. The maps

τsV (WAW(φ)) = eis(L+ϕAW(f))WAW(φ)e−is(L+ϕAW(f))

on {WAW(φ) : φ ∈ Dom ρ1/2} extend to a W ∗-dynamics on MAW.
Then, as in the previous subsection, we can consider the operator

L+ ϕAW(f)− eit(L+ϕAW(f))ϕAW(f)e−it(L+ϕAW(f)), (29)

and Lemma A.2 ensures its essential self-adjointness and soundness of the following definition of the
distribution of heat variation.

Definition 4.10. The distribution Pt of heat variation is the spectral measure of

L+ ϕAW(f)− eit(L+ϕAW(f))ϕAW(f)e−it(L+ϕAW(f))

with respect to Ω.
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Remark 4.11. This system has the particularity that it admits a closed form expression for the
characteristic function Et of Pt, which allows an in-depth study of the relation between the tails of Pt
and the regularity of the perturbation. As in the previous models, this regularity is expressed in
terms of the the map R 3 s 7→ eisêf ∈ L2(R+,de), which is n times norm differentiable if and only
if f ∈ Dom ên.

Theorem 4.12. Assume f ∈ Dom ê ∩ Dom ê−1/2. Then, the probability measure Pt of Definition
4.10 is the law of an inhomogeneous Poisson process on R with intensity

dνt(e) :=
(1− cos(et))

e2

|f(|e|)|2

|1− e−βe|
de.

Remark 4.13. This distribution of the heat variation is in sharp contrast with the Gaussian heat
variation of its classical analogue we discussed in Section 2.2.

Theorem 4.14. Assume f ∈ Dom ê ∩ Dom ê−1/2. Let Pt be the probability measure of Defini-
tion 4.10. Then, for any n ∈ N the following are equivalent

(i) supt∈R Et[∆Q2n+2] <∞;

(ii) there exist t1 < t2 such that
∫ t2
t1

Et[∆Q2n+2] dt <∞;

(iii) f ∈ Dom ên.

Theorem 4.15. Assume f ∈ Dom(ê) ∩ Dom(ê−1/2). Let Pt be the probability measure of Defini-
tion 4.10. Then, for γ > 0, the following are equivalent

(i) supt∈R Et[eγ|∆Q|] <∞;

(ii) there exist t1 < t2 such that
∫ t2
t1

Et[eγ|∆Q|] dt <∞;

(iii) f ∈ Dom e
1
2γê.

5 Proofs for quasi-free gas models

5.1 One-particle space preliminaries

Some of the results of Section 4 require technical lemmas on one-particle operators and vectors.
Throughout this section, h0 = εo ⊕ ê on h = C⊕L2(R+,de), and the one-particle perturbation v is
of the form ψo 〈ψf , · 〉+ψf 〈ψo, · 〉 for ψf = 0⊕f ∈ C⊕L2(R+,de) and ψo = 1⊕0 ∈ C⊕L2(R+,de).

First note that Domh0 = Domh and, if f ∈ Dom ên−1, Domhn = Domhn0 . Moreover, we have
the following first two lemmas.

The first lemma is a somehow surprising, but quite straight forward, property of the comparison
between perturbed and unperturbed one-particle unitary dynamical groups.

Lemma 5.1. Let n ∈ N∗ and assume f ∈ Dom ên−1. Then hn0 (eith0 − eith) is bounded and there
exists an affine function R+ 3 t 7→ Kn(t) such that

‖hn0 (eith0 − eith)‖ ≤ Kn(|t|). (30)

Proof. We prove the lemma for t > 0. The proof for t < 0 is similar.
Let χ ∈ Domhn0 and φ ∈ Domh0. Using Duhamel’s formula,

〈hn0χ, (eith0 − eith)φ〉 = i

∫ t

0

〈hn0χ, ei(t−s)h0veishφ〉ds,

= −
∫ t

0

〈χ, (∂sei(t−s)h0)hn−1
0 veishφ〉ds,
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Since φ ∈ Domh, the functions s 7→ 〈ψo, e
ishφ〉 and s 7→ 〈ψf , eishφ〉 are in C1(R). Similarly, the

functions s 7→ 〈χ, ei(t−s)h0hn−1
0 ψo〉 and s 7→ 〈χ, ei(t−s)h0hn−1

0 ψf 〉 are in C1(R) using χ ∈ Dom(hn0 )
for the second function. Integrating by parts,

i

∫ t

0

〈χ, (∂sei(t−s)h0)hn−1
0 veishφ〉ds

= i
[
〈χ, ei(t−s)h0hn−1

0 veishφ〉
]t
0

+

∫ t

0

〈χ, ei(t−s)h0hn−1
0 vheishφ〉ds.

Since ψo and ψf are in Dom(hn−1
0 ),

‖hn−1
0 v‖ <∞ and ‖hn−1

0 vh‖ <∞.

The inequality,
|〈hn0χ, (eith0 − eith)φ〉| ≤ ‖χ‖ ‖φ‖

(
2‖hn−1

0 v‖+ t‖hn−1
0 vh‖

)
.

and Riesz’s Lemma yield the lemma with the affine bound

Kn(t) = 2‖hn−1
0 v‖+ t‖hn−1

0 vh‖.

The second Lemma concerns the stability of the domain of powers of h0 with respect to the
perturbed dynamical unitary group.

Lemma 5.2. Let n ∈ N∗ and suppose f ∈ Dom ên−1. If φ ∈ Domhn0 , then for all α ∈ [0, n],

sup
t
‖hα0 eithφ‖ <∞. (31)

Proof. By a concavity argument, it suffices to show (31) for α = n. Since f ∈ Dom ên−1 implies
Domhn = Domhn0 , the commutation [eith, hn] = 0 yields directly that eithφ ∈ Domhn0 .

Now, by the triangle inequality

‖hn0 eithφ‖ ≤ ‖(hn0 − hn)eithφ‖+ ‖hnφ‖. (32)

The operator hn0 − hn is a polynomial in operator variables hk0v
phm0 with k + p + m ≤ n, p ≥ 1.

Since f ∈ Dom ên−1, all the operator variables hk0v
phm0 are bounded. Hence, hn0 − hn is bounded

and supt ‖hn0 eithφ‖ <∞ follows from φ ∈ Domhn.

The last lemma of this subsection allows us to ensure that the existence of moments of Pt is not
the fortuitous consequence of some cycles in the evolution, but truly the consequence of f ∈ Dom ên.
We will use it in the proof that (ii) implies (iii) in Theorems 4.3 and 4.7. For that purpose we show
that a positive function of e that will appear later in our proofs is actually lower bounded away
from 0.

