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Abstract

The aggregation technique, dedicated to two-terminal series-parallel graphs (or TTSP-graphs) and
introduced lately to solve the minimum piecewise linear cost tension problem, is adapted here to
solve the minimum binary cost tension problem (orBCT problem). Even on TTSP-graphs, the
BCT problem has been proved to be NP-complete. As far as we know, the aggregation is the
only algorithm, with mixed integer programming, proposed to solve exactly the BCT problem on
TTSP-graphs. A comparison of the efficiency of both methods is presented here.

Keywords: minimum cost tension, binary costs, two-terminal series-parallel graphs.

Abstract

La technique d’agrégation, dédiée aux graphes série-parallèles et introduite récemment pour ré-
soudre le problème de la tension minimum à coûts linéaires par morceaux, est adaptée ici pour
résoudre le problème de la tension minimum à coûts binaires (ou problèmeBCT). Même sur
des graphes série-parallèles, le problème BCT a été prouvé NP-complet. A notre connaissance,
l’agrégation est le seul algorithme, avec la programmationlinéaire mixte, proposé pour résoudre de
manière exacte le problème BCT sur des graphes série-parallèles. Une comparaison de l’efficacité
des deux méthodes est présentée ici.

Mots clés : tension de coût minimum, coûts binaires, graphes série-parallèles.
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Abstract

The aggregation technique, dedicated to two-terminal series-parallel graphs (or TTSP-
graphs) and introduced lately to solve the minimum piecewise linear cost tension problem,
is adapted here to solve the minimum binary cost tension problem (orBCTproblem). Even
on TTSP-graphs, the BCT problem has been proved to be NP-complete. As far as we know,
the aggregation is the only algorithm, with mixed integer programming, proposed to solve
exactly the BCT problem on TTSP-graphs. A comparison of the efficiency of both methods
is presented here.

1 Introduction

The study of tension problems in graphs is motivated here by synchronization problems in hyper-
media documents [2]. These documents are composed of various media objects such as audio,
video, text, image, applet... Authors need powerful tools to schedule automatically the temporal
specifications of these objects in a document. Any media object u has an ideal durationou and an
interval [au; bu] in which its effective (i.e. scheduled) duration can vary. The author also specifies
temporal constraints in order to express the way the presentation of the document should happen.
The problem is finally to schedule the duration of each media object so that it satisfies both the
tolerance intervals and the temporal constraints.

This problem can be interpreted as aminimum cost tensionproblem (orMCT problem) in a
graph [6]. LetG = (X;U) be a graph, withX the set of nodes,U the set of arcs,m = |U |
andn = |X|. The nodes represent events in the hypermedia presentation(i.e. the start or end
of presentation of a media object), and the arcs express temporal constraints between two events
(i.e. precedence and duration between two events). Letπ : X 7−→ R be a function that assigns
a potential to each node of the graph. It represents the date scheduled for each event. Hence, the
tensionθu of an arcu = (x; y), which is the difference of potentialsθu = πy − πx, is the duration
between eventsx andy, and is constrained toθu ∈ [au; bu] ⊂ R. The minimum cost tension
problem can finally be modeled as:

(PMCT )































minimize
∑

u∈U

cu(θu)

with πy − πx = θ(x;y), ∀(x; y) ∈ U

au ≤ θu ≤ bu, ∀u ∈ U

To measure the quality of a document, many proposals were made for cu. The first studies
consider piecewise linear costs, with a minimum forou [7, 11, 2]. The problem is thus expressed
as a linear program, and many polynomial algorithms were developed for this specific problem
[10, 1]. [4] proposed anaggregationmethod to solve theminimum convex piecewise linear cost
tensionproblem (orCPLCTproblem) ontwo-terminal series-parallelgraphs (orTTSP-graphs).
It was shown to be competitive on this class of graphs with thebestdual cost-scalingalgorithms
[1].

However, the number of objects that need to be modified (i.e. that are not scheduled at their
ideal duration) is also relevant for hypermedia synchronization [12]. Altering the duration of a me-
dia object is CPU consuming, thus in a real time context, minimizing this operation is important.
We propose here to develop an aggregation method for theminimum binary cost tensionproblem
(or BCTproblem) on TTSP-graphs, where the cost functions are defined as:

cu(θu) =

{

0, if θu = ou
1, if θu 6= ou

(1)
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Due to its discrete nature, this problem is NP-complete [8].Lately, it was also proved that
it is NP-complete on TTSP-graphs [13]. Our interest in this class of graphs is explained by the
specific structure of the temporal constraints used in hypermedia synchronization, which leads us
to manipulate graphs that are very close to TTSP-graphs [4].

