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Abstract

The aggregation technique, dedicated to two-termina¢segyarallel graphs (or TTSP-graphs) and
introduced lately to solve the minimum piecewise lineart ¢ession problem, is adapted here to
solve the minimum binary cost tension problem BET problem). Even on TTSP-graphs, the
BCT problem has been proved to be NP-complete. As far as we, kihe aggregation is the
only algorithm, with mixed integer programming, proposedolve exactly the BCT problem on
TTSP-graphs. A comparison of the efficiency of both methegsésented here.

Keywords: minimum cost tension, binary costs, two-terminal seriasaftel graphs.

Abstract

La technique d’agrégation, dédiée aux graphes sériel@asalet introduite récemment pour ré-
soudre le probléme de la tension minimum a codts linéairesnoaceaux, est adaptée ici pour
résoudre le probléeme de la tension minimum a codts binagespfoblemeBCT). Méme sur
des graphes série-paralléles, le probléme BCT a été proBvéomplet. A notre connaissance,
I'agrégation est le seul algorithme, avec la programmadti@aire mixte, proposé pour résoudre de
maniere exacte le probleme BCT sur des graphes sériegdasallUne comparaison de I'efficacité
des deux méthodes est présentée ici.

Mots clés : tension de colt minimum, codts binaires, graphes sérigiphas.



Abstract

The aggregation technique, dedicated to two-terminaksearallel graphs (or TTSP-
graphs) and introduced lately to solve the minimum piecewigear cost tension problem,
is adapted here to solve the minimum binary cost tensionl@moljor BCT problem). Even
on TTSP-graphs, the BCT problem has been proved to be NPietenp\s far as we know,
the aggregation is the only algorithm, with mixed integesgramming, proposed to solve
exactly the BCT problem on TTSP-graphs. A comparison of ffieiency of both methods
is presented here.

1 Introduction

The study of tension problems in graphs is motivated hereybgtgonization problems in hyper-
media documents [2]. These documents are composed of gamedia objects such as audio,
video, text, image, applet... Authors need powerful toolsdhedule automatically the temporal
specifications of these objects in a document. Any mediacbhjbas an ideal duration, and an
interval [a,; b,] in which its effective (i.e. scheduled) duration can varlieTauthor also specifies
temporal constraints in order to express the way the praentof the document should happen.
The problem is finally to schedule the duration of each metjaab so that it satisfies both the
tolerance intervals and the temporal constraints.

This problem can be interpreted asngnimum cost tensioproblem (orMCT problem) in a
graph [6]. LetG = (X;U) be a graph, withX the set of nodesl/ the set of arcsin = |U]|
andn = |X|. The nodes represent events in the hypermedia presentasorthe start or end
of presentation of a media object), and the arcs expressot@ingonstraints between two events
(i.e. precedence and duration between two events)awLeX —— R be a function that assigns
a potential to each node of the graph. It represents the dagslsled for each event. Hence, the
tensiond,, of an arcu = (z;y), which is the difference of potentiats, = m, — 7., is the duration
between events andy, and is constrained t8, € [a,;b,] C R. The minimum cost tension
problem can finally be modeled as:

minimize > ¢, (6.)
uelU

(Pyer) with  my — 7 = O(ayy), V(z39) €U

Ay < 0y < by, VueU

To measure the quality of a document, many proposals were ficad,,. The first studies
consider piecewise linear costs, with a minimumdgi7, 11, 2]. The problem is thus expressed
as a linear program, and many polynomial algorithms wereldeed for this specific problem
[10, 1]. [4] proposed aaggregationmethod to solve theninimum convex piecewise linear cost
tensionproblem (orCPLCT problem) ontwo-terminal series-parallejraphs (ofTTSP-graphs
It was shown to be competitive on this class of graphs withbstdual cost-scalingalgorithms
[1].