We denote h̄ := h0 + v̄ where v̄ := ψo〈ψf , · 〉+ ψf 〈ψo, · 〉.

Lemma 5.3. Let A =
√
T or A =

√
ρ. Assume furthermore that ψ ∈ DomA \ {0} is not an

eigenvector of h. Then, for any non-trivial interval (t1, t2) of R,

inf
e∈R+

∫ t2

t1

‖A(1− e−it(h−e)ψ)‖2 dt > 0.

Proof. Let

F (e) :=

∥∥∥∥∫ t2

t1

A(1− e−it(h̄−e))ψ dt

∥∥∥∥ .
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From triangle inequality on integrals and Jensen’s inequality, it is sufficient to lower bound this
function on R+ to prove the lemma.

To deal with the unboundedness of ρ, we introduce

ρcut(e) :=

{
(eβe − 1)−1 if e ≥ 1

(eβ − 1)−1 if e < 1.

Let ρ1 := (eβεo − 1)−1 ⊕ ρcut(ê). Since e 7→ (eβe − 1)−1 is decreasing, it is a bounded operator and
ρ ≥ ρ1. Hence lower bounding e 7→ F (e) with A =

√
ρ1 implies the existence of the same lower

bound for e 7→ F (e) with A =
√
ρ. Thus we now prove a lower bound away from 0 on e 7→ F (e)

with A assumed to be a bounded positive operator with trivial kernel.
Let y : R→ C be the function defined by

y(x) =

∫ t2

t1

1− e−itx dt.

The function y is continuous and bounded by 2(t2 − t1) on R, and y(x) = 0 if and only if x = 0.
Fubini’s Theorem implies,

F (e) = ‖Ay(h̄− e)ψ‖.
Since kerA = {0}, it follows from y(x) = 0⇔ x = 0 that F (e) = 0⇔ h̄ψ = eψ which contradicts our
assumption that ψ is not an eigenvector of h. Hence, by continuity of F , on any compact E ⊂ R+,

inf
e∈E

F (e) > 0.

Hence infe∈R+
F (e) = 0 only if lim infe→∞ F (e) = 0.

Since R 3 x 7→ y(x − e) converges pointwise to t2 − t1 when e → ∞ and y is bounded, by
Lebesgue’s dominated convergence Theorem,

lim
e→∞

y(h̄− e)ψ = (t2 − t1)ψ

in norm. Hence,
lim inf
e→∞

F (e) = lim
e→∞

‖Ay(h̄− e)ψ‖ = (t2 − t1)‖Aψ‖.

The triviality of the kernel of A yields the result.

5.2 Proofs for the impurity in a quasi-free Fermi gas

The GNS representation we will work in is known as the (glued left) Araki–Wyss representation.
This representation of the CAR was introduced in its earliest form in [AW64]. The Hilbert space
for this representation is the anti-symmetric Fock space H = Γ−(h ⊕ h) and the representation is
determined by

π(a(φ)) = a(
√

1− Tφ⊕ 0) + a∗(0⊕
√
T φ), (33)

for all φ ∈ h. Finally the vector representative Ω of ω is the vacuum in Γ−(h ⊕ h) and the (unper-
turbed) Liouvillean is L = dΓ(h0⊕−h0). For proofs of these facts, we refer the reader to [DG13, §17]
and [Der06, §10]. For φ ∈ Domh0, the operators L and π(a](φ)) satisfy the commutation relation

i[L, π(a](φ))]Ψ = π(δ(a](φ)))Ψ = π(a](ih0φ))Ψ, (34)

for any Ψ ∈ DomL, as seen from differentiating the relation

eisLπ(a](φ))e−isLΨ = π(a](eish0φ))Ψ

obtained from (15) and (21). It follows directly from a repeated application of (34) that

V ∈ Dom(δn) ⇐⇒ f ∈ Dom(ên). (35)
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Proof of Theorem 4.3. The fact that the first statement implies the second one is trivial. The fact
that the third one implies the first one is immediate from Theorem 3.5 and the equivalence (35).

To prove that the second statement implies the third one, we proceed by induction on n. The
result holds for n = 0. Assume it holds for some n − 1 ∈ N and suppose that there exists a
non-trivial interval (t1, t2) on which t 7→ Et(∆Q2n+2) is integrable. Then, t 7→ Et(∆Q2n) is also
integrable by Jensen’s inequality and f ∈ Dom ên−1 by the induction hypothesis. The equiva-
lence (35) yields V ∈ Dom δn−1. Let Xt := V − τ tV (V ). Then Lemma 3.11 implies Xt ∈ Dom δn−1

and supt∈R ‖δn−1(Xt)‖ <∞.

Claim A π(Xt)Ω ∈ DomLn for a.e.7 t ∈ (t1, t2) and∫ t2

t1

‖Lnπ(Xt)Ω‖2 dt <∞.

First, we prove Ω ∈ Dom(L + π(Xt))
n+1 for a.e. t ∈ (t1, t2). Let E 7→ P (E) be the projection

valued spectral measure of L + π(Xt). Let Φ ∈ H be such that there exists Λ > 0 such that
P ([−Λ,Λ])Φ = Φ. Then by the Cauchy–Schwarz inequality,

|〈Φ, (L+ π(Xt))
n+1Ω〉|2 ≤ ‖Φ‖2‖P ([−Λ,Λ])(L+ π(Xt))

n+1Ω‖2.

The norm ‖P ([−Λ,Λ])(L + π(Xt))
n+1Ω‖ is non-decreasing as a function of Λ. Then (ii) implies

that for a.e. t ∈ (t1, t2), limΛ→∞ ‖P ([−Λ,Λ])(L + π(Xt))
n+1Ω‖2 = Et(∆Q2n+2). Hence for a.e.

t ∈ (t1, t2),
|〈Φ, (L+ π(Xt))

n+1Ω〉|2 ≤ ‖Φ‖2Et(∆Q2n+2)

and Riesz’s Lemma implies Ω ∈ Dom(L+ π(Xt))
n+1.

Now we prove Claim A. By the induction hypothesis, Lemma 5.2 and the equivalence (35),
commuting repeatedly L with π(Xt), it follows that π(Xt) DomLn−1 ⊂ DomLn−1. Hence any non-
commutative polynomial in L and π(Xt) with at most n − 1 occurrences of L in each monomial
preserves DomLn−1. Working in a representation of H in which L is a multiplication operator, we
can develop (L + π(Xt))

n+1. Using LΩ = 0 and i[L, π(δp(Xt))] = π(δp+1(Xt)) for p = 0, . . . , n − 2
we obtain,

(L+ π(Xt))
n+1Ω = Lnπ(Xt)Ω +QtΩ (36)

with Qt a non-commutative polynomial in {π(δp(Xt))}p=0,...,n−1. Since Ω ∈ Dom(L + π(Xt))
n+1

and QtΩ ∈ H, we obtain π(Xt)Ω ∈ DomLn. Moreover, Lemma 5.1 implies,

sup
t∈R
‖QtΩ‖ <∞.