Section 2 proposes an overview of the TTSP-graphs and the aggregation approach. Section
3 explains how to adapt the method to the BCT problem. Then, comparative numerical results
with mixed integer programming are presented in Section 4. Section 5 shows that the aggregation
algorithm can be used to solve the BCT problem on any elementary cycle, a subproblem that can
be significant to solve the BCT problem on any graph (i.e. without any specific structure) [3]. We
conclude with a discussion on some leads to solve the BCT problem onquasi-k series-parallel
graphs and maybe on any graph, using the aggregation technique.

2 Aggregation Method

2.1 Two-Terminal Series-Parallel Graphs

A common definition of TTSP-graphs is based on a recursive construction of the graphs (e.g.
[9], or [15] with the edge series-paralleldigraphs) that is very intuitive and close to the way
synchronization constraints are built in a hypermedia document. A digraphG is two-terminal
series-parallel, also calledTTSP-graph, if it is obtained from a graph with only two nodes linked
by an arc, applying recursively the two following operations:

• Theseries composition, applied upon an arcu = (x; y), creates a new nodez and replaces
u by two arcsu1 = (x; z) andu2 = (z; y) (cf. Figure 1a). We callseriesthe relation that
bindsu1 andu2 and denote itu1 + u2.

• Theparallel composition, applied upon an arcu = (x; y), duplicatesu by creating a new
onev = (x; y) (cf. Figure 1b). We callparallel the relation that bindsu andv and denote it
u//v.

x y
u

x z y

(a)

x y
u

x y

u

v

(b)

u
1

u
2

Figure 1:Series and parallel compositions.

The series and parallel relations are gathered under the term SP-relations. During the con-
struction process, a SP-relation that binds two arcs can become a relation between two TTSP-
subgraphs. The SP-relations are binary operations, so we can represent a TTSP-graph by a binary
tree calleddecomposition binary tree[8] or SP-tree, as illustrated by Figure 2. [15, 14, 9, 5]
propose different ways to find such a tree in linear time.

//

u y

//

+

w x

u

w x
y

Figure 2:Example of SP-tree.
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For the CPLCT problem, numerical results in [4] show that linear programming and the out-
of-kilter method take advantage of the particular structure of the TTSP-graphs and behave really
better on this class of graphs than on non-specific graphs. However, the dual cost-scaling approach
does not work that well on these instances, whereas it provesto be the most efficient for non-
specific graphs. Finally, the aggregation is the method thatpresents the best performance on
TTSP-graphs.

2.2 Aggregation Method

The aggregationmethod, that allows to solve minimum cost tension problems only on TTSP-
graphs, has been introduced in [4]. The algorithm works on a SP-treeT of the TTSP-graphG
and is recursive: considering a SP-relation inT , it assumes that the optimal tensions of the two
subgraphs implied in the relation are known, and from them, it is possible to quickly build the
optimal tension of the whole SP-relation. Hence, starting from the leaves ofT , the optimal tension
of each SP-relation is built to finally reach the root of the treeT .

From the definition of a TTSP-graph, it is obvious that a TTSP-graph has only one source
node (i.e. without any predecessor) and only one target node(i.e. without any successor). Hence,
themain tensionθ of a TTSP-graph is defined as the tension between its sources and targett, i.e.
θ = πt − πs. To get an efficient algorithm, theminimum cost functionCG of a TTSP-graphG
must be defined. This function represents the cost of the optimal tension where the main tension
is forced to a given value:

CG(x) = min{
∑

u∈U

cu(θu) | θ a tension, θ̄ = x}

Let us consider two TTSP-subgraphsG1 andG2, and suppose that their minimum cost func-
tionsCG1

andCG2
are known. The minimum cost functionCG1+G2

of the SP-relationG1 +G2

is:
CG1+G2

(x) = min
x=x1+x2

CG1
(x1) + CG2

(x2)

Thus,CG1+G2
is the inf-convolutionCG1

�CG2
. The minimum cost functionCG1//G2

of the
SP-relationG1//G2 is:

CG1//G2
(x) = CG1

(x) + CG2
(x)

If all the functionscu are convex, as in the CPLCT problem, the minimum cost function CG is
convex. From this assessment, a simple recursive algorithm[4] for the CPLCT problem has been
proposed to build the minimum cost functionCG of a TTSP-graphG.