However, the number of objects that need to be modified (hat dre not scheduled at their
ideal duration) is also relevant for hypermedia synchratidn [12]. Altering the duration of a me-
dia object is CPU consuming, thus in a real time context, mizing this operation is important.
We propose here to develop an aggregation method fanthenum binary cost tensigoroblem
(or BCT problem) on TTSP-graphs, where the cost functions are dkfise

0, if 6, = oy
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Due to its discrete nature, this problem is NP-complete [&]tely, it was also proved that
it is NP-complete on TTSP-graphs [13]. Our interest in théss of graphs is explained by the
specific structure of the temporal constraints used in hgpdia synchronization, which leads us
to manipulate graphs that are very close to TTSP-graphs [4].

Section 2 proposes an overview of the TTSP-graphs and threga@n approach. Section
3 explains how to adapt the method to the BCT problem. Thempemative numerical results
with mixed integer programming are presented in Sectiore4ti@ 5 shows that the aggregation
algorithm can be used to solve the BCT problem on any elemenyale, a subproblem that can
be significant to solve the BCT problem on any graph (i.e. autrany specific structure) [3]. We
conclude with a discussion on some leads to solve the BCTlgmmobn quasi-k series-parallel
graphs and maybe on any graph, using the aggregation teghniq

2 Aggregation Method

2.1 Two-Terminal Series-Parallel Graphs

A common definition of TTSP-graphs is based on a recursivestoaction of the graphs (e.g.
[9], or [15] with the edge series-paralletligraphs) that is very intuitive and close to the way
synchronization constraints are built in a hypermedia dumit. A digraphG is two-terminal
series-parallel also calledT TSP-graphif it is obtained from a graph with only two nodes linked
by an arc, applying recursively the two following operaton

e Theseries compositigrapplied upon an are = (z;y), creates a new nodeand replaces
u by two arcsu; = (x;z) andus = (z;y) (cf. Figure 1a). We caleriesthe relation that
bindswu; anduy and denote ity + us.

e The parallel compositionapplied upon an are = (z;y), duplicatesu by creating a new
onev = (x;y) (cf. Figure 1b). We calparallel the relation that binds andv and denote it

u//v.

o o oo b
(a) .

(b)

Figure 1:Series and parallel compositions.

The series and parallel relations are gathered under theS€¥xrelations During the con-
struction process, a SP-relation that binds two arcs caanbea relation between two TTSP-
subgraphs. The SP-relations are binary operations, sonvepaesent a TTSP-graph by a binary
tree calleddecomposition binary tref8] or SP-treg as illustrated by Figure 2. [15, 14, 9, 5]
propose different ways to find such a tree in linear time.

-

O————»() e

O O
O OROEENE)

Figure 2:Example of SP-tree.
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For the CPLCT problem, numerical results in [4] show thagdinprogramming and the out-
of-kilter method take advantage of the particular strueirthe TTSP-graphs and behave really
better on this class of graphs than on non-specific graphsetder, the dual cost-scaling approach
does not work that well on these instances, whereas it provés the most efficient for non-
specific graphs. Finally, the aggregation is the method phesents the best performance on
TTSP-graphs.

2.2 Aggregation Method

The aggregationmethod, that allows to solve minimum cost tension problemly on TTSP-
graphs, has been introduced in [4]. The algorithm works ofPdr&eT of the TTSP-graplz
and is recursive: considering a SP-relatiori/init assumes that the optimal tensions of the two
subgraphs implied in the relation are known, and from thens possible to quickly build the
optimal tension of the whole SP-relation. Hence, startingifthe leaves df’, the optimal tension

of each SP-relation is built to finally reach the root of thesetf".

From the definition of a TTSP-graph, it is obvious that a TT#&sh has only one source
node (i.e. without any predecessor) and only one target (iagdevnithout any successor). Hence,
themain tensiord of a TTSP-graph is defined as the tension between its sewand target, i.e.

