
HAL Id: hal-01703346
https://hal.science/hal-01703346

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SQL Query Completion for Data Exploration
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici

To cite this version:
Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici. SQL Query Completion for Data Explo-
ration. [Research Report] INSA Lyon. 2018. �hal-01703346�

https://hal.science/hal-01703346
https://hal.archives-ouvertes.fr

SQL Query Completion for Data Exploration

Marie Le Guilly
Univ Lyon, INSA Lyon, LIRIS

(UMR 5205 CNRS)
69621 Villeurbanne, France
marie.le-guilly@insa-

lyon.fr

Jean-Marc Petit
Univ Lyon, INSA Lyon, LIRIS

(UMR 5205 CNRS)
69621 Villeurbanne, France
jean-marc.petit@insa-

lyon.fr

Marian Scuturici
Univ Lyon, INSA Lyon, LIRIS

(UMR 5205 CNRS)
69621 Villeurbanne, France
marian.scuturici@insa-

lyon.fr

ABSTRACT
Within the big data tsunami, relational databases and SQL
are still there and remain mandatory in most of cases for
accessing data. On the one hand, SQL is easy-to-use by
non specialists and allows to identify pertinent initial data
at the very beginning of the data exploration process. On
the other hand, it is not always so easy to formulate SQL
queries: nowadays, it is more and more frequent to have sev-
eral databases available for one application domain, some of
them with hundreds of tables and/or attributes. Identify-
ing the pertinent conditions to select the desired data, or
even identifying relevant attributes is far from trivial. To
make it easier to write SQL queries, we propose the notion
of SQL query completion: given a query, it suggests addi-
tional conditions to be added to its WHERE clause. This
completion is semantic, as it relies on the data from the
database, unlike current completion tools that are mostly
syntactic. Since the process can be repeated over and over
again – until the data analyst reaches her data of inter-
est –, SQL query completion facilitates the exploration of
databases. SQL query completion has been implemented in
a SQL editor on top of a database management system. For
the evaluation, two questions need to be studied: first, does
the completion speed up the writing of SQL queries? Sec-
ond, is the completion easily adopted by users? A thorough
experiment has been conducted on a group of 70 computer
science students divided in two groups (one with the comple-
tion and the other one without) to answer those questions.
The results are positive and very promising.

1. INTRODUCTION
In the last few years, the database world has not es-

caped the Big Data phenomenon, that contributed to in-
crease tremendously the volume of stored data: it is dou-
bling in size every two years, and should reach 44 zetabyttes
(1021) by 2020 [20]. This has thus directly impacted the
size of databases, at different levels. Nowadays, it is not un-
usual to see databases with several hundred of tables, some
of them having several hundreds of attributes. For instance,
the database used by the LSST1 (Large Synoptic Survey
Telescope) contains tables with hundreds of attributes (ta-
ble Objects has 229 attributes for example), and a look at it
is convincing to see that writing queries on such schemas are
not trivial. Moreover, names of tables and attributes might
not carry meaningful information, rending data accessing
particularly difficult. Therefore, it is sometimes hard to find

1http://lsst-web.ncsa.illinois.edu/schema/index.php

the required information.
In addition to the increase of data volume and databases

schema complexity, more and more people are in contact
with databases. As the data is stored in order to be used
and to get value out of it, those users are confronted to
SQL queries in order to fetch data of interest. Both the
data’s volume and complexity, combined with the use by
non-specialized users, make the query formulation process
laborious: as a result, [14] found that data analysts spend
more time on writing a query that the DBMS on processing
it.

If more and more people are in contact with data and
databases, and are therefore confronted to SQL query for-
mulation, it is also because data they are trying to access
have a potential value actionnable in their business. Ana-
lysts explore data in order to understand it, and to gain ad-
ditional knowledge through this process. Data exploration
tools are therefore crucial as they help users to go to inter-
esting regions of their dataspace, and to identify relevant
information or patterns in the data.

In databases, the first step of an exploration consists or
is equivalent to the formulation of a SQL query, as it is a
way to reach a specific set of data. Moreover, the conditions
specified in such a query are already a way to characterize
the data. This process is somehow related to web search
engines that are used daily to reach specific websites, docu-
ments, etc, through keywords to describe what to look for.
In this context, the task is easier than with databases from
a user point of view: the language to express the query is
not constrained, the syntax can be a bit loose . . . and more
importantly, some help is provided to them: once the begin-
ning of the search is typed in, the search engines suggests
completions to the beginning of an input. These comple-
tions guide the search, by refining the idea, or by indicating
keywords a user had not thought about. Such completions
are based on the data indexed by the search engine, and
also on user’s history (previous researches, similar queries
by other users...).

Problem statement To make it easier to write SQL
queries, we propose the notion of SQL query completion:

Given an initial SQL query Q against a database
d, suggest additional conditions to be added to
the WHERE clause of Q such that the new query
identifies a meaningful subset of the data identi-
fied by Q.

This semantic SQL query completion allows the explo-
ration of databases, since the process can be iteratively re-
peated over and over again until the data analyst reaches

EmpNo LastName Gender Salary Commission
e10 SPEN F 41160 1300
e20 THOMP M 41250 7400
e30 KWAN F 39850 5200
e40 SMITH F 40525 1400
e50 GEYER M 40175 1100
e60 STERN M 39560 6200
e70 PULASKI F 40120 800
e80 FREY M 40625 6600
e90 HENDER F 39450 6700
e100 SPEN M 41560 900

Table 1: Running example: Employees dataset

her data of interest. To the best of our knowledge, such
a form of SQL query completion has not been studied yet.
In databases, some help is provided for query formulation,
but it is mostly syntactic: SQL editors of leading database
management systems propose auto-completion of keywords
from the SQL Language, as well as dedicated SQL editors
like SQL Complete2 or SQL Prompt3. Basically, they fetch
information for the database’s schema to provide auto com-
pletion of tables and attributes names, which are a very
simple form of semantic completion. However, this comple-
tion is only based on the schema, and surprisingly, does not
look at all at the data contained in the database. There-
fore the help offered by those completion systems is limited,
as it does not contain any additional intelligence regarding
the content of the database on which the query is evaluated.
They only accelerate the process by suggesting information
that an analyst would have to search in the schema or in a
SQL handbook otherwise, and spare the user some manual
writing.