3 Aggregation for the BCT Problem

In the BCT problem, the minimum cost functions have no specific properties, they are neither
convex, nor continuous. Moreover, for each aggregation, the minimum cost functions of the sub-
graphs must be entirely expressed, because any part may be ofinterest in the whole process. As
we know that the problem is NP-complete, it should be expected that the size to store the detail of
a minimum cost function will grow exponentially (in theory)with the size of the graph. To sum
up, computing the minimum cost function can be done the roughway and can lead to an explo-
sion in time and space of the algorithm. That justifies the modeling we choose here to represent a
minimum cost function.
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We consider a minimum cost functionCG as a set of cases, a casee being a set of arcsSe

of G scheduled at their ideal value. LetIG = [MING;MAXG] be the interval in whichCG is
defined, andWG the maximum value ofCG. With each casee is associated the feasibility interval
ie = [mine;maxe] (of the main tensionθ) in which e can occur, and its costce. As an example,
we suppose a single arcu. Its minimum cost functionCu is defined as follows:

Cu







Wu = 1 ; Iu = [au; bu]

Case 1: S1 = {u} ; c1 = 0 ; i1 = [ou; ou]

As shown in Figure 3a, the value ofCu is usuallyWu = 1 (the worst case). If case1 occurs,
i.e. θu = ou, then the cost is0.

3.1 Parallel Aggregation

In this section, we explain how to build the minimum cost function CG of a graphG that is the
parallel relationG1//G2 whereG1 andG2 are two TTSP-subgraphs with their minimum cost
functionsC1 andC2 respectively. But first, let us considerG1 andG2 as single arcsu andv with
their minimum cost functionsCu andCv defined as above foru and as follows forv (cf. Figure
3b):

Cv







Wv = 1 ; Iv = [av; bv]

Case 2: S2 = {v} ; c2 = 0 ; i2 = [ov ; ov]

ov bvav

1

θv

C v

ou buau

1

θu

Cu

buav

1

θu // v
ou ov

Cu // v

2

(a)

(b)

(c)

Figure 3:An example of parallel aggregation.
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We define now the minimum cost functionCu//v of the parallel aggregation ofu andv. In the
general case, the cost of the function isWu +Wv = 2 (the sum of the general cases of both arcs).
Then we must identify all the particular cases:

• Case 1’: Case 1 foru and general case forv. The cost isc1 +Wv and the case is feasible
only when both cases occur, i.e. when the main tensionθu//v ∈ i1 ∩ Iv.

• Case 2’: General case foru and case 2 forv. The cost isWu + c2 and the case is feasible
whenθu//v ∈ Iu ∩ i2.

• Case 3: Case 1 foru and case 2 forv. The cost isc1 + c2 and the case is feasible when
θu//v ∈ i1 ∩ i2.

To sum up, the minimum cost functionCu//v is defined as follows (see also Figure 3c):

Cu//v























Wu//v = Wu +Wv ; Iu//v = Iu ∩ Iv

Case 1’: S1′ = {u} ; c1′ = c1 +Wv ; i1′ = i1 ∩ Iv
Case 2’: S2′ = {v} ; c2′ = c2 +Wu ; i2′ = i2 ∩ Iu
Case 3: S3 = {u; v} ; c3 = c1 + c2 ; i3 = i1 ∩ i2

The idea here is to check all the possible cases and determinetheir feasibility and their cost.
Algorithm 1 explains the general process to build the minimum cost functionC1//2 of the parallel
relationG = G1//G2, from the minimum cost functionsC1 andC2 of its TTSP-subgraphsG1

andG2.