0 = m — ms. To get an efficient algorithm, theinimum cost functio® of a TTSP-graphG
must be defined. This function represents the cost of thenaptension where the main tension
is forced to a given value:

Ca(x) = min{) _ cu(0,) | 0 atension 6 = z}

uelU

Let us consider two TTSP-subgrapfis and G2, and suppose that their minimum cost func-
tionsCg, andCg, are known. The minimum cost functiafi;, ¢, of the SP-relatiorG; + G»
IS:
Cai+Gs ({L’) = xzrgli_ﬁ_lm Ca, (ml) + Ca, (1'2)
Thus,C¢, +¢, is the inf-convolutionC, J C¢,. The minimum cost functio@’, /¢, of the
SP-relationG,/ /G is:
CGl//G2 () = Ca,(2) + Cay(2)

If all the functionsc, are convex, as in the CPLCT problem, the minimum cost fundiig is
convex. From this assessment, a simple recursive algofi#thfor the CPLCT problem has been
proposed to build the minimum cost functiéiy; of a TTSP-graplt.

3 Aggregation for the BCT Problem

In the BCT problem, the minimum cost functions have no spegfoperties, they are neither
convex, nor continuous. Moreover, for each aggregatianmimimum cost functions of the sub-
graphs must be entirely expressed, because any part mayifiterefst in the whole process. As
we know that the problem is NP-complete, it should be expktttat the size to store the detail of
a minimum cost function will grow exponentially (in theorwjth the size of the graph. To sum
up, computing the minimum cost function can be done the roug§ and can lead to an explo-
sion in time and space of the algorithm. That justifies the elind we choose here to represent a
minimum cost function.
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We consider a minimum cost functiadl; as a set of cases, a casbeing a set of arcs,
of G scheduled at their ideal value. L&t = [MINg; M AX¢] be the interval in whictCy is
defined, andV the maximum value of’;. With each case is associated the feasibility interval
i = [mine; max.) (of the main tensior) in which e can occur, and its cost. As an example,
we suppose a single atc Its minimum cost functior,, is defined as follows:

Wy=1;I,= [au;bu]
Cu
Case1S; ={u} ; ¢; =0 ; iy = [0y; 04]

As shown in Figure 3a, the value 6f, is usuallyi¥,, = 1 (the worst case). If caseoccurs,
i.e. 0, = o,, then the cost i§.

3.1 Parallel Aggregation

In this section, we explain how to build the minimum cost filme C; of a graphG that is the
parallel relationG;//G5 whereG;, and G, are two TTSP-subgraphs with their minimum cost
functionsC; andCs respectively. But first, let us considéf; andG, as single arcg andv with
their minimum cost functiong’,, andC,, defined as above far and as follows fow (cf. Figure
3b):

Wv =1 ) [v = [av;bv]

Cy
Case 25y = {v} ; ca =0 ; iy = [0y;04]

Cu
A
1 (] (a)
i >0,
au OM bM
C,
A
1 {7 (b)
>0,
a, o, b,
Cu//v
A
2 (]
(c)
1
»0
a 0 0 b wllv

v u v u

Figure 3:An example of parallel aggregation.
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We define now the minimum cost functi@n, ,,, of the parallel aggregation afandv. In the
general case, the cost of the functiorlig + W,, = 2 (the sum of the general cases of both arcs).
Then we must identify all the particular cases:

e Case 1': Case 1 for and general case fer. The cost isc; + W, and the case is feasible
only when both cases occur, i.e. when the main te@gn €11 NI.

° Case_2’: General case farand case 2 for. The cost idV,, + ¢; and the case is feasible
When@u//v e I, Nio.

e Case 3. Case 1 far and case 2 fon. The cost isc; + ¢ and the case is feasible when

eu//v € 11 Nig.
To sum up, the minimum cost functidi, ,/, is defined as follows (see also Figure 3c):
Wu//U:Wu+Wv ) Iu//U:[um[v

Cu//v Casel!Sy ={u} ;cv=c1+W, ;iyv=i1N1I,
Case 2/ Sy = {v} ey =co+ Wy 5 iy =19 N1,
Case 3 Ss ={u;v} ; cg=c1+ca ;i3=11Nio

The idea here is to check all the possible cases and detethd@indeasibility and their cost.
Algorithm 1 explains the general process to build the mimmaost function”; , ; of the parallel
relationG = G1//G>, from the minimum cost function§’; andCs of its TTSP-subgraph&y
andGs.