There are also some works that have been done using
user’s history to suggests new queries. Such a solution is
exposed in [4], to suggest queries based on previous queries
asked by similar users. However, this is limited to presenting
an already existing query.

Example 1.1. Let us assume that Alice, a data analyst,
has access to the database of a company, containing data
about employees, presented in table 1. She is asked to find
information that can be valuable for the company in terms of
discriminatory behaviour for female employees. After look-
ing at some data samples, her first idea is to look for a corre-
lation between the gender and salary of employees. Without
any other intuition, she can start with the following simple
query Q:

Select Gender , Salary
From Employees

Although useful, it does not reveal anything to Alice.
With the semantic completion proposed in this paper, Alice

would have the choice to get help – without any new interac-
tion with the system – from the three following completions
of her initial query:

Select Gender , Salary
From Employees
Where commission ≥ 6200

2https://www.devart.com/dbforge/sql/sqlcomplete/
3https://www.red-gate.com/products/sql-development/
sql-prompt/

Completion 1 (returns 4 tuples)

Select Gender , Salary
From Employees
Where commission < 6200

and sex = ’F’

Completion 2 (returns 4 tuples)

Select Gender , Salary
From Employees
Where commission < 6200

and sex 6= ’F’

Completion 3 (returns 2 tuples)

These completions are relevant for Alice: the first one
selects employees with a high commission. The two oth-
ers select employees with a lower commission, among which
they discriminate between male and female employees. And
it seems that they are more women with low commission
than men, which could indicate a discrimination in term of
commission based on the gender of employees.

Therefore, those completions are a way to highlight an
information and patterns which could be pertinent for Alice,
but that would have been hard, or even impossible to find
by just looking at the data.

Moreover, the commission attribute appears in comple-
tions, even though it was not considered pertinent enough
by Alice in her initial query. It helps her to see that the
discrimination might not be done on the salary as expected,
but on the commission of female employees.

The above example is also useful to explain what a seman-
tic query completion could be, and how it could be useful.
Indeed, the following observations can be made:

• Q is contained in each of its completions, but they have
additional conditions in their WHERE clause;

• They all lead to different result sets, exploring a dif-
ferent subspace of the initial query’s result set. There
is no new tuple that did not appear in the evaluation
of Q, the completion is here a way to narrow down the
initial result set;

• Each completion captures a different pattern in SQL,
potentially meaningful;

• The completion is a way to draw attention on new
attributes that might have been unnoticed.

This example gives the intuition of the type of SQL query
completion proposed in this paper.

Paper contribution To the best of our knowledge, we
study for the first time the problem of SQL query completion
based on the semantic of the query to be completed. We
have made the following contributions:

• A definition of a class of SQL query completion ;

• Given a database, a query and the number of desired
completions, an algorithm to compute such comple-
tions that does not require any boring user input. The
idea is to identify groups of similar tuples in the answer
set of an initial query, and based on those groups, to
build decision clauses to discriminate between them.

These decision clauses are then injected into the ini-
tial query in order to build new queries, that we call
completions;

• An implementation of this algorithm in a SQL editor
prototype;

• An experiment on a sample group of 70 computer sci-
ence students, measuring the usefulness and the ac-
ceptability of such completions.

Paper organization Section 2 introduces the prelimi-
naries and the definitions of SQL query completion. Section
3 exposes a solution to compute such completions. Then
section 4 presents an implementation, and experimentations
that were conducted to evaluate the completion in SQL. Fi-
nally section 5 summarises the related work, before conclud-
ing in section 6.

2. SQL QUERIES AND THEIR COMPLE-
TIONS

2.1 Preliminaries
Let us start by introducing the basic notations to be used

throughout this paper. We assume the reader is familiar
with databases notations (see [11] for details). Let D be a
set of constant and U a set of attributes. We consider a
database d = {r1, r2, ..., rn} over a database schema R =
{R1, R2, ...Rn}, where ri is a relation over a relation schema
Ri and Ri ⊆ U , i ∈ 1..n. We consider the SQL and the rela-
tional algebra query languages without any restriction. We
will switch between both languages when clear from context.
A query Q is defined on a database schema R and ans(Q, d)
is the result of the evaluation of Q against d. In the sequel,
to define the completion of any query Q, we will use two
operators: πX the projection defined as usual with X ⊆ U ,
and σF the selection, where F is a conjunction of atomic for-
mulas of the form AθB or Aθv, with A,B ∈ U , v ∈ D and θ
a binary operator in operation in the set {<,>,≤,≥,=, 6=}

2.2 Query completion
The simple question we have to answer is: How to define

a completion of a query Q ?
Different kinds of completions can be imagined, and many

different ways to compute them. However, as well as for
search engine, a query’s completion should help to narrow
down the results. Therefore, the intuition is that if Qcmp is
a completion of a query Q then ans(Qcmp, d) ⊆ ans(Q, d).
However, many queries could comply with this property ,
some that might not be considered as completions of Q.

Example 2.1. Let Q1 and Q2 be the two queries over
database presented in table 1.

Q1:
Select EmpNo
From Employees
Where sex = ’F’

Q2:
Select EmpNo
From Employees
Where Commission = 1300

The result of Q2 is contained in the result set of Q1 but
Q2 is not a completion of Q1

To define query completion, additional conditions should
be given at the syntactic level. This requires to formalize
this relationship between a query and its completions.

Definition 1. The completion Qcmp of Q is defined by:

Qcmp = σc1∧...∧cn(Q)

where ci is an atomic formula, for every i ∈ 1..n

Specified like this, the number of queries that could be
considered as completions is still infinite and it seems diffi-
cult, if not impossible, to give a meaningful definition of a
single completion.

For this reason, we do not consider a single completion of
a given query, but a set of k completions such that global
properties can be defined, especially:

• The union of completions set of size k is equal to the
initial data set represented by the initial query ; and

• Each completion is as much as possible dissimilar to
each other.

We come up with the following definition.