Algorithm 1 Parallel aggregation.
if I1 ∩ I2 6= ∅ then
W1//2 ← W1 +W2;
I1//2 ← I1 ∩ I2;

for all cases e in C1 such that ie ∩ I2 6= ∅ do [All the cases ofG1 combined with the general case ofG2]
let e′ be a new case of C1//2;
Se′ ← Se;
ce′ ← ce +W2;
ie′ ← ie ∩ I2;

end for;

for all cases e in C2 such that ie ∩ I1 6= ∅ do [All the cases ofG2 combined with the general case ofG1]
let e′ be a new case of C1//2;
Se′ ← Se;
ce′ ← ce +W1;
ie′ ← ie ∩ I1;

end for;

[All the cases ofG1 combined with all the cases ofG2]
for all pairs of cases e in C1 and f in C2 such that ie ∩ if 6= ∅ do
let e′ be a new case of C1//2;
Se′ ← Se ∪ Sf;
ce′ ← ce + cf;
ie′ ← ie ∩ if;

end for;
end if;

Proposition 1 Letn1 andn2 be the numbers of cases inC1 andC2 respectively. The number of
cases ofC1//2 can not exceedn1 + n2 + n1 × n2, and the parallel aggregationG1//G2 requires
O(n1 × n2) operations.

Proof. Algorithm 1 considersn1 +n2 +n1 ×n2 cases (the single cases + the combinations of the
cases).�
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However, just from the simple example above, it is obvious that for practical instances, lots of
combinations of cases will not be possible in parallel (their feasibility interval will be empty). For
instance, it seems reasonable to think that case 3 happens rarely in practice.

3.2 Cases Redundancy and Overlapping

Moreover, the number of cases might be virtually overestimated: it is possible, in the same mini-
mum cost function, to get two cases with the same interval. Inorder to avoid this redundancy (and
later useless combinations of cases), one of the cases must be removed: the one with the worst
cost (if they are equal, it does not matter which one to eliminate). For instance, if we suppose in
the example above thatou = ov, then cases 1’ and 2’ become redundant with case 3, so both of
them must be removed.

We choose to detect redundancy each time a casee is added to the minimum cost function of
a series or parallel relation. We oppose the casee with each casef already in the minimum cost
function of the SP-relation. There are three possibilities:

• if ce ≥ cf andie ⊆ if , there is redundancy of the cases, then casee is not added;

• if ce ≤ cf andie ⊇ if , there is redundancy of the cases, then casef is removed ande is
added;

• otherwise, there may be overlapping of the cases, bute is added.

Notice that we do not attempt to build a minimal set of cases for a SP-relation, i.e. a set of
disjoint, i.e. non-overlapping, cases (remark: this is notthe set with the minimal number of cases;
if you look at Figure 3c, the minimal set would have 5 pieces, whereasCu//v, as we build it, has
only 3 pieces). As it seems difficult to maintain this minimalset (that is not even the set with the
minimum number of pieces), we decide to deal with cases that are overlapping (e.g. cases likee
andf whereie ∩ if 6= ∅, but neitherie ⊆ if nor if ⊆ ie).

3.3 Series Aggregation

In this section, we explain how to build the minimum cost function CG of a graphG that is the
series relationG1 + G2 whereG1 andG2 are two TTSP-subgraphs with their minimum cost
functionsC1 andC2 respectively.

But first, let us considerG1 andG2 as single arcsu andv with their minimum cost functions
Cu andCv defined as previously. We define then the minimum cost function Cu+v of the series
aggregation ofu andv. In the general case, the cost of the function isWu +Wv = 2 (the sum of
the general cases of both arcs). Then we must identify all theparticular cases:

• Case 1’: Case 1 foru and general case forv. The cost isc1+Wv and the case is feasible on
the interval of case 1 "plus" the interval of the general casefor v, i.e. when the main tension
θu+v ∈ [min1 +MINv ;max1 +MAXv ].

• Case 2’: General case foru and case 2 forv. The cost isWu + c2 and the case is feasible
whenθu+v ∈ [MINu +min2;MAXu +max2].

• Case 3: Case 1 foru and case 2 forv. The cost isc1 + c2 and the case is feasible when
θu+v ∈ [min1 +min2;max1 +max2].
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To sum up, the minimum cost functionCu+v is defined as follows (see also Figure 4):

Cu+v























































Wu+v = Wu +Wv ; Iu+v = [MINu +MINv ;MAXu +MAXv]
= [au + av; bu + bv]

Case 1’: {u} ; c1′ = c1 +Wv ; i1′ = [min1 +MINv;max1 +MAXv]
= [ou + av; ou + bv]

Case 2’: {v} ; c2′ = c2 +Wu ; i2′ = [min2 +MINu;max2 +MAXu]
= [au + ov; bu + ov]

Case 3: {u; v} ; c3 = c1 + c2 ; i3 = [min1 +min2;max1 +max2]
= [ou + ov; ou + ov]

The idea here is similar to the parallel aggregation. It is toenumerate all the cases and de-
termine their cost (they are always feasible). Algorithm 2 explains the general process to build
the minimum cost functionC1+2 of the series relationG = G1 + G2, from the minimum cost
functionsC1 andC2 of its TTSP-subgraphsG1 andG2.

au + ovau + av ou + ov ou + bv

ou + av bu + ov

bu + bv

1

2

Cu + v

θu + v

Figure 4:An example of series aggregation.