Algorithm 1 Parallel aggregation.
if iNnIx#0 then
Wiy < Wi+ Wa,
Il//2 — I1NIg;

for all cases e in C; such that icNIz #0 do [Allthe cases of3; combined with the general case@f]
let ¢ be a new case of Cy,/;

Ser < Se;

Cer 4 Ce + Wo,

Ger 4 e MNI2;

end for;

for all cases e in Cy such that icNI;1 #0 do [Allthe cases of32 combined with the general case@f ]
let ¢ be a new case of Cy,/;

Ser < Se;

Cer 4 ce + Whq,

Ger 4 e NI71;

end for;

[All the cases of7; combined with all the cases Gfz]
for all pairs of cases ein C; and f in C2 such that i.Niy #0 do
let ¢ be a new case of Cy,/;
Se/ — SeUSf;
Cel ce+0f;
Ger < deNiy;
end for;
end if;

Proposition 1 Letn; andny be the numbers of casesdy and Cs respectively. The number of
cases o’/ , can not exceed; + n2 +n1 X ng, and the parallel aggregatiot; //G> requires
O(n1 x ng) operations.

Proof. Algorithm 1 considersi; + ny +n1 X ny cases (the single cases + the combinations of the
cases)]
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However, just from the simple example above, it is obviowad tor practical instances, lots of
combinations of cases will not be possible in parallel ¢theasibility interval will be empty). For
instance, it seems reasonable to think that case 3 happehsirapractice.

3.2 Cases Redundancy and Overlapping

Moreover, the number of cases might be virtually overedtihait is possible, in the same mini-
mum cost function, to get two cases with the same intervadrdier to avoid this redundancy (and
later useless combinations of cases), one of the cases mustrioved: the one with the worst
cost (if they are equal, it does not matter which one to elatgh For instance, if we suppose in
the example above that, = o,, then cases 1’ and 2’ become redundant with case 3, so both of
them must be removed.

We choose to detect redundancy each time a easadded to the minimum cost function of
a series or parallel relation. We oppose the caséth each cas¢g already in the minimum cost
function of the SP-relation. There are three possibilities

e if c. > ¢y andi, C iy, there is redundancy of the cases, then easaot added,

e if cc < ¢y andi. 2 iy, there is redundancy of the cases, then gageremoved ana is
added;

e otherwise, there may be overlapping of the casese miidded.

Notice that we do not attempt to build a minimal set of casesaf§P-relation, i.e. a set of
disjoint, i.e. non-overlapping, cases (remark: this isthetset with the minimal number of cases;
if you look at Figure 3c, the minimal set would have 5 piecebewa@u//v, as we build it, has
only 3 pieces). As it seems difficult to maintain this minirsat (that is not even the set with the
minimum number of pieces), we decide to deal with cases tieab\erlapping (e.g. cases like
and f wherei, N iy # 0, but neitheri, C iy noriy C i.).

3.3 Series Aggregation

In this section, we explain how to build the minimum cost fiime C; of a graphG that is the
series relation7; + Gy whereG; and G, are two TTSP-subgraphs with their minimum cost
functionsC; andCs respectively.