Definition 2. A k-set completion of Q, denoted by CQ,
is defined as: Cq = {Q1, Q2, ..., Qk} such that:

• Qi is a completion of Q, for all i ∈ 1..k

• ans(Qi, d) ∩ ans(Qj , d) = ∅, , for all i, j ∈ 1..k, i 6= j

•
k⋃

i=1

ans(Qi, d) = ans(Q, d)

Clearly, a k-set completion forms a partition of ans(Q, d).
Those restrictions provide a nice setting to see every comple-
tion as a good candidate to start a data exploration process.

3. COMPUTATION OF K-SET COMPLETION
USING MACHINE LEARNING

We argue that computing k-set completions is a new prob-
lem, even if many subproblems have been studied for years
in different communities, for example clustering in machine
learning, query reverse engineering in database [22] or re-
desciption mining in data mining [17]. In the sequel, we
explain the solution based on a two-steps process.

3.1 Division of tuples via clustering
Taking into account definition 2 and the need for non sim-

ilar answer sets for each completion, it is obvious that the
division of the tuples in ans(Q, d) should not be random.
The k sets obtained through this division have to be pair-
wise disjunct, and cover ans(Q, d) entirely. Moreover, they
should be as different as possible. Clustering algorithms (see
[9] for an overview) offer a nice setting to provide effective
approximate solutions.

In this paper, we focus ourselves on the k-means algorithm
[13] since the parameter k is part of the input. This algo-
rithm requires to be able to compute a distance between a
given pair of tuples, which is feasible but sometimes tricky.
More elaborated techniques is left for future work.

After the clustering, each tuple can be assigned to a single
cluster, providing an unique opportunity to simplify drasti-
cally the role of the user in the boring task of tuple labelling.
However, this label is only here for background completion
computation, and is therefore not shown to the user.

Technically, a new attribute, called cluster, is added to
the schema of the query to keep track of the cluster corre-
sponding to each tuple.

EmpNo LastName Sex Salary Commission Cluster
e10 SPEN F 41160 1300 2
e20 THOMP M 41250 7400 1
e30 KWAN F 39850 5200 2
e40 SMITH F 40525 1400 2
e50 GEYER M 40175 1100 3
e60 STERN M 39560 6200 1
e70 PULASKI F 40120 800 2
e80 FREY M 40625 6600 1
e90 HENDER F 39450 6700 1
e100 SPEN M 41560 900 3

Table 2: Employees dataset labelled by clustering

Example 3.1. Table 2 presents tuples from table 1, with
the additional attribute cluster that is the cluster tuples have
been assigned to.

3.2 Construction of completions with a binary
decision tree

The clustering addresses the first step of the solution. The
second step is now to find at least one query to describe
each of the clusters, if possible. It should be noted that in
our approach, the clustering is done to offer an automatic
labelling of tuples, based on a guided division of data, to
avoid a manual labelling, and to reveal underlying groups
of data. The decision tree will therefore try to discriminate
between clusters, and even though the use of a clustering al-
gorithm should facilitate the finding of meaningful discrimi-
nating clauses, the purpose is not do describe perfectly each
cluster. We rather propose to use the clusters as ”clever”
labels.

Using decision trees to generate SQL queries is a tech-
nique that has already been exploited [6]. To be able to
reach the objectives defined for our SQL completions, we
follow the same path but with binary decision trees (BDT)
[3], which is a tree splitting at each node on exactly two op-
posite conditions. In the sequel, we introduce an approach
based on 1) the computation of a constrained BDT with k
leaves from the data partition obtained before, and 2) the
transformation of the BDT into SQL statements.

3.2.1 Obtaining a constrained BDT with k leaves from
a given data partition

Clearly, we do not need to determine a full BDT since we
just have to output k leaves from it, each leaf giving rise
to one SQL completion. We assume our data allows the
construction of a tree with at least k leaves. Constrained
generation of BDT given a specific number of leaves has
been studied in [24]. In our case, we just need to explore
levelwise the search space (breadth-first search) and stop as
soon as the number of leaves exceeds k.

Indeed, the depth of the BDT is bounded by dlog2(k)e
and k − 1. Both bounds are atteignable: the first one with
a full binary tree and the second one with a right deep tree.

This optimisation turns out to be very efficient in practice.
To reach exactly the k leaves constraint, let us consider

the figure 1: assume the number of leaves int the BDT is
less than k a level i − 1, and greater or equal to k at level
k. If the number of leaves at level i is equal to k, then
stop. Otherwise, while the number of leaves remains greater
than k, replace two leaves at level i from the same parent by

Figure 1: Construction of a binary decision tree given a fixed
number of leaves

Figure 2: Binary decision tree from Table 1

turning this parent into a leaf at level i−1 (using a majority
vote to assign a class to this new leaf).

Example 3.2. From the clustering in table 2, the binary
decision tree of figure 2 can be obtained. In this running
example, the decision tree leaves matches exactly with the
clusters.

The previous example points out that the clustering and
the binary decision tree may coincide. However, this is not
true in general since some tuples may fall into the wrong
cluster or some clusters could be lost by the binary decision
tree. In a data exploration process, we argue this is not a
real issue: the new queries proposed by our techniques are
a first step to help the analyst to write her query.

3.2.2 Obtaining SQL statements from a BDT with k
leaves

Once the binary tree has been constructed, each leaf can
be reached through a unique decision path. The decision
path from the root of the tree to a specific node can be writ-
ten as the conjunction of each decision encountered along
the road. This is why it is so convenient to go from a deci-
sion tree to a SQL query. After exploring all the path in the
tree, each conjunction can be directly injected in the where
clause of an SQL query, and therefore give a new completion.

Example 3.3. From the decision tree on figure 2, every
completion from example 1.1 can be obtained easily.

3.3 Algorithm proposal
In order to combine the two steps described previously,

and to specify how the completion set is to be computed,
the algorithm 1 is proposed hereafter.

Lines 2-5, we identify first whether the outermost opera-
tor is a projection or not. In such a case, we remove it to
augment the chances of clustering on pertinent attributes.