Proposition 2 Letn1 andn2 be the numbers of cases inC1 andC2 respectively. The number of
cases ofC1+2 can not exceedn1 + n2 + n1 × n2, and the series aggregationG1 + G2 requires
O(n1 × n2) operations.

Proof. Algorithm 2 considersn1 +n2 +n1 ×n2 cases (the single cases + the combinations of the
cases).�

At the opposite of the parallel aggregation, all the cases are possible. However, it is still
possible to detect redundant cases to remove. As an indication, on a practical instance of TTSP-
graph with 20 nodes and 40 arcs, we observe more than 2 millioncases in the final minimum cost
function, if we keep the redundant cases. With the constant elimination of these cases, we observe
less than a hundred cases in the final minimum cost function (cf. Table 1).

Algorithm 2 Series aggregation.
W1+2 ← W1 +W2;
I1+2 ← [MIN1 +MIN2;MAX1 +MAX2];

for all cases e in C1 do [All the cases ofG1 combined with the general case ofG2]
let e′ be a new case of C1+2;
Se′ ← Se;
ce′ ← ce +W2;
ie′ ← [mine +MIN2;maxe +MAX2];

end for;
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for all cases e in C2 do [All the cases ofG2 combined with the general case ofG1]
let e′ be a new case of C1//2;
Se′ ← Se;
ce′ ← ce +W1;
ie′ ← [mine +MIN1;maxe +MAX1];

end for;

for all pairs of cases e in C1 and f in C2 do [All the cases ofG1 combined with all the cases ofG2]
let e′ be a new case of C1+2;
Se′ ← Se ∪ Sf;
ce′ ← ce + cf;
ie′ ← [mine +minf ;maxe +maxf ];

end for;

3.4 Conclusion

Proposition 3 The aggregation method, for the BCT problem, generates a minimum cost function
with at most2m − 1 cases, and requiresO(2m) operations.

Proof. We can establish that for a TTSP-graphGk with k arcs, at most2k − 1 cases compose the
minimum cost functionCk of Gk. Fork = 1, it is obvious. Assume now that the property is true
for any TTSP-graph with at mostk arcs, and consider a TTSP-graphGk+1 with k + 1 arcs. By
definition of TTSP-graphs, it is either a series or a parallelcomposition of two TTSP-graphsGp

andGq, with p andq arcs respectively, such thatp + q = k + 1. From propositions 1 and 2, the
minimum cost function ofGk+1 has(2p−1)+(2q−1)+(2p−1)(2q−1) = 2p+q−1 = 2k+1−1
cases.

Also from propositions 1 and 2, each compositioni needsO(2ki) operations, whereki is the num-
ber of arcs in the compositioni. As there arem− 1 SP-relations in the TTSP-graph [4], the whole
aggregation method finally requiresO(

∑m−1
i=1 2ki) operations (we suppose that the compositions

are numbered in the same order they are performed in the aggregation process). It is known that
∑m

i=1 2
i < 2m+1, and it can be verified by recurrence that

∑m−1
i=1 2ki ≤

∑m
i=1 2

i, thus the whole
aggregation method requiresO(2m) operations.�

4 Numerical Results

As the complexity presented in the previous section represents worst case situations, we must
study the practical behavior of the algorithm. As far as we know, the only other method that solves
the BCT problem is mixed integer programming. As proposed in[12], the BCT problem can be
modeled as a mixed integer program(PBCT ). It is based on the generic(PMCT ) program defined
in Section 1, with the binary cost functionscu defined by formula(1). Thesecu functions are
modeled with binary variablesyu and additional constraints(a), (b) and(e).