But first, let us consides; andG- as single arcs andv with their minimum cost functions
C, andC, defined as previously. We define then the minimum cost funcilp, , of the series
aggregation o, andwv. In the general case, the cost of the functiohlis + W, = 2 (the sum of
the general cases of both arcs). Then we must identify ajpénécular cases:

e Case 1': Case 1 for and general case for The cost is:; + W, and the case is feasible on
the interval of case 1 "plus” the interval of the general dase, i.e. when the main tension

Outv € [ming + MIN,;max; + MAX,).

e Case 2": General case farand case 2 for. The cost idV,, + ¢ and the case is feasible
whenf, ., € [MIN, + ming; M AX, + maxs)].

e Case 3: Case 1 far and case 2 fon. The cost isc; + ¢ and the case is feasible when

Oytv € [Mming + ming; maxy + maxs).
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To sum up, the minimum cost functidr, , ,, is defined as follows (see also Figure 4):

Weso = Wy + Wy Lury = [MIN, + MINy; MAX, + MAX,)]
= [au + ay; bu + bv]
Case 1 {u} ;o =c1+ Wy ;5 iy = [ming + MIN,;maxy + MAX,)
Cu-i—v = [Ou + Qy; 0y + bv]
Case 2": {v} ;e =co+ Wy 5 iy = [ming + MIN,;maze + MAX,]
= [au + 0y} bu + Ov]
Case 3: {u;v} ; c3=c1+co ;i3 = [ming + ming; maxy + maws)
\ = [0u+0v§0u+0v]

The idea here is similar to the parallel aggregation. It ietomerate all the cases and de-
termine their cost (they are always feasible). Algorithmxplains the general process to build
the minimum cost functior; ., of the series relatiods = G; + G2, from the minimum cost
functionsC; and(C, of its TTSP-subgraph&'; andGs.

"""""""""""""" . I
U S r ri 1
; 5 LiJ ]
: : ; — : >0, .,
a,+a, a,+o, o,+o0, o,+b, b,+b,
o,+a, b, +o,

Figure 4:An example of series aggregation.

Proposition 2 Letn; andny be the numbers of cases@ and Cs respectively. The number of
cases of’y 15 can not exceed, + ny + n1 X no, and the series aggregatiod; + G- requires
O(n1 x ng) operations.

Proof. Algorithm 2 considersi; 4+ ns +nq X ny cases (the single cases + the combinations of the
cases)]

At the opposite of the parallel aggregation, all the casespassible. However, it is still
possible to detect redundant cases to remove. As an irali¢ath a practical instance of TTSP-
graph with 20 nodes and 40 arcs, we observe more than 2 nilises in the final minimum cost
function, if we keep the redundant cases. With the constamiration of these cases, we observe
less than a hundred cases in the final minimum cost functioméble 1).

Algorithm 2 Series aggregation.

Wits — Wi+ Wo;
Iips  [MINy+ MINy; MAX) + MAXs);

for all cases e in C; do [Allthe cases ofZ; combined with the general case@b]
let ¢ be a new case of Ciio;

Se/ — Se;

Cer 4 Ce+ Wo,

ter  [mine + MIN2;maze + MAX2];

end for;
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for all cases e in Cy do [Allthe cases ofZs combined with the general case@f ]
let ¢ be a new case of Cy,/s;

Ser 4 Se;

Cot 4 Ce+ W1,

ler 4 [mine + MIN1;maze + MAX1];

end for;

for all pairs of cases ein Cy and f in Cy do [Allthe cases of7; combined with all the cases Gf2]
let ¢ be a new case of Cijo;

Se/ — SeUSf;

Cel < Ce +Cf;

s < [mine + ming; mazxe + maxyl;

end for;

3.4 Conclusion

Proposition 3 The aggregation method, for the BCT problem, generates smam cost function
with at mos2™ — 1 cases, and require®(2™) operations.

Proof. We can establish that for a TTSP-gra@h with k arcs, at mose* — 1 cases compose the
minimum cost functiorC';, of Gi. Fork = 1, it is obvious. Assume now that the property is true
for any TTSP-graph with at mogtarcs, and consider a TTSP-gra@gh.; with & 4+ 1 arcs. By
definition of TTSP-graphs, it is either a series or a parakehposition of two TTSP-grapls,
andG, with p andgq arcs respectively, such thatt- ¢ = k& + 1. From propositions 1 and 2, the
minimum cost function o3, ; has(2P — 1)+ (29 — 1)+ (2P —1)(29 —1) = 2PT9 -1 = 2+l 1
cases.