Algorithm 1: Query completion procedure

1 procedure Completion (Q, d, k);
Input : A query Q over R,

d a database over R,
k the number of completions

Output: Sc a set of k completions of Q
2 if Q = πX(Q′) ; // remove the projection

3 then
4 Q = Q’
5 end
6 wd = ans(Q, d) ; // wd: working data

7 lwd = kmeans(wd, k) ; // lwd: labelled wd

8 treeWithKLeaves = LevelwiseBDT (lwd, k)
9 conjunctions = getRules(treeWithKLeaves)

10 Sc = {}
11 foreach c in conjunctions do
12 Sc = Sc ∪ σc(Q)
13 end
14 return Sc;

Indeed, data analysts do not necessarily select the attributes
that are the most discriminant or the most interesting to
learn on. Therefore, when evaluating the initial query, the
returned attributes might not be the most useful to compute
completions.

This first step consists in opening the query to as many
attributes as possible within the tables concerned by the
query. We have proposed a simple but effective solution, but
there is still room for improvement, more attributes could be
added or some attributes could be removed, especially those
(string or categorical) with a very large number of different
values.

Line 6, we compute the result set of the initial query.
Clearly, if the size of the result is expected to be large, some
restriction could be added to save time and ressources, for
instance by limiting the output to the first 10 000 or 100 000
tuples or by using sampling techniques.
Line 7, the clustering transforms the dataset wd into a la-
belled dataset lwd in which each tuple is labelled with the
cluster it was assigned to.

Line 8, a constrained BDT with k leaves is computed from
the labelled dataset such that its number of leaves is equal
to the k value. In other words, the BDT is built such that
its depth is as small as possible while the number of leaves
has to be equal to k, as explained in the previous section.

Lines 9-12 this procedure produces exactly k completions:
for each leaf of the tree, the conjunction of clauses leading to
it from the root is computed. This conjunction is then added
to the selection clause of Q, creating a new completion.

The conditions from definition 2 are satisfied by the pro-
posed algorithm as stated in the following property.

Property 1. Let d a database over R, Q a query over R,
and k an integer. completion(Q, d, k) is a k-set completion
of Q, i.e for {Q1, Q2, ...Qk} in completion(Q, d, k), and for
all i, j ∈ 1..k, i 6= j:

Qi is a completion of Q (1)

ans(Qi, d) ∩ ans(Qj , d) = ∅ (2)

k⋃
i=1

ans(Qi, d) = ans(Q, d) (3)

Proof. (1) By construction, and with respect to defini-
tion 1, Qi is a completion of Q

(2) At each node of the binary decision tree, there is one
split leading to the creation of two child nodes. This split
is done on one attribute A, for one threshold value t if A is
numeric or a value v otherwise. The first child node takes all
tuples in the dataset for which A ≤ t (respectively A = v),
the second child node takes the rest, i.e tuples for which
A > t (respectively A 6= v)4. As a consequence, any tuple
in the dataset reaches one and only one node at each split,
and therefore one and only one leaf of the tree. As each
completion corresponds to one leaf, they all contain different
tuples from ans(Q, d).

(3) By property of completion we have ans(Qi, d) ⊆ ans(Q, d),

so we obtain
n⋃

i=1

ans(Qi, d) ⊆ ans(Q, d). Moreover, as a

node splits on opposite conditions, any tuple from ans(Q, d)
satisfies one and only one condition at each split. There-
fore any tuple t from ans(Q, d) necessarily ends up in the
result set of a completion, so there exists i ∈ 1..n such that

t ∈ ans(Qi, d) and therefore
n⋃

i=1

ans(Qi, d) ⊇ ans(Q, d).

Clearly, we make use of machine learning algorithms that
are currently well-known when solving various classification
or prediction tasks. Usually those algorithms are fine-tuned
to be perfectly fitted to the task at hand, requiring time
and background knowledge from a data analyst [9]. In our
context, this is not possible, but optimal performance is not
crucial.

The better the algorithm, the better the completions, but
even with the double approximation from the clustering and
the decision tree, the information from the completion set
remains definitely useful as shown in the experiments.

4. IMPLEMENTATION AND EXPERIMEN-
TATIONS

4.1 Algorithm implementation
Algorithm 1 was implemented using Python 3 and using

SQLite5 as DBMS. For sake of simplification, the imple-
mentation is for now limited to numerical attributes. The
kmeans algorithm is taken from the scikit-learn [18] library.
The binary decision tree classifier is also from this library,
based on the CART algorithm [2], but adapted to comply
with the constraint of the number of leaves.

4.2 SQL Editor Prototype
We also implemented a SQL editor Prototype, with a basic

user interface, that in addition to basic SQL functionalities,
offered the possibility of query completion. Also developed
in Python, this interface consists in four distinct zones (see
figure 3):

• A text field to write the query to be completed (A)

4In case of null values on A, one of the two conditions of a
split should integrate a test of the form A IS NULL, not to
miss any tuple.
5https://www.sqlite.org/

• A parameter field to specify the maximum number of
completions to return (B)

• A zone to display the answer set of a query (C)

• A zone where the completion set of the input query is
presented once computed (D)

4.3 Experimentations
The objectives of experimentation was to prove the utility

of completion as presented in this paper. It was decided to
explore two different categories of measures :

• How does the completion improves the query writing
process: in terms of writing time, is it faster to write
a query using completion ?

• How well can the completion be accepted by users ? Is
it easy to use ? How well do users adapt to it ?

4.3.1 Organization
A group of 70 computer science student (last year bachelor

students and master students) was gathered. They all had at
least basic knowledge in SQL and data management. They
all agreed to participate in a one hour experimentation that
was meant to test the completion tool. They were initially
only told that they would have to adress several SQL-related
challenges.

Prior to the experiment, participants were randomly di-
vided into two groups. The division was however balanced in
terms of number of students from each level (bachelor, first
year and second year master students). The experiment re-
quired to evaluate SQL queries on a database. For this, the
first group (referred to as group CMP from now on) had
access to the completion tool, while the other (referred to as
group NoCMP from now on) had a tool that was designed
to be similar to the one of group CMP, but without comple-
tion. This disposition was chosen to be able to compare the
results of the two groups, i.e to see the difference between
groups with and without completion, while working under
similar conditions (softwares with similar functionalities in
terms of classic querying tools).

Each group was asked the same ten questions on a database6.