Hence, Claim A follows from (36), the triangle inequality, assumption (ii) and Jensen’s inequality.

Claim B f ∈ Dom ên

Using the explicit expressions in Fock space, the non-trivial part of Lnπ(Xt)Ω lives in the two-
particle subspace of Γ−(h ⊕ h) only, namely P2L

nπ(Xt)Ω = Lnπ(Xt)Ω with P2 the projector onto
the two-particle subspace of Γ−(h⊕ h). The vector there is

(
√
1− Thn0ψo ⊕ 0) ∧ (0⊕

√
T ψf )− (

√
1− Thn0 eithψo ⊕ 0) ∧ (0⊕

√
T e−ithψf ) (37)

+ (
√
1− Tψo ⊕ 0) ∧ (0⊕

√
T hn0ψf ) + (

√
1− Tψf ⊕ 0) ∧ (0⊕

√
Thn0ψo) (38)

− (
√
1− T eithψf ⊕ 0) ∧ (0⊕

√
Thn0 e−ithψo)− (

√
1− T eithψo ⊕ 0) ∧ (0⊕

√
Thn0 e−ithψf ) (39)

+ (
√
1− Thn0ψf ⊕ 0) ∧ (0⊕

√
Tψo)− (

√
1− Thn0 eithψf ⊕ 0) ∧ (0⊕

√
T e−ithψo). (40)

7Here and in what follows, we use “a.e.” for almost every, with respect to the Lebesgue measure.
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Since ψs ∈ Domhn0 , Lemma 5.2 implies the norm of (37) in (h⊕ h) ∧ (h⊕ h) is uniformly bounded
in t ∈ R. Since

√
Thn0 is bounded, the norm of (38)+(39) is also uniformly bounded in t ∈ R. Now,

since, by Claim A, Lnπ(Xt)Ω ∈ H for a.e. t ∈ (t1, t2), (40) has finite norm for a.e. t ∈ (t1, t2).
Recall that Lemma 5.1 implies ‖hn0 (eith0 − eith)‖ ≤ Kn(|t|) with R+ 3 t 7→ Kn(t) an affine function.
Because of this and the fact that

√
1− T is bounded, there exists a family (φt)t∈R in (h⊕h)∧(h⊕h)

with square integrable norm on (t1, t2) and such that (40) is equal to

(
√

1− Thn0ψf ⊕ 0) ∧ (0⊕
√
Tψo)

− (
√

1− Thn0 eith0ψf ⊕ 0) ∧ (0⊕
√
T e−ithψo) + φt.

(41)

Since the norms of (37), (38) and (39) are uniformly bounded in time, and since ‖φt‖2 is integrable
on (t1, t2), using the triangle inequality, Claim A and Jensen’s inequality, it follows that t 7→
‖(41)− φt‖2 is integrable on (t1, t2):∫ t2

t1

‖(
√

1− Thn0ψf ⊕ 0) ∧ (0⊕
√
Tψo)

− (
√

1− Thn0 eith0ψf ⊕ 0) ∧ (0⊕
√
T e−ithψo)‖2 dt <∞.

Calculating explicitly the norm squared,∫ t2

t1

∫
R+

∣∣∣∣ 1

e−βe + 1

∣∣∣∣ e2n|f(e)|2‖
√
T (1− e−it(h−e))ψo‖2 de dt <∞. (42)

By Fubini’s theorem,∫
R+

∣∣∣∣ 1

e−βe + 1

∣∣∣∣ e2n|f(e)|2
∫ t2

t1

‖
√
T (1− e−it(h−e))ψo‖2 dt de <∞. (43)

Lemma 5.3 then implies ∫
R+

e2n|f(e)|2 de <∞.

5.3 Proofs for the open harmonic oscillator

We begin with a few remarks that are immediate from the definitions. One computes directly from

the definitions that for any φ ∈ Domh0 ∩Domh
−1/2
0 ,

i[L, aAW(φ)]Ψ = aAW(ih0φ)Ψ (44)

for all Ψ ∈ Hfin ∩ DomL with Hfin the subspace of Γ+(h ⊕ h) spanned by the vectors with a fixed
number of particles:

Hfin := linspan{a∗(φn) · · · a∗(φ1)Ω : n ∈ N, φj ∈ h⊕ h, j = 1, . . . , n}.

In order to prove Theorem 4.7, we will need the following lemma to control the eventual buildup
of infrared irregularities.

Lemma 5.4. Assume ‖ê−1/2f‖ 6= ε
1/2
o and φ ∈ Domh

−1/2
0 , then

sup
t∈R
‖h−1/2

0 eithφ‖ <∞.
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Proof. Since kerh0 = {0}, h±1/2
0 h

∓1/2
0 = 1 and

h
−1/2
0 hh

−1/2
0 = 1 + (ε−1/2

o ψo) 〈h−1/2
0 ψf , · 〉+ (h

−1/2
0 ψf ) 〈ε−1/2

o ψo, · 〉 .

Since ψf ∈ Domh
−1/2
0 , h

−1/2
0 hh

−1/2
0 is bounded and so is h

−1/2
0 h1/2. The operator h

−1/2
0 hh

−1/2
0 has

spectrum

sp(h
−1/2
0 hh

−1/2
0 ) = {1, 1± ε−1/2

o ‖ê−1/2f‖}. (45)

Suppose now that there exists ψ ∈ kerh \ {0}. Then ψ ∈ Domh = Domh0, so ψ ∈ Domh
1/2
0 .

Then ψ′ = h
1/2
0 ψ is an eigenvector of h

−1/2
0 hh

−1/2
0 of eigenvalue 0. Since, ‖ê−1/2f‖ 6= ε

1/2
o implies

0 is not an eigenvalue of h
−1/2
0 hh

−1/2
0 , the hypothesis ‖ê−1/2f‖ 6= ε

1/2
o implies kerh = {0} and

h±1h∓1 = 1.
Hence, ‖ê−1/2f‖ 6= ε

1/2
o implies that (h

−1/2
0 hh

−1/2
0 )−1 = h

1/2
0 h−1h

1/2
0 is bounded, and so is

h
1/2
0 h−1/2.