Also from propositions 1 and 2, each compositioreedsO(2*/) operations, wherg; is the num-
ber of arcs in the compositian As there aren — 1 SP-relations in the TTSP-graph [4], the whole
aggregation method finally requiré)s(zg’;‘l1 2ki) operations (we suppose that the compositions
are numbered in the same order they are performed in thegajgne process). It is known that
S 28 < 27+ and it can be verified by recurrence thaf™ ' 25 < S 27, thus the whole
aggregation method requir€éy2™) operations[]

4 Numerical Results

As the complexity presented in the previous section reptese&orst case situations, we must
study the practical behavior of the algorithm. As far as wavkrthe only other method that solves
the BCT problem is mixed integer programming. As proposed 2}, the BCT problem can be
modeled as a mixed integer progréfzcr). Itis based on the generi@,;cr) program defined
in Section 1, with the binary cost functiorg defined by formula1l). Thesec, functions are
modeled with binary variableg, and additional constrain{s), (b) and(e).

minimize >y,
uelU

with  —6, — (04 — ay)yy < —0y, Yue U (a)
Oy — (by — 00)Yy < 0y, Yu € U (b)

(Pscr)
Ty — Ty = e(x;y)a V(z;y) € U (c)
ay <0, <b, VuecU (d)
yu € {0,1}, Vu e U (e)
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The following tables present a practical comparison of tjgregation technique with mixed
integer programming, which is always difficult and questiole due to all kinds of biases. But
the goal here is to get an idea of how the methods behave on-gie&gihs. Results are expressed
in seconds on an Intel Xeon 2.4 GHz processor under a Genix loperating system. We used
GNU C++ 3.3 compiler and its object-oriented features tolement the methods, linked to the
CPLEX 8.0 Callable Library for mixed integer programming.

Results are based on series of 30 tests on randomly gengrraiiglS:#. To generate an in-
stance, the following parameters must be given: the numbesdesn, the number of arcs: and
the tension boundl = max,cy b,. A TTSP-graph structure with nodes andn arcs is randomly
built, based on the constructive definition of TTSP-graptsaction 2. Then, using the topological
order of the nodes, a potentia}. is affected to each node such that,, = 7, — 7, < A for each
arcu = (z;y). The bounds:, andb,, are randomly chosen to satisfy< a, < 6, < b, < A.
Finally, the ideal tension,, is randomly chosen in thig,,; b, ] interval.

Table 1 shows results where the size of the graphs variel, Avi= 1000. Each value in
columns "CPLEX" and "Aggregation" is the mean of a serieesfd, and the number in parenthe-
ses is the associated standard deviation. Due to the cotobaaspect of the problem, the time
to solve an instance can vary significantly in a same seriesveMer, these results allow to catch
the general evolution of the computation time for each ntho

Nodes | Arcs CPLEX Aggregation Time Difference
n m Time Time Cases Aggregation CPLEX
10 20 0.01 (0.01) | 0.01 (0.01)| 32.3 (35.9) (0/30) | 0.000 (30/30)