4.3.2 Design of the test
When conceiving the questions, our purpose was to pro-

pose a fair situation for groups CMP and NoCMP. For this
reason, we eliminated several types of questions :

• Questions that were trivial with completion, but im-
possible to do without completion

• Questions for which completion has no interest: queries
with empty result sets, dates comparison, specific op-
erators from DBMS...

All questions exposed a scenario, and then asked to find
out the SQL query to solve the scenario. The questions were
ordered from the easiest to the most difficult, and separated
into two categories :

6Note to the reviewers: the DB schema and correspond-
ing questions are available in appendix at your discretion.
All experimentation material is available online at https:
//marielgy.github.io/sql experimentation/

• The first three queries were classic SQL queries, that
are typical of SQL lessons for beginners: they were
questions directly and easily transformable into SQL
queries, on which the completion tool was not useful.
Those questions allowed to verify that each participant
really had basic SQL skills. It was also a way to verify
that group CMP and NoComp had similar results, and
were therefore well balanced.

• The other questions (number 4 to 10) were designed
to be more open-ended, in the sense that the con-
version of the question into an SQL query was not
straightforward. The purpose was to mimic the kind
of loosely-specified questions a data analyst is con-
fronted to when exploring unknown data, or answering
questions from non-SQL users. The specification of
questions was less strict, as selection conditions were
not specified in terms of numbers, but using adjectives
such as higher, bigger, lower, above average, low, etc.
However, the final SQL query required to identify nu-
merical conditions to discriminate between the tuples,
and to translate the description of data given in the
question. But even with those specifications, the level
of difficulty for the second group of questions was not
easy to settle: formulating those vague questions re-
quires to choose carefully the vocabulary used in the
question.

To help the NoCMP group, and make sure they would still
be able to complete the test, we added to types of informa-
tion. First, we provided the number of tuples each query was
supposed to return, to provide an indication. Second, for
some questions, we proposed data visualizations and asked
participants to formulate queries that would return specific
datapoints of these visualizations. This was a way to ask
participant to transform a visual pattern into a query, so
they had to identify the pertinent conditions to characterize
the given pattern.

Participants had one hour to answer the 10 questions.
They had to read the question, use the tool to write queries
and evaluate them on the database, and once they thought
they had the right query, they had to submit it online. They
were not told whether their answer was right or not: in a
real life scenario, analysts have to know themselves if they
reach their desired data or not. During the hour of exper-
imentation, we were able to monitor the time each partici-
pant spent on each questions. After the experiment, we also
checked whether the answers they submitted were correct
or not. Moreover, we were able to say, for each question, if
participants from group CMP had used completion or not
to generate their submitted query.

At the same time, group CMP had to deal with an addi-
tional difficulty, as they had to handle the completion tool.
Indeed, they had never used it before, and they did not re-
ceive any specific formation on how to use the tool before
the test. They were only given a one-page instruction sheet
on how completion worked (see website 7). But they did not
get any additional time, and had to use the hour to both an-
swer the questions and master the completion (even though
they were not forced to use it). This was done to avoid in-
fluencing them on their use of the completion, and to see
how they would adapt to this new functionality.

7https://marielgy.github.io/sql experimentation/

Figure 3: SQL query completion prototype

Figure 4: Difficulty of questions perceived by group CMP
participants

Finally, after completing the 10 questions, participants
were asked to answer a quick survey to collect their opinion
and feelings on the experiment.

4.3.3 Results

Validation of experimental setup.
First, we validated that the constraint specified for ques-

tion formulation. The objectives were fulfilled regarding the
difficulty of questions as well as equity between groups. On
figure 4 and 5, we can see how participants felt regarding
the difficulty of questions. In both groups, only 3.4% of par-
ticipants felt like questions were too difficult. In both case,
the majority of participants felt like questions were correctly
ordered from easiest to more difficult. The only difference is
that more people in group CMP felt like questions were too
easy (31.1% against 6.9%), as the completion tool helped
them in answering the questions that were supposed to be
really difficult.

On this first evaluation, we met our objectives with re-
spect to our questions difficulty. This is also an indication
that query completion can make answering SQL questions
easier for users.

Completion and query writing time.
To analyze the impact of completion regarding query writ-

ing time, the first result that is interesting to look at is how
much time did each group spend on average answering each
question: those results are presented on figure 6. There are
several interesting points to notice on this figure :

Figure 5: Difficulty of questions perceived by group NoCMP
participants

• For questions 1 to 3, the results of the two groups are
similar, which was actually the initial objective. When
completion was not necessary, the performance of both
groups were equivalent.

• Question 4 was easy for both group, as could be ex-
pected as the visualization was here to help . Even
though completion could have helped on this question,
it does not seem to have made a difference, as the av-
erage answering time is very similar for both groups.
This means that completion is not necessary if a good
visualisation is available to the user.

• For questions 5 to 10, the difference between the two
groups is much more important and it seems clear that
group CMP performed considerably faster than group
NoCMP. This is a strong argument to support the fact
that SQL query completion can indeed make the SQL
query writing faster. The difference is stronger for
questions 7 and 8, which seem to have been the most
difficult questions for participants.

However, figure 6 takes into account all answers from par-
ticipants, which means that some of those answers might
be wrong. And a participant who did not gave a good an-
swer might have spent a lot of time on a question looking
for the answer without finding it, or on the contrary given
up quickly as he did not know how to fnd the answer. For
this reason, figure 6 was recomputed, taking into account
only the answering time from participants who had given
the correct answer for the considered question: such results
are presented on figure 7. The tendency is similar, and group

Figure 6: Histogram of average answering time per question,
for group CMP and group NoCMP

Figure 7: Histogram of average answering time per group,
for each question, only for correct answers

CMP still performs considerably faster than group NoCMP.
Actually, results from group CMP are even slightly better,
especially for more complex queries like for question 7 and
8.

To understand the behaviour of participants, it is possi-
ble to look at the boxplot of answering time per question for
each group, on figure 8, which also take into account only
correct answers. The main observation is that results of
group CMP are much more packed than for group NoCMP:
participants who had access to completion had a way to help
them if they were stuck on a question, contrary to group
NoCMP participant who had to search by themselves un-
til they identified the answer. This is flagrant once again
for question 7, where someone spent more than 25 minutes
looking for the answer.