(PBCT )































































minimize
∑

u∈U

yu

with −θu − (ou − au)yu ≤ −ou, ∀u ∈ U (a)
θu − (bu − ou)yu ≤ ou, ∀u ∈ U (b)

πy − πx = θ(x;y), ∀(x; y) ∈ U (c)

au ≤ θu ≤ bu, ∀u ∈ U (d)
yu ∈ {0, 1}, ∀u ∈ U (e)
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The following tables present a practical comparison of the aggregation technique with mixed
integer programming, which is always difficult and questionable due to all kinds of biases. But
the goal here is to get an idea of how the methods behave on TTSP-graphs. Results are expressed
in seconds on an Intel Xeon 2.4 GHz processor under a Gentoo Linux operating system. We used
GNU C++ 3.3 compiler and its object-oriented features to implement the methods, linked to the
CPLEX 8.0 Callable Library for mixed integer programming.

Results are based on series of 30 tests on randomly generatedgraphs3,4. To generate an in-
stance, the following parameters must be given: the number of nodesn, the number of arcsm and
the tension boundA = maxu∈U bu. A TTSP-graph structure withn nodes andm arcs is randomly
built, based on the constructive definition of TTSP-graphs in Section 2. Then, using the topological
order of the nodes, a potentialπx is affected to each nodex, such thatθu = πy − πx < A for each
arcu = (x; y). The boundsau andbu are randomly chosen to satisfy0 ≤ au ≤ θu ≤ bu ≤ A.
Finally, the ideal tensionou is randomly chosen in the[au; bu] interval.

Table 1 shows results where the size of the graphs varies, with A = 1000. Each value in
columns "CPLEX" and "Aggregation" is the mean of a series of tests, and the number in parenthe-
ses is the associated standard deviation. Due to the combinatorial aspect of the problem, the time
to solve an instance can vary significantly in a same series. However, these results allow to catch
the general evolution of the computation time for each method.

Nodes Arcs CPLEX Aggregation Time Difference
n m Time Time Cases Aggregation CPLEX
10 20 0.01 (0.01) 0.01 (0.01) 32.3 (35.9) (0/30) 0.000 (30/30)
20 40 0.03 (0.03) 0.01 (0.01) 86.4 (68.2) 0.637 (24/30) 0.000 (6/30)
30 60 0.09 (0.14) 0.01 (0.02) 143 (157) 0.749 (26/30) 0.396 (4/30)
40 80 0.43 (0.92) 0.03 (0.03) 231 (264) 0.861 (25/30) 0.290 (5/30)
50 100 4.2 (14.9) 0.08 (0.13) 342 (365) 0.841 (27/30) 0.447 (3/30)
60 120 9.1 (18.5) 0.19 (0.35) 498 (577) 0.884 (27/30) 0.571 (3/30)
70 140 276 (1049) 0.29 (0.58) 445 (574) 0.900 (27/30) 0.842 (3/30)
80 160 982 (5027) 0.22 (0.3) 464 (467) 0.957 (28/30) 0.175 (2/30)
90 180 3172 (6153) 0.9 (1.4) 844 (730) 0.963 (28/30) 0.158 (2/30)
100 200 8490 (19298) 1.1 (3.2) 783 (904) 0.976 (28/30) 0.492 (2/30)

Table 1:Numerical results, graph size influence.

In order to compare the methods, we propose two last columns in the table to present the
relative time difference between the methods. We denotetaggregation andtCPLEX the resolution
times of the aggregation and linear programming respectively. The first column is the mean of
tCPLEX−taggregation

tCPLEX
for the instances of a series of tests where the aggregation is faster than linear

programming. At the opposite, the second column is the mean of taggregation−tCPLEX

taggregation
where linear

programming is faster than the aggregation. We choose to present the relative time difference
instead of a time ratio like timeCPLEX

timeaggregation
to compare the methods, because extreme situations like

a very short time for the aggregation and a long time for CPLEXon the same instance makes the
mean estimation useless. If the relative difference is close to 0, that means the resolution times
tend to be similar. At the opposite, if the difference is close to 1, that means the resolution times
tend to be infinitely different. We also indicate into parentheses the number of times a method is
faster than the other. Notice that when the resolution timesare identical, it is considered that linear
programming is faster.