The inequality

| 〈ψ, h−1/2φ〉 | ≤ ‖h1/2
0 h−1/2‖‖ψ‖‖h−1/2

0 φ‖.

for all ψ ∈ Domh
−1/2
0 shows that φ ∈ Domh−1/2. Therefore,

‖h−1/2
0 eithφ‖ = ‖h−1/2

0 h1/2eithh−1/2φ‖ ≤ ‖h−1/2
0 h1/2‖‖h−1/2φ‖

which is independent of t.

Remark 5.5. As shown in the proof, assumption ‖ê−1/2f‖ 6= ε
1/2
o implies kerh = {0} which might

be a more recognizable assumption to the reader. Assuming f ∈ Dom(ê−1), the implication is an

equivalence. If f 6∈ Dom(ê−1) and ‖ê−1/2f‖ = ε
1/2
o , 0 may be in the singular continuous spectrum

of h (see [JKP06]).

Proof of Theorem 4.7. The fact that the first statement implies the second one is trivial.
(ii) =⇒ (iii): As for the fermionic case, we proceed by induction on n. The implication is true for

n = 0. Assume it holds for some n−1 ∈ N and suppose that there exists a non-trivial interval (t1, t2)
on which t 7→ Et(∆Q2n+2) is integrable. Then, t 7→ Et(∆Q2n) is integrable by Jensen’s inequality
and f ∈ Dom ên−1 by induction hypothesis. Consider the set

Gn−1 := {(ρ+ 1)1/2hp0eishψf ⊕ 0, (ρ+ 1)1/2hp0eishψo ⊕ 0,

0⊕ ρ1/2(−h0)pe−ishψf , 0⊕ ρ1/2(−h0)pe−ishψo}s∈R; p=0,...,n−1

of vectors in h⊕ h. Lemmas 5.2 and 5.4 ensure that

m := sup
φ∈Gn−1

‖φ‖ <∞ (46)

We set Xt := V AW − eit(L+V AW)V AWe−it(L+V AW).

Claim A XtΩ ∈ DomLn ∩Hfin for a.e. t ∈ (t1, t2) and∫ t2

t1

‖LnXtΩ‖2 dt <∞.

Since both L and L + Xt are self-adjoint, the proof uses the same arguments as the ones used
in the proof of Claim A in the proof of Theorem 4.3. The only difference lays in the proof that
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supt∈R ‖QtΩ‖ < ∞. We no longer have that π(δp(Xt)) is uniformly bounded in norm for p =
0, . . . , n− 1. Instead, using

‖a](φk) . . . a](φ1)Ω‖ ≤
√

(k + 1)!

k∏
i=1

‖φi‖ (47)

for (φi)
k
i=1 ⊂ h⊕ h, the unifrom bound (46) leads to

sup
t∈R
‖QtΩ‖ <∞. (48)

We leave the complete adaptation of the proof to the interested reader.

Claim B f ∈ Dom ên.

Using the explicit expressions in Fock space LnXtΩ lives in the two-particle subspace of Γ−(h⊕h)
only. As in the proof of Theorem 4.3, using (46), (47) and Lemma 5.1 we deduce from Claim A
that, ∫ t2

t1

‖((ρ+ 1)1/2hn0ψf ⊕ 0)⊗s (0⊕ ρ1/2ψo)

− ((ρ+ 1)1/2hn0 eith0ψf ⊕ 0)⊗s (0⊕ ρ1/2e−ith̄ψo)‖2 dt <∞.

But because the two terms arising from the symmetrized tensor product are orthogonal, we have∫ t2

t1

‖(ρ+ 1)1/2hn0ψf ⊗ ρ1/2ψo − (ρ+ 1)1/2hn0 eith0ψf ⊗ ρ1/2e−ithψo‖2 dt <∞.

Therefore, using the spectral representation of h0,∫ t2

t1

∫ ∞
0

(ρ(e) + 1)|f(e)|2e2n‖ρ1/2(1− e−it(h−e))ψo‖2 dedt <∞.

By Fubini’s theorem, ρ(e) + 1 ≥ 1 and Lemma 5.3, we conclude∫ ∞
0

e2n|f(e)|2 de <∞ (49)

and Claim B holds for n. By induction, (ii) implies (iii).

(iii) =⇒ (i): Note that Lemmas 5.2 and 5.4 ensures that if the third statement holds, then

m := sup
φ∈Gn

‖φ‖ <∞ (50)

Developing the power of L+Xt, using LΩ = 0 and i[L, aAW
]
(φ)] = aAW

]
(ih0φ) for any φ ∈ Domh0

we obtain (L+Xt)
n+1Ω = QtΩ with Qt a non-commutative polynomial in a](φ), φ ∈ Gn. It follows

then from, (47) and (50) that
sup
t∈R
‖QtΩ‖ <∞.

Remark 5.6. If we restrict Gn to t < T , then following the same proof, supt∈[0,T ] Et(∆Q2n+2) <∞.

In that case the assumption ‖ê−1/2f‖ 6= ε
1/2
o is not necessary. Indeed, one can use f ∈ Dom ê−1/2 and

φ ∈ Domh
−1/2
0 implies t 7→ ‖h−1/2

0 eithφ‖ is bounded by a continuous function instead of Lemma 5.4.
This implication is easily proved using Riesz’s Lemma and Duhamel’s formula.
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We turn to the proof of Proposition 4.9. We first establish two lemmas.

Lemma 5.7. If there exists γ > 0 such that f ∈ Dom e
1
2γê, then for any ψ ∈ Dom e

1
2γh0 , and any

γ′ ∈ [0, 1
2γ),

sup
t∈R

(‖ρ1/2eγ
′h0eithψ‖+ ‖(1 + ρ)1/2eγ

′h0eithψ‖) <∞.

Proof. First, let us show that e±
1
2γh0e∓

1
2γh is bounded. Let φ ∈ Dom e±

1
2γh0 and φ′ ∈ Dom e∓

1
2γh.

Then, by repeated differentiation,

〈φ, e± 1
2γh0e∓

1
2γhφ′〉

=
∑
n

(∓1)n
∫

0<α1<···<αn<
1
2γ

〈φ, e±α1h0ve∓α1h0 · · · e±αnh0ve∓αnh0φ′〉

dα1 . . . dαn.

The series on the right-hand side converges uniformly in φ and φ′ since assumption ψf ∈ Dom e
1
2γh0

implies
R(γ) := sup

α∈[− 1
2γ,

1
2γ]

‖eαh0ve−αh0‖ <∞.

Then, the Cauchy–Schwarz inequality implies

|〈φ, e± 1
2γh0e∓

1
2γhφ′〉| ≤ ‖φ‖‖φ′‖e 1

2γR(γ).

Thus e±
1
2γh0e∓

1
2γh is bounded by e

1
2γR(γ).