On this second evaluation, our initial objectives are com-
pleted: when evaluated in similar conditions, the group with
access to completion performed faster than the group with
only classic SQL tools.

Figure 8: Boxplot of answering time per question, for groups
CMP and NoCMP, only for correct answers

Figure 9: Percentage of participants from group CMP who
used completion to answer the question, for questions 4 to
10

Completion acceptance.
As mentioned previously, it was also possible to say whether

a participant had used completion for a given question or
not. The proportion of completion use per question is pre-
sented on figure 9. We only presented question 4 to 10 on
which completion was possible. It can be seen on this figure
that participants did not always use the completion tool.
In total, 70% of participants used completion at least once,
while the others completed the test without using it.

Additional results were analysed to understand those ob-
servations. We first analysed, the way participants had used
completion: on figure 10, interesting patterns can be ob-
served. The main observation to do is that once participants
have used completion for a question, they are very likely to
use again in the next question. This is indicated by the con-
tinuous blue lines on this figure. This is a really important
result, as it showed that once a user has understood the
utility of completion, he will use it again. This observation
is particularly true for participants number 1 to 13, which

Figure 10: Type of answer per question, for participants who
used completion during the test

in addition did not make many mistakes. Participants 14
to 19 also used completion a lot after their first use, but
made more mistakes: when looking at their answering time,
it seems that they did not have much time to complete the
last questions, and therefore might have been in a rush and
did not give correct answers. Finally, participants 20 to 24
seem to have tested completion, but preferred to finish the
test without using it.

On figure 11, we divided group CMP into two groups for
each question: participants who had submitted a query gen-
erated with completion (group CMP1), and others partici-
pants from group CMP in group CMP2. We then compared
their average answering time for each questions, as well as for
group NoCMP. It should be noticed that for each question
groups CMP1 and CMP2 might be different as participant
who used completion are different from one question to an-
other. First, on question 4, group CMP1 is slower: as it
is the first question on which completion could be used, we
interpret this as the time necessary for participant to get
familiar with the completion tool. Moreovoer, even though
group CMP2 answered without completion, its behaviour is
different from group NoCMP on question 4 to 10. Indeed,
except for question 10 where it is the slowest group (but on
previous figures, question 10 always has specific behaviours),
the tendency of group CMP2 is closer to the one of group
CMP1 than to the one of group NoCMP. This is explained
by the fact that participants who did not use completion in
group CMP were students good enough in SQL to be able
to answer the question quickly: for them, taking the time
to understand the completion tool would have been a waste
of time as they were comfortable enough in SQLn an had
enough information, to succeed the test without it. This
correlates with figure 12: based on the participants study
year and their self-estimated level in SQL, we divided group
CMP into three categories of participants, novices, interme-
diates and experts. We then looked, for each category, what
proportion of participants had used completion at least once.
The results from figure 12 show that the group that used it
the most is the one for intermediate level. Expert used it
less, because as we explained, they were comfortable enough
in SQL to answer questions quickly. More surprisingly, the

Figure 11: Histogram of average answering time for ques-
tions 4 to 10, for groups CMP1, CMP2 and NoCMP

Figure 12: Percentage of participants from group CMP who
used completion, based on their estimated level in SQL

novice category does not seem to have used it more than ex-
perts: the explanation for this is found when looking at the
queries submitted by participants from this group. They
tried to find queries more complicated than they actually
were, as they had a really scholar approach of the test.

To summarize, we believe those thorough experimenta-
tions have reach their goals. We demonstrated that the
group with the completion tool performed faster than the
one without: on average, group CMP completed the test in
32 minutes, against 48 minutes for group NoCMP. This is
not only because the tool allows to write faster, but mostly
because it identifies conditions that take much more time
to find manually, as it requires to try several values before
finding the pertinent one. We saw that the tool is well ac-
cepted, depending of the participant’s context and level in
SQL: moreover, we showed that the use of completion was
not a single isolated try by participants, but that a first use
encouraged them to use it again. Once you got it, you have
it forever.

5. RELATED WORK
As far as we know, SQL query completion is a new prob-

lem that has not been studied yet. Nevertheless, related
contributions exists in the context of data exploration. The
closest example is in [10], that proposes an autocompletion
tool for SQL, that provides context aware assistance in SQL
queries writing. Even though it can suggest completions in
various SQL clauses, the completions offered rely mostly on
the schema and on the database’s log, and does not look
at the data itself contrary to our approach that relies on
the database’s content. Many approaches try to infer query
based on example tuples, which are tuples manually labelled
by the user. Among those we can cite [21] that suggest a set
of queries returning such example tuples. Another exam-
ple is [1], where the objective is to infer the join query that
will return the result expected by the user. Those approach
are similar to ours in the sense that their purpose if to help
query formulation. However, the labelling done by the user
is a additional task she has to do in addition to the usual
ones. In comparison, we only ask an input query from the
user. The clustering phase of our solution is in charge of the
labelling, which means many more tuples can be labelled as
it is automatic. Moreover, it can lead the user to consider
data she had not thought about before.

If we take the various component of the solution presented
in this paper, they can be linked to several research areas.
First, Reverse query engineering [22, 25] considers the fol-
lowing problem: given a tuple set T in a database d, find a
query Q such that ans(Q, d) = T . Many theoretical results
exist with respect to the language permitted to express Q,
conjunctive queries and variants. This is what we do with
the decision tree used to formulate a query returning the
tuples from a cluster. However, in our context, some simpli-
fication is permitted since part of the query is known. Sec-
ond, Redesciption mining [17] unifies considerations of con-
ceptual clustering, constructive induction, and logical for-
mula discovery. Nevertheless, they do not consider at all
SQL queries as we do, and are interested in enumerating
all possible redescriptions verifying some conditions, with
enumeration techniques quite different from our proposition.
Decision trees in databases have also been studied in various
forms: in [6] they are used to reformulate in query for data
exploration. We can also mention works on integrating de-
cision trees into databases as objects that can be stored and
queried, such as in [8] or [19]. Also related to our solution
are predictive cluster trees that combine those two method
into one [12].