20 40 | 003 (0.03) | 0.01 (0.01)| 86.4 (68.2)| 0.637 (24/30)| 0.000  (6/30)
30 60 | 0.09 (0.14) | 0.01 (0.02)| 143 (157) | 0.749 (26/30)| 0.396  (4/30)
40 80 | 043  (0.92) | 0.03 (0.03)| 231 (264) | 0.861 (25/30)| 0.290  (5/30)
50 | 100 | 42  (14.9) | 0.08 (0.13)| 342 (365) | 0.841 (27/30)| 0.447  (3/30)
60 | 120 | 9.1  (185) | 0.19 (0.35)| 498 (577) | 0.884 (27/30)| 0.571  (3/30)
70 | 140 | 276  (1049) | 0.29 (0.58)| 445 (574) | 0.900 (27/30)| 0.842  (3/30)
80 | 160 | 982  (5027) | 0.22  (0.3) | 464  (467) | 0.957 (28/30)| 0.175  (2/30)
90 | 180 | 3172 (6153) | 0.9  (1.4) | 844 (730) | 0.963 (28/30)| 0.158  (2/30)
100 | 200 | 8490 (19298)| 1.1  (3.2) | 783 (904) | 0.976 (28/30)| 0.492  (2/30)

Table 1:Numerical results, graph size influence.

In order to compare the methods, we propose two last columtise table to present the
relative time difference between the methods. We detgtg.gation andtcprex the resolution
times of the aggregation and linear programming respdgtivehe first column is the mean of

tchEfc;tLaZg;wm” for the instances of a series of tests where the aggregatfaster than linear

programming. At the opposite, the second column is the mé%géti";]"”];tcp LEX where linear
programming is faster than the aggregation. We choose weptéahe relative time difference
instead of a time ratio Iikg%% to compare the methods, because extreme situations like
a very short time for the aggregation and a long time for CPldaXhe same instance makes the
mean estimation useless. If the relative difference isectosO, that means the resolution times
tend to be similar. At the opposite, if the difference is elés 1, that means the resolution times
tend to be infinitely different. We also indicate into patesges the number of times a method is
faster than the other. Notice that when the resolution tianesdentical, it is considered that linear

programming is faster.
With these informations, it appears that the aggregatidasi®r than mixed integer program-

ming for most of the instances. The fact that linear programnis faster in some cases is due
to the fact that the aggregation can not deal very efficienttir a chain of series compositions:

%Tool available at http://frog.isima.fr/bruno/?doc=bfiprary+ch=build_graph.
“Instances available at http://frog.isima.fr/brunofeste.htm?archive=bct_instances.
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in a parallel relation, there are cases that can immedi&eldetected infeasible, whereas in a
series relation, all the cases are potentially feasiblemany of them will be eliminated later in
the aggregation process. Thus, even if its theoretical tmfitp is exponential, the aggregation
provides a quite efficient way to solve the BCT problem on TAg8&pbhs with a size far above
what is requested in hypermedia authoring: a 50 nodes andrt@@raph is already considered a
large instance.

Even in the same series, some instances are easier to Sohkeldok at the number of cases
generated by the aggregation, there is also a significargticar among the instances of a same
series. However, the number of cases is not clearly relatéuetresolution time. As the number
of non-redundant cases is not significant to determine thgptxity of an instance, we think that
the aggregation explores more redundant cases in the tiffistances. Identifying precisely the
reasons of this behavior is not that obvious. Intuitivelhe tdeal tension is crucial: for instance,
there are situations where the tension can not be fixed weéd value. The aggregation and mixed
integer programming have their own mechanism (the redwyddetection for the aggregation) to
detect some situations more easily than others.

To show that the tension data are significant in the reselutine of both methods, Table 2
proposes results where the tension bodnearies. The aggregation method is still more efficient
than mixed integer programming in most cases, but the diffi¢a solve the instances, for both
methods, increases with.