Inserting the identity e−
1
2γhe

1
2γh we obtain,

‖e 1
2γh0eithψ‖ = ‖e 1

2γh0e−
1
2γheithe

1
2γhψ‖ ≤ e

1
2γR(γ)‖e 1

2γhψ‖.

Inserting the identity e−
1
2γh0e

1
2γh0 , we obtain,

‖e 1
2γh0eithψ‖ ≤ e

1
2γR(γ)‖e 1

2γhe−
1
2γh0e

1
2γh0ψ‖ ≤ eγR(γ)‖e 1

2γh0ψ‖

and we conclude
sup
t∈R
‖e 1

2γh0eithψ‖ <∞. (51)

Since ee
1
2γ
′e ≤ 2

ε e
1
2 (γ′+ε)e for any γ > 0, ε > 0 and e ≥ 0, for any x ∈ [0, 1

2 [,

h0exγh0 ≤ 2

( 1
2 − x)γ

e
1
2γh0 .

Then, since
√
ρh0 is bounded,

‖√ρex
1
2γh0ψ‖ ≤ ‖√ρh0‖

2

( 1
2 − x)γ

‖e 1
2γh0eithψ‖.

It then follows from (51) that
sup
t∈R
‖ρ1/2exγh0eithψ‖ <∞.

Similarly
sup
t∈R
‖(1 + ρ)1/2exγh0eithψ‖ <∞.

27



Lemma 5.8. If f ∈ Dom ê ∩Dom ê−1/2, then there exists s0 > 0 such that

sup
t∈R

∥∥∥∥∥eis(L+Xt)Ω− Ω +

N∑
n=1

in
∫ s

0

· · ·
∫ sn−1

0

τsn(Xt) · · · τs1(Xt)Ω dsn · · · ds1

∥∥∥∥∥
converges to 0 as N →∞, for all s ∈ (−s0, s0).

Proof. Since LΩ = 0, eis(L+Xt)Ω = eis(L+Xt)e−isLΩ and for Ψ ∈ Hfin,

∂se
is(L+Xt)e−isLΨ = ieis(L+Xt)e−isLτs(Xt)Ψ.

Since f ∈ Dom ê−1/2 implies τsn(Xt) · · · τs1(Xt)Ω ∈ Hfin, a repeated application of the fundamental
theorem of calculus yields that for any N ∈ N,

eis(L+Xt)e−isLΩ

= 1 +

N∑
n=1

in
∫ s

0

· · ·
∫ sn−1

0

τsn(Xt) · · · τs1(Xt)Ω dsn · · · ds1 +RN
(52)

with RN being

iN+1

∫ s

0

· · ·
∫ sN

0

eisN+1(L+Xt)e−isN+1LτsN+1(Xt) · · · τs1(Xt)Ω dsN+1 · · · ds1.

Then,

‖RN‖ ≤
|s|N+1

(N + 1)!
sup

s1,...,sN+1∈[0,s]

‖τsN+1(Xt) · · · τs1(Xt)Ω‖.

Let

G0 := {(ρ+ 1)1/2eish0eithψf ⊕ 0, (ρ+ 1)1/2eish0eithψo ⊕ 0,

0⊕ ρ1/2eish0e−ithψf , 0⊕ ρ1/2eish0e−ithψo}s∈R,t∈R.

Lemma 5.4 implies
m := sup

φ∈G0
‖φ‖ <∞. (53)

The operators τs(Xt) are non-commutative polynomials of degree 2 in a](φ), φ ∈ G0. They each
consists of 16 monomials. It thus follows from (47) that

‖RN‖ ≤
√

(2N + 1)!

(N + 1)!
(16m2|s|)N+1

Since lim supN→∞ 2−N
√

(2N+1)!

(N+1)! <∞, limN→∞ ‖RN‖ = 0 for |s| < 1
32m2 .

Proof of Proposition 4.9. Let Ft,N : R→ C be defined by the truncated series

Ft,N (α) := 1 +

N∑
n=1

in
∫ α

0

· · ·
∫ αn−1

0

〈Ω, ταn(Xt) · · · τα1(Xt)Ω〉dαn · · · dα1.

Let γ′ ∈ (0, γ) and

Gγ′ := {(ρ+ 1)1/2eαh0eishψf ⊕ 0, (ρ+ 1)1/2eαh0eishψo ⊕ 0,

0⊕ ρ1/2eαh0e−ishψf , 0⊕ ρ1/2eαh0e−ishψo}s∈R,| Imα|< 1
2γ
′ .
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Lemma 5.7 implies,
m := sup

φ∈Gγ
‖φ‖ <∞. (54)

Note that the operators ταi(Xt) are non-commutative polynomials of degree 2 in a](φ), φ ∈ Gγ .
Each one of this polynomial consists of 16 monomials.

Using Wick’s Theorem, each integrand in the truncated series Ft,N admits and analytic extension
to {(α1, . . . , αn) ∈ Cn | | Imαj | < 1

2γ}. Hence each Ft,N admits an analytic extension to {α ∈ C :
|Imα| < 1

2γ}.
Lemma 5.8 yields convergence of the sequence (Ft,N )N∈N on a subset of {α ∈ C : |Imα| < 1

2γ}
that has an accumulation point and the limit there coincides with the characteristic function of Pt.

From (54), ∥∥∥∥∫ α

0

· · ·
∫ αn−1

0

〈Ω, ταn(Xt) · · · τα1(Xt)Ω〉dαn · · · dα1

∥∥∥∥
≤ |α|

n

n!
‖ταn(Xt) · · · τα1(Xt)Ω‖

≤
√

(2n+ 1)!

n!
(16m2|α|)n.

Since lim supn→∞ 2−n
√

(2n+1)!

n! < ∞, the sequence (Ft,N )N∈N is uniformly bounded on D := {α ∈
C : |α| < 1

32m2 and | Imα| < 1
2γ
′}. We conclude by the Vitali–Porter convergence theorem that

(Ft,N )N∈N converges on D to an analytic function. Therefore, for γ′ > 0 small enough,

sup
t∈R

Et[eγ
′|∆Q|] ≤ sup

t∈R
(〈Ω, eγ

′(L+Xt)Ω〉+ 〈Ω, e−γ
′(L+Xt)Ω〉)

is finite.

5.4 Proofs for the van Hove Hamiltonian

Proof of Theorem 4.12. Using LΩ = 0, the characteristic function of Pt can be rewritten as

Et(α) = 〈e−it(L+ϕAW(f))Ω, eiαLe−it(L+ϕAW(f))e−iαLΩ〉

= 〈e−it(L+ϕAW(f))Ω, e−it(L+ϕAW(eiαh0f))Ω〉 .
(55)

Using the Lie–Trotter–Kato formula, (23) and LΩ = 0, for any t and α in R,

e−it(L+ϕAW(eiαh0f))Ω = lim
n→∞

(e−i tnLe−i tnϕ
AW(eiαh0f))nΩ

= eiθ lim
n→∞

e−iϕAW(
∑n
k=1

t
n eiαh0e−i kt

n
h0f)Ω,

(56)

where eiθ is a phase that is independent of α and thus cancels in (55).