Many recent works concern interactive data exploration
in database, with techniques aiming at helping user under-
stand and discover their data using machine learning. Some
examples of such works are exposed in [15]. Many of those
approaches also rely on manually labelled tuples : we can
cite the AIDE framework offers [7] that tries to learn what
tuples are of relevance for the user and which are not. The
machine learning phase is essentially based on decision trees
and SVM. Thereafter, this process was improved in [16], by
using even more machine learning. This second paper uses
the same framework, but completes it by identifying under-
lying user habits based on their labeling. Those habits are
turned into attributes used in a clustering. This way, similar
users are identified, which is used for speeding the process
by using previous data exploration by similar users to give
even more relevant tuples. We can see here many similar

features with our query completion proposal. However once
again those approaches require more work from the user.

More generally, there is a part of research trying to bridge
the gap between machine learning and database. Surajit
Chaudhuri in [5] argues that bringing databases and ma-
chine learning algorithms closer might only be beneficial in
terms of performance. More concrete applications of this
has actually been done, such as in [26] where an entire ma-
chine learning library has been adapted so that it is com-
patible with a storage of data in a DBMS instead of a data
structure in main memory. Moreover, they also adapted the
algorithms in order to make use of native SQL operators.
There is also [23] which is a SQL extension for data mining.

In conclusion, we can see that this query completion frame-
work is part of a general branch of research towards data
exploration, which is motivated by the new challenges that
Big Data and the evolution of data science are bringing.

6. CONCLUSION
In this paper, we have adapted for the first time the power-

ful notion of completion to SQL queries, which could be par-
ticularly useful for data analysts in a data exploration pro-
cess or for SQL developers. This functionality is a natural
extension of SQL and could be integrated in every SQL ed-
itors associated to database management systems (DBMS).

Without any intervention required for the user, any SQL
query can be completed automatically and should give rise
to new ideas, new paths to the user in her quest to the elic-
itation of her data of interest. The completion is semantic,
and relies on the data contained in the answer set of this
initial query. The approach is based on classical machine
learning algorithms, adapted to fit into the definition of the
completion we have proposed.

A SQL editor prototype has been developed on top of
which experimentations have been conducted over a set of
70 participants. It demonstrate the pertinence of such a tool
in current DBMS: not only do participants get adapted to it
easily, but it also allows to considerably improve and facil-
itate the SQL query writing process in the considered con-
text. Contrary to syntactic completion tool, our approach
does not only improve the writing itself, but it helps the an-
alysts to identify data and to limit the number of iteration
she has to do to identify relevant conditions to reach desired
data.

In the current context where more and more data is be-
ing stored and analysed, such a proposal is a real help for
data exploration, to assist analysts confronted to unknown
databases, using completions to navigate and understand
the data. Moreover, the solution is iterative and allows the
user to modify a completion and to continue until she reaches
what she was looking for. The completion is also a way to in-
tegrate knowledge on data, usually provided by data mining
systems and tools, without leaving the context of DBMS.

Many extensions of this work can be envisioned, typically
to extend the completion to different clauses of SQL, for in-
stance the group by clause. This work is also a contribution
to bridge the gap between database techniques and machine
learning techniques.

7. REFERENCES
[1] A. Bonifati, R. Ciucanu, and S. Staworko. Interactive

join query inference with jim. Proc. VLDB Endow.,
7(13):1541–1544, Aug. 2014.

[2] L. Breiman, J. Friedman, R. Olshen, and C. Stone.
Classification and Regression Trees. Wadsworth and
Brooks, Monterey, CA, 1984.

[3] L. Breiman, J. Friedman, C. J. Stone, and R. A.
Olshen. Classification and regression trees. CRC press,
1984.

[4] U. Çetintemel, M. Cherniack, J. DeBrabant, Y. Diao,
K. Dimitriadou, A. Kalinin, O. Papaemmanouil, and
S. B. Zdonik. Query steering for interactive data
exploration. In CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA,
USA, January 6-9, 2013, Online Proceedings, 2013.

[5] S. Chaudhuri. Data mining and database systems:
Where is the intersection? Data Engineering Bulletin,
21, 1998.

[6] J. Cumin, J.-M. Petit, V.-M. Scuturici, and S. Surdu.
Data exploration with sql using machine learning
techniques. In International Conference on Extending
Database Technology-EDBT, 2017.

[7] K. Dimitriadou, O. Papaemmanouil, and Y. Diao.
AIDE: an active learning-based approach for
interactive data exploration. IEEE Trans. Knowl.
Data Eng., 28(11):2842–2856, 2016.

[8] É. Fromont, H. Blockeel, and J. Struyf. Integrating
decision tree learning into inductive databases. In
International Workshop on Knowledge Discovery in
Inductive Databases, pages 81–96. Springer, 2006.

[9] J. Han. Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2005.

[10] N. Khoussainova, Y. Kwon, M. Balazinska, and
D. Suciu. Snipsuggest: Context-aware autocompletion
for sql. Proceedings of the VLDB Endowment,
4(1):22–33, 2010.

[11] M. Levene and G. Loizou. A Guided Tour of
Relational Databases and Beyond. Springer-Verlag,
London, UK, UK, 1999.

[12] B. Liu, Y. Xia, and P. S. Yu. Clustering through
decision tree construction. In Proceedings of the ninth
international conference on Information and
knowledge management, pages 20–29. ACM, 2000.

[13] S. Lloyd. Least squares quantization in pcm. IEEE
Trans. Inf. Theor., 28(2):129–137, Sept. 2006.

[14] A. Nandi and H. V. Jagadish. Guided interaction:
Rethinking the query-result paradigm. PVLDB,
4(12):1466–1469, 2011.

[15] O. Papaemmanouil, Y. Diao, K. Dimitriadou, and
L. Peng. Interactive data exploration via machine

learning models. IEEE Data Eng. Bull., 39(4):38–49,
2016.

[16] O. Papaemmanouil, Y. Diao, K. Dimitriadou, and
L. Peng. Interactive data exploration via machine
learning models. IEEE Data Eng. Bull., 39(4):38–49,
2016.