Nodes | Arcs | Tension CPLEX Aggregation Time Difference

n m A Time Time Cases Aggregation CPLEX
20 40 1000 | 0.03 (0.03) | 0.01 (0.01)| 86.4 (68.2)| 0.637 (24/30)] 0.000  (6/30)
20 40 10000 0.03 (0.04) | 0.01 (0.02)| 151 (202) | 0.643 (20/30)| 0.125 (10/30)
20 40 | 100000 | 0.04 (0.03) | 0.01 (0.01)| 98.4 (80.5)| 0.662 (28/30)| 0.000  (2/30)
50 100 1000 4.2 (14.9) | 0.08 (0.13)| 342 (365) | 0.841 (27/30)| 0.447  (3/30)
50 100 | 10000 | 20.2 (50.3) | 0.43 (1.2) | 722  (836) | 0.887 (24/30)| 0.718  (6/30)
50 100 | 100000 | 16.1 (385) | 15 (3.8) | 1225 (1947)| 0.921 (24/30)| 0.824  (6/30)
80 160 1000 982 (5027) | 0.22 (0.3) | 464 (467) | 0.957 (28/30)| 0.175  (2/30)
80 160 | 10000 | 13953 (55727)| 33.5 (165) | 2069 (4284)| 0.920 (26/30)| 0.902  (4/30)
80 160 | 100000 | 15833 (73167)| 170  (842) | 2337 (4432)| 0.968 (27/30)| 0.795  (3/30)

Table 2:Numerical results, tension scale influence.

5 BCT Problem on an Elementary Cycle

[3] explains that solving the BCT problem on an elementamieey’ of a graphG can be useful
to find cuts to add in the mixed integer program that modelsB8& problem on the whole
graphG. However, in this article, the problem was solved using mhixeeger programming. We
propose here to use the aggregation technique to solvelyexat! more efficiently than linear
programming, the BCT problem on an elementary cycle.

[10,53];31 [12;70],30 [10;53];31 [-70,;-12];30
—
[0,184];162 [125;269];219 [0,184];162 [269;-125],219
(a) BCT problem on an elementary cycle (b) BCT problem on a TTSP-graph

Figure 5:Transformation of an elementary cycle into a TTSP-graph.
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The idea is simply to transform the cydle (Figure 5a) into a TTSP-grapH (Figure 5b),
making the BCT probleniP’) on H equivalent to the BCT probler®) on C. To perform the
transformation, the orientation of some arcs(bfmust be changed so the cycle becomes two
directed pathg? and P, in parallel, e.g.H = P, //P; (cf. Figure 5).

Thus, H is two-terminal series-parallel and in order to mék¥) equivalent tq P), the tension
data of any ara: that has been reversed must be modified as follows (cf. Figurés interval
[ay; by,] becomes—b,; —a,] and its ideal tension,, becomes-o,.

It is easy to check that the constraints and the objectivetimms of both problems are equiva-
lent. Numerical results for elementary cycles (not intrmeblin this paper because very similar to
those presented for TTSP-graphs in the previous sectiany #iat this method to solve the BCT
problem on an elementary cycle is more efficient in practieg tmixed integer programming.

6 Conclusion

This article provides a first alternative to mixed integasgyamming in solving the BCT problem
on TTSP-graphs. Moreover, the practical efficiency of thgragation method is far above mixed
integer programming. It can thus be useful in the resoluibtihe BCT problem on non-specific
graphs: as shown in Section 5, it provides a way to solve tbbl@m on an elementary cycle,
which is relevant to generate cuts for the linear programhefBCT problem [3]. We also hope
to find better cuts with the aggregation algorithm: the BCalem can be solved optimally and
quite quickly for TTSP-subgraphs of any graph, which pregitbounds for new constraints.

The aggregation method results in more than just an optiemaidn. As presented in this
article, it provides aggregated information, which alldavsdapt optimally the tension of a TTSP-
graph to any main tension in polynomial tifet is the idea of theeconstructiontechnique that
solves the CPLCT problem aquasi-k series-parallefjraphs (okk-QSPgraphs) [5]. A graph is
k-QSP if the removal of a minimal subset of arcs (of gizenakes the remainder of the graph two-
terminal series-parallel. For the CPLCT problem, the dtktiter technique can use efficiently
the aggregated information provided by the aggregationnigae on TTSP-subgraphs. For the
BCT problem, no equivalent method actually exists. Howessrthe aggregation technique is
really efficient for the BCT problem, the study of a reconstian approach fok-QSP graphs
seems interesting.
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