Let C := linspan{a∗(φn) · · · a∗(φ1)Ω : n ∈ N, φi ∈ Dom(h
−1/2
0 ⊕ h

−1/2
0 )}. This is a core for

all of the field operators ϕAW(
∑n
k=1

t
neiαh0e−i ktn h0f) and ϕAW

(
ieiαh0h−1

0 (e−ith0 − 1)f
)
, where x 7→

x−1(e−itx − 1) is extended to x = 0 by continuity. From the convergence of the Riemann sums to a
Riemann integral,

lim
n→∞

ϕAW

(
n∑
k=1

t

n
eiαh0e−i ktn h0f

)
Ψ = ϕAW

(
ieiαh0h−1

0 (e−ith0 − 1)f
)

Ψ.
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for every Ψ ∈ C. It then follows from Proposition VIII.25 of [RS72] that

s-r-lim
n→∞

ϕAW

(
n∑
k=1

t

n
eiαh0e−i ktn h0f

)
= ϕAW

(
ieiαh0h−1

0 (e−ith0 − 1)f
)
.

Hence, from (56),

e−it(L+ϕAW(eiαh0f))Ω = eiθe−iϕAW(ieiαh0h−1
0 (e−ith0−1)f)Ω.

Setting ft := −ih−1
0 (e−ith0 − 1)f , from this equality and (55), relations (23) and (24), imply

Et(α) = 〈WAW (ft)Ω,W
AW (eiαh0ft)Ω〉

= 〈Ω,WAW ((eiαh0 − 1)ft)Ω〉 e
i
2 Im(〈ft,(eiαh0−1)ft〉)

= e
1
2 〈(1+ρ)1/2ft,(e

iαh0−1)(1+ρ)1/2ft〉+ 1
2 〈ρ

1/2ft,(e
−iαh0−1)ρ1/2ft〉.

Writing explicitly the inner products as integrals with respect to de, using 1 + ρ = (1 − e−βh0)−1

and a change of variable e→ −e in the second inner product,

Et(α) = exp

(∫
R

(eiαe − 1) dνt(e)

)
.

Lévy–Khintchine’s canonical representation of infinitely divisible distributions yields the proposition.

Proof of Theorem 4.14. The implication (i) =⇒ (ii) is obvious.
Since Proposition 4.12 implies Pt is the measure of an inhomogeneous Poisson process with

intensity dνt(e), its 2n+ 2nd cumulant is given by
∫
R
e2n+2 dνt(e). Then (iii) implies this cumulant

is uniformly bounded and the equivalence between the existence of a uniform bound on the 2n+ 2nd

cumulant and 2n+ 2nd moment yields (i).
For the implication (ii) =⇒ (iii), we first show that (ii) implies the 2n + 2nd cumulant of Pt is

integrable over (t1, t2). The 2n+2nd cumulant of Pt is a polynomial in {Et(∆Qp)}np=0 where in each

monomial the product of the moments
∏k
i=1 Et(∆Q

p
i ) is such that

∑k
i=1 pi = 2n+ 2. Using Jensen’s

inequality on each moment in the product,

k∏
i=1

Et(∆Qpi) ≤ Et(∆Q2n+2)
1

2n+2

∑k
i=1 pi = Et(∆Q2n+2).

Hence (ii) implies the 2n+ 2nd cumulant of Pt is integrable over (t1, t2).
Since the 2n+ 2nd cumulant of Pt is given by

∫
R
e2n+2 dνt(e),∫ t2

t1

∫
R

e2n+2 dνt(e) dt <∞.

By Fubini’s Theorem, ∫
R

(∫ t2

t1

(1− cos(et)) dt

)
e2n|ρ(e)||f(|e|)|2 de <∞.

Since e 7→
∫ t2
t1

(1 − cos(et)) dt = (t2 − t1)(1 − sin(et2)−sin(et1)
e(t2−t1) ) is lower bounded away from 0 on

R \ [−1, 1], ∫ ∞
1

e2nρ(e)|f(e)|2 de <∞.
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Since ρ(e) ≥ 1 for e ≥ 1, ∫ ∞
1

e2n|f(e)|2 de <∞.

Finally f ∈ L2(R+) implies
∫ 1

0
e2n|f(e)|2 de ≤

∫ 1

0
|f(e)|2 de. Hence∫

R+

e2n|f(e)|2 de <∞.

Theorem 4.15. The implication (i) =⇒ (ii) is obvious.
From Proposition 4.12, the characteristic function of Pt is

Et(α) = exp

(∫
R

(eieα − 1) dνt(e)

)
.

Assumption f ∈ Dom e
1
2γê ∩ Dom ê−1/2 implies f ∈ Dom ê−1/2e

1
2γê. Hence, since the functions

e 7→ |1 − cos(et)|/e2 and e 7→ |e|/|1 − e−βe| are both bounded in e ∈ R, (iii) and the expression
of dνt imply supt∈R

∫
R

eγ|e| dνt(e) < ∞. The inequality
∫
R

eγ|e| dνt(e) ≥
∫
R

e±γe dνt(e) and the
continuity of x 7→ ex imply

sup
t∈R
Et(±iγ) <∞.

The inequality e|x| ≤ ex + e−x for x ∈ R yields (iii) =⇒ (i).
Using the e|x| ≥ 1

2 (ex + e−x) and Jensen’s inequality (ii) implies, t 7→ log Et(±iγ) are both
integrable over (t1, t2). Repeating the same steps as in the proof of Theorem 4.14,∫ ∞

0

eγe|f(e)|2 de <∞,

and we conclude that (ii) implies (iii).

Remark 5.9. From these last two proofs, one can understand why, in the second statements of
Theorems 4.3, 4.7, 4.14 and 4.15, the integrability over an interval (t1, t2) cannot be replaced by
finiteness for a t ∈ R.

Let

fn : e 7→

{
1

deen+1 (dee − e− idee−1)−1 if e ≥ 1

ie if 0 ≤ e < 1.

For n ∈ N \ {0}, fn ∈ Dom ê−1/2 ∩ ê. Integrating between two consecutive integers N > 1,∫ N

N−1

e2n|fn(e)|2 de ≥
(

(N − 1)

N

)2n
arctanN

N
.