[17] L. Parida and N. Ramakrishnan. Redescription
mining: Structure theory and algorithms. In AAAI,
volume 5, pages 837–844, 2005.

[18] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[19] N. U. Rehman and M. H. Scholl. Enabling decision
tree classification in database systems through
pre-computation. In British National Conference on
Databases, pages 118–121. Springer, 2010.

[20] N. Rushby and D. Surry. The Wiley Handbook of
Learning Technology. Wiley Handbooks in Education.
Wiley, 2016.

[21] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and
L. Novik. Discovering queries based on example
tuples. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data,
SIGMOD ’14, pages 493–504, New York, NY, USA,
2014. ACM.

[22] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query
reverse engineering. The VLDB Journal,
23(5):721–746, Oct. 2014.

[23] H. Wang, C. Zaniolo, and C. R. Luo. Atlas: A small
but complete sql extension for data mining and data
streams. In Proceedings of the 29th international
conference on Very large data bases-Volume 29, pages
1113–1116. VLDB Endowment, 2003.

[24] C.-C. Wu, Y.-L. Chen, Y.-H. Liu, and X.-Y. Yang.
Decision tree induction with a constrained number of
leaf nodes. Applied Intelligence, 45(3):673–685, 2016.

[25] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and
D. Srivastava. Reverse engineering complex join
queries. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data,
pages 809–820. ACM, 2013.

[26] B. Zou, X. Ma, B. Kemme, G. Newton, and
D. Precup. Data Mining Using Relational Database
Management Systems, pages 657–667. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006.

APPENDIX
The presentation of the database used for our experimenta-
tions, as well as the questions asked to the participants, are
presented in this appendix.

A. EXPERIMENTATION SCENARIO
You’re a new member of a post office, in charge of pack-

ages. When you’re not at the front desk taking care of cus-
tomers, you have access to data recorded about the packages
sent from your post office. For simplification, we will focus
on the packages leaving the post office to other destinations.
Here is how the database was created :

CREATE TABLE C i t i e s (
c i ty ID DECIMAL,
d i s t ance DECIMAL,
PRIMARY KEY (c i ty ID)

)
CREATE TABLE Packages (

package ID DECIMAL,
d e s t i n a t i on DECIMAL,
l ength DECIMAL,
width DECIMAL,
he ight DECIMAL,
weight DECIMAL,
p r i c e DECIMAL,
PRIMARY KEY (i d c o l i s)
FOREIGN KEY (de s t i n a t i on)

r e f e r e n c e s V i l l e s (i d v i l l e)
)

Table Packages has one entry per package that left your
post office. From the destination of a package, you can see
how far it was sent, by joining tables Packages (11000 tu-
ples) and Cities (30 tuples) on attributes destination and
city ID.

Questions are ordered from easiest to hardest :you should
therefore answer them in the given order. First three ques-
tions are simple, while the others are voluntary more com-
plex, and finding the required SQL query in questions 4 to
10 required more exploration.

B. QUESTIONS
Question 1 This first question is here so that you can

get familiar with the data and the tools at your disposal.
Please test the two tools (SQL software and online form for
answers) with the following query, that is a join between the
two tables (Expected result size: 10 999 tuples):

Se l e c t ∗
From Packages , C i t i e s
Where Packages . d e s t i n a t i on = C i t i e s . c i ty ID

Question 2 Maximum size limit authorized for a package
is 9000 grams. However, some exceed this limit without
being detected. Give the query to obtain the ID of packages
whose weight exceed this limit. (Expected result size: 73
tuples)

Question 3 What query can you write to obtain the av-
erage length of packages sent less than 100 kilometers from
your post office ? (Expected result size: 1 tuple)

Question 4 A little bit interested by data analysis, a
colleague of yours had, with a spreadsheet, visualized some
curves from the database. By plotting packages prices against
their height, he/she had noticed a group of packages very dis-
tinct and well separated from the others, which is presented
on figure 13, and circled in red. Can you find the query that

returns all packages belonging to this group ?(Expected re-
sult size: 33 tuples)

Figure 13: Visualization for question 4

Question 5 According to some colleagues who’ve been
working here for years, heaviest packages are the one going
to very distant destinations. The intuition behind this is
that has sending a package far away is expansive, customers
many things in one package to compensate. Can you identify
packages that do not comply with this, i.e that are not heavy
but are sent far away ? (Expected result size: 13 tuples)

Question 6 Once at the regional sorting center, packages
go through a machine that automatically sort them accord-
ing to their destination. However, this machine is sometimes
defective. Indeed, when a package is less than 480g, the ma-
chine does not always detect it, and a operator has to take
it and process it manually. This phenomenon is marginal,
but more likely to happen if in addition to its light weight,
the packages in small regarding its length and width. On
all packages registered in your database, 12 have caused a
problem. Which query can identify those 12 packages ?

Question 7 Some packages are sent to a city that is
very close to your post office, less than 10km away. More-
over, some are very light (less than 550g), and you wonder
why people pay the post office to transport them while they
would quite easily do it themselves. One of your colleagues
has an hypothesis : maybe those packages are cumbersome
and therefore hard to transport. Can you identify packages
validating this hypothesis ? (Expected result size: 8 tuples)

Question 8 A customer arrives at the post office, because
he needs the ID of a package he had send, but isn’t able to
find. In order to help him, he gives you a few informations:
the package was light, less than 450g and its dimensions
(mainly length and width) were surprisingly big in regard to
its weight. Can you give the query returning such a package
? (Expected result size: 1 tuple)

Question 9 When working at the front desk, one of your
colleagues made a mistakes on four on the packages he regis-
tered. Luckily, he remembers their length was above 140cm,
and he therefore applied a special tarification, as those kind
of packages are more complicated to deliver due to their
size. But he applied the wrong tarification, and those pack-
ages have therefore an abnormally elevated price. Can you
identify those packages ? (Expected result size: 4)

Question 10 At question 2, you showed that 73 packages
are above the weight limit. But your colleagues in charge of
putting packages in the trucks say that a third of packages
are really heavy, and require two employees to be lifted, in
order to avoid back pains. Can you modify the query for
question 2 in order to identify those packages ? (Expected
result size : 3073 tuples)