Since limN→∞ arctanN = π
2 , limN→∞

N−1
N = 1 and

∑∞
N=2

1
N =∞, fn 6∈ Dom ên but∫ N

N−1

e2n(1− cos(e2π))|fn(e)|2 de ≤ 1

N2

∫ 1

0

1− cos(x2π)

x2 +N−2
dx ≤ 2π2

N2
,

where the last inequality follows from 1−cos(2x)
x2 ≤ 2. Then from

∑∞
N=2

1
N2 <∞ and Theorem 4.12,

E2π(∆Q2n+2) is finite even if f 6∈ Dom ên.

We can similarly construct a fγ ∈ Dom ê−1/2∩ê such that E2π(eγ|∆Q|) is finite but fγ 6∈ Dom e
1
2γê.
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A Self-adjointness

The following two technical lemmas ensure mathematical soundness of the construction of the
perturbed dynamics (τ tV )t∈R and of the measure Pt in our models where the perturbation is un-
bounded [DJP03]. More detailed proofs are provided in [Raq17].

Lemma A.1. Let L + V the operator defined in (26) for the quantum open harmonic oscillator
of Section 4.2. Assume f ∈ Dom(ê) ∩ Dom(ê−1/2). Then L + V is essentially self-adjoint on
DomL ∩DomV .

Proof. We apply the Nelson commutator theorem in the form of [RS75, §X.37]. Set N̂ := dΓ(h0 ⊕
h0 + 1) + 1. Then it is easy to show D = Dom(L) ∩Dom(V ) is a core for N̂ . The estimates

‖(L+ V )Ψ‖ ≤ c‖N̂Ψ‖

for some c > 0 and all Ψ ∈ D, and

|((L+ V )Ψ, N̂Ψ)− (N̂Ψ, (L+ V )Ψ)| ≤ d‖N̂ 1
2 Ψ‖2,

for some d > 0 and all Ψ ∈ D follow from the well-known estimate∥∥∥( n∏
i=1

a#(gi)
)

(dΓ(1) + 1)−
n
2

∥∥∥ ≤ cn n∏
i=1

‖gi‖

for gi ∈ h, provided ‖ρ 1
2ψf‖, ‖(1 + ρ)

1
2ψf‖, ‖h0ρ

1
2ψf‖,‖h0(1 + ρ)

1
2ψf‖ are finite. The hypothesis

f ∈ Dom(ê) ∩Dom(ê−1/2) precisely guarantees that these norms are finite.

Lemma A.2. Let L + φAW(f) the operator defined in (28) in the van Hove model of Section 4.3.
Assume f ∈ Dom(ê) ∩ Dom(ê−1/2). Then L + φAW(f) is essentially self-adjoint on DomL ∩
DomφAW(f).

Proof. The result follows applying Nelson’s commutator theorem in a similar way as in Lemma A.1.

B A note on the thermodynamic limit

In this appendix, we show that for the models of Section 4, Pt is the weak limit of a family of
probability measures associated to a two-time measurement protocol on finite dimensional systems
as described in Section 3.1. We provide the proof for bosonic models; the fermionic case only requires
a straightforward adaptation of the arguments.

Consider a positive semi-definite densely defined self-adjoint operator h0 on a separable complex
Hilbert space h. The extended system we wish to obtain in the thermodynamic limit is a quasi-free
Bose gas with one-particle unperturbed Hamiltonian h0, at equilibrium at inverse temperature β > 0,
together with a perturbation of the form

V = 1√
2
(a∗(g) + a(g))

with g ∈ Domh
−1/2
0 or of the form

V = a∗(g1)a(g2) + a∗(g2)a(g1)

with g1, g2 ∈ Domh
−1/2
0 . These operators are naturally affiliated to the Weyl algebra over Domh

1/2
0 ,

denoted W(Domh
−1/2
0 ).
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We work in a representation of this gas on the Araki–Woods von Neumann algebra MAW ⊂
B(Γ+(h⊕ h)) generated by the Weyl operators

WAW(φ) := W (
√

1 + ρ(h0)φ⊕
√
ρ(h0)φ̄)

for φ ∈ Domh
−1/2
0 and with initial state 〈Ω, ·Ω〉 where Ω ∈ Γ+(h ⊕ h) is the vacuum vector. The

Liouvillean for the unperturbed dynamics in this representation is

L := dΓ(h0 ⊕−h0).

In this representation, the creation operators affiliated to W(Domh
−1/2
0 ) take the form

aAW∗(φ) = a∗(
√

1 + ρ(h0)φ⊕ 0) + a(0⊕
√
ρ(h0)φ̄).

for any φ ∈ Domh
−1/2
0 . In this manner, V corresponds to an operator V AW affiliated to MAW.

Let (pD)D∈N be a sequence of orthogonal projections on h with D-dimensional range and satis-
fying the following properties:

(i) the sequence (pD)D∈N converges strongly to the identity;

(ii) for all D ∈ N, pDφ = pDφ̄ for all φ ∈ h;

(iii) for all D ∈ N, pDh0pD is positive definite;

(iv) there exists a core C ⊆ h for h0 such that limD→∞ pDh0pDφ = h0φ for all φ ∈ C.

With the help of this family of projectors, we define, for each D ∈ N, an unperturbed Hamiltonian

H
(D)
0 := dΓ(pDh0pD). We also set H

(D,δ)
0 := dΓ(pδ(pDh0pD)) for the purpose of defining an initial

state below, understood in the sense of functional calculus for the real function

pδ : e 7→ max{δ, e}.

The parameter δ > 0 serves as an IR regularization. Both H
(D,δ)
0 and H

(D)
0 are self-adjoint operators

on Γ+(pDh) and, since pDh0pD > 0, the operator e−βH
(D,δ)
0 is trace class.

Let V (D) be the same polynomial as V , but where g [resp. g1 and g2] is replaced by pDg [resp.
pDg1 and pDg2].

We make the following definition, in accordance with an extension of Remark 3.2 from matrices
to trace class operators.

Definition B.1. Let P(D,δ)
t be the probability measure of the heat variation as defined by the two-

time measurement of the unperturbed Hamiltonian H
(D)
0 with respect to the perturbation V (D) and

the initial state

ω(D,δ) : W(pDh)→ C

A 7→ tr(Ae−βH
(D,δ)
0 )

tr(e−βH
(D,δ)
0 )

.

Namely, it is the probability measure with characteristic function

E(D,δ)
t (α) = ω(D,δ)(eiαeit(H

(D)
0 +V (D))H

(D)
0 e−it(H

(D)
0 +V (D))

e−iαH
(D)
0 ).
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The algebra W(pDh) together with the state ω(D,δ) admit an Araki–Woods representation on
Γ+(h ⊕ h): the vacuum Ω ∈ Γ+(h ⊕ h) is a vector representative of ω(D,δ) and the ∗-isomorphism
πAW(D,δ) : W(pDh) → MAW(D,δ) is the extension by linearity of πAW(D,δ)(W (φ)) := WAW(D,δ)(φ)
for φ ∈ pDh, where

WAW(D,δ)(φ) := W (
√

1 + ρ ◦ pδ(pDh0pD)φ⊕
√
ρ ◦ pδ(pDh0pD)φ)

and ρ : R+ 3 e 7→ (eβe − 1)−1. For each D and δ, MAW(D,δ) is the von Neumann algebra generated
by {WAW(D,δ)(φ) : φ ∈ pDh}. It is a subalgebra of the algebra W(h⊕ h) of operators on Γ+(h⊕ h).

The Liouvillean for the dynamics implemented by H
(D)
0 is

L(D) := dΓ(pDh0pD ⊕−pDh0pD).

From its definition as the generator of the unitary groups t 7→W (tg), in this representation, each
creation operator a∗(g) on Γ+(pDh) is mapped to

a∗(
√

1 + ρ ◦ pδ(pDh0pD)g ⊕ 0) + a(0⊕
√
ρ ◦ pδ(pDh0pD) g)

on Γ+(h ⊕ h). In this manner, the perturbation V (D) on Γ+(pDh) is mapped to an unbounded
operator V AW(D,δ) affiliated to MAW(D,δ).

The following lemma allows us to prove a sufficiently strong notion of convergence of V AW(D,δ)

towards V AW. It is a straightforward exercise in analysis on Fock space using the inequalities (47)
and ‖(dΓ(1) + 1)−1/2a](g)‖ ≤ ‖g‖.

Lemma B.2. Let Φ ∈ linspan{a∗(gk) · · · a∗(g1)Ω : k ∈ N, g1, · · · gk ∈ h}. Then, the function

hn 3 (x1, . . . , xn) 7→ a](xn) · · · a](x1)Φ ∈ Γ+(h)

where each ] stands for ∗ or nothing, is norm continuous for hn equipped with the product of the
norm topology.

Proposition B.3. Let C := linspan{a∗(gn) · · · a∗(g1)Ω : n ∈ N, g1, . . . , gn ∈ C} with C a core for
h0 verifying (iv). The space C is a common core for L(D), L, V AW(D,δ) and V . Moreover, for all
Φ ∈ C,

lim
D→∞

L(D)Φ = LΦ

and
lim
δ↓0

lim
D→∞

V AW(D,δ)Φ = V AWΦ.

Proof. The fact that C is a common core is direct from the definitions of the operators and the fact
that C is a core for h0.

The first convergence follows from a direct computation in Fock space and (iv).

For the second limit, let g ∈ Domh
−1/2
0 . By Proposition VIII.25 of [RS72] assumption (iv)

implies the sequence pDh0pD converges in the strong resolvent sense to h0. Then, for any δ > 0,
since e 7→ ρ ◦ pδ(e) is continuous and bounded,

lim
D→∞

√
ρ ◦ pδ(pDh0pD) pDg =

√
ρ ◦ pδ(h0) g.

By Lebesgue’s monotone convergence Theorem,

lim
δ↓0

√
ρ ◦ pδ(h0) g =

√
ρ(h0) g =

√
ρ g.

The same arguments lead to

lim
δ↓0

lim
D→∞

√
1 + ρ ◦ pδ(pDh0pD) pDg =

√
1 + ρ(h0) g.

The second convergence therefore follows from Lemma B.2 with n = 1 or n = 2.
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For the proof of the self-ajointness of the different operators, we refer the reader to Appendix A.

Proposition B.4. With P(D,δ)
t as in Definition B.1 and Pt the spectral measure of

L+ V AW − eit(L+V AW)V AWe−it(L+V AW)

with respect to Ω,

w-lim
δ↓0

w-lim
D→∞

P(D,δ)
t = Pt.

Proof. By extension of Remark 3.2 to the trace-class operator e−βH
(D,δ)
0 , the characteristic function

of P(D,δ)
t can be expressed in the standard GNS representation, which is unitarily equivalent to the

Araki–Woods representation. Hence,

E(D,δ)
t (α) = 〈e−it(L(D)+V AW(D,δ))Ω, eiαL(D)

e−it(L(D)+V AW(D,δ))Ω〉

By Proposition B.3 above and Proposition VIII.25 of [RS72], L(D) + V AW(D,δ) converges in the
strong resolvent sense to L+ V AW. Hence,

lim
δ↓0

lim
D→∞

e−it(L(D)+V AW(D,δ))Ω = e−it(L+V AW)Ω.

Because eiαL(D)

and e−it(L(D)+V AW(D,δ)) are unitary for α ∈ R and t ∈ R, the strong resolvent
convergence of L(D) and L(D) + V AW(D,δ) also imply through an ε/2-argument that

lim
δ↓0

lim
D→∞

eiαL(D)

e−it(L(D)+V AW(D,δ))Ω = eiαLe−it(L+V AW)Ω.

By continuity of the inner product, we have

lim
δ↓0

lim
D→∞

E(D,δ)
t (α) = Et(α)

for all α ∈ R and the result follows from Lévy’s continuity theorem.
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[BFJP16] Tristan Benoist, Martin Fraas, Vojkan Jakšić, and Claude-Alain Pillet, Full statistics of erasure
processes: Isothermal adiabatic theory and a statistical landauer principle, Revue Roumaine
Math Pures Appl. (2016), no. 62, 259–286.

[BJP+15] Tristan Benoist, Vojkan Jakšić, Annalisa Panati, Yan Pautrat, and Claude-Alain Pillet, Full
statistics of energy conservation in two-time measurement protocols, Phys. Rev. E 92 (2015),
no. 3, 032115.
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lations, Large Coulomb Systems (Jan Dereziński and Heinz Siedentop, eds.), Lecture Notes in
Physics, vol. 695, Springer Berlin Heidelberg, 2006, pp. 63–143.
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[JPS16] Vojkan Jakšić, Claude-Alain Pillet, and Armen Shirikyan, Entropic fluctuations in Gaussian
dynamical systems, Reports on Mathematical Physics 77 (2016), no. 3, 335–376.

[Kur00] Jorge Kurchan, A quantum fluctuation theorem, arXiv preprint cond-mat/0007360 (2000).

[MDCP13] Laura Mazzola, Gabriele De Chiara, and Mauro Paternostro, Measuring the characteristic func-
tion of the work distribution, Phys. Rev. Lett. 110 (2013), no. 23, 230602.
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