With these informations, it appears that the aggregation isfaster than mixed integer program-
ming for most of the instances. The fact that linear programming is faster in some cases is due
to the fact that the aggregation can not deal very efficientlywith a chain of series compositions:

3Tool available at http://frog.isima.fr/bruno/?doc=bpp_library+ch=build_graph.
4Instances available at http://frog.isima.fr/bruno/retrieve.htm?archive=bct_instances.
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in a parallel relation, there are cases that can immediatelybe detected infeasible, whereas in a
series relation, all the cases are potentially feasible, but many of them will be eliminated later in
the aggregation process. Thus, even if its theoretical complexity is exponential, the aggregation
provides a quite efficient way to solve the BCT problem on TTSP-graphs with a size far above
what is requested in hypermedia authoring: a 50 nodes and 100arcs graph is already considered a
large instance.

Even in the same series, some instances are easier to solve. If we look at the number of cases
generated by the aggregation, there is also a significant variation among the instances of a same
series. However, the number of cases is not clearly related to the resolution time. As the number
of non-redundant cases is not significant to determine the complexity of an instance, we think that
the aggregation explores more redundant cases in the difficult instances. Identifying precisely the
reasons of this behavior is not that obvious. Intuitively, the ideal tension is crucial: for instance,
there are situations where the tension can not be fixed to its ideal value. The aggregation and mixed
integer programming have their own mechanism (the redundancy detection for the aggregation) to
detect some situations more easily than others.

To show that the tension data are significant in the resolution time of both methods, Table 2
proposes results where the tension boundA varies. The aggregation method is still more efficient
than mixed integer programming in most cases, but the difficulty to solve the instances, for both
methods, increases withA.

Nodes Arcs Tension CPLEX Aggregation Time Difference
n m A Time Time Cases Aggregation CPLEX
20 40 1000 0.03 (0.03) 0.01 (0.01) 86.4 (68.2) 0.637 (24/30) 0.000 (6/30)
20 40 10000 0.03 (0.04) 0.01 (0.02) 151 (202) 0.643 (20/30) 0.125 (10/30)
20 40 100000 0.04 (0.03) 0.01 (0.01) 98.4 (80.5) 0.662 (28/30) 0.000 (2/30)
50 100 1000 4.2 (14.9) 0.08 (0.13) 342 (365) 0.841 (27/30) 0.447 (3/30)
50 100 10000 20.2 (50.3) 0.43 (1.2) 722 (836) 0.887 (24/30) 0.718 (6/30)
50 100 100000 16.1 (38.5) 1.5 (3.8) 1225 (1947) 0.921 (24/30) 0.824 (6/30)
80 160 1000 982 (5027) 0.22 (0.3) 464 (467) 0.957 (28/30) 0.175 (2/30)
80 160 10000 13953 (55727) 33.5 (165) 2069 (4284) 0.920 (26/30) 0.902 (4/30)
80 160 100000 15833 (73167) 170 (842) 2337 (4432) 0.968 (27/30) 0.795 (3/30)

Table 2:Numerical results, tension scale influence.

5 BCT Problem on an Elementary Cycle

[3] explains that solving the BCT problem on an elementary cycleC of a graphG can be useful
to find cuts to add in the mixed integer program that models theBCT problem on the whole
graphG. However, in this article, the problem was solved using mixed integer programming. We
propose here to use the aggregation technique to solve exactly, and more efficiently than linear
programming, the BCT problem on an elementary cycle.

x y

z

[10 ;53 ] ;31

[0 ;184 ] ; 162 [ 125 ;269 ] ; 219

(a) BCT problem on an elementary cycle (b) BCT problem on a TTSP−graph

[ au ; bu ] ; ou

w [12 ; 70 ] ;30

x y

z

[10 ;53 ] ;31

[ 0 ;184 ] ;162 [−269 ;−125 ] ;−219

w [−70 ;−12 ] ;−30

Figure 5:Transformation of an elementary cycle into a TTSP-graph.
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The idea is simply to transform the cycleC (Figure 5a) into a TTSP-graphH (Figure 5b),
making the BCT problem(P ′) on H equivalent to the BCT problem(P ) onC. To perform the
transformation, the orientation of some arcs ofC must be changed so the cycle becomes two
directed pathsP1 andP2 in parallel, e.g.H = P1//P2 (cf. Figure 5).

Thus,H is two-terminal series-parallel and in order to make(P ′) equivalent to(P ), the tension
data of any arcu that has been reversed must be modified as follows (cf. Figure5): its interval
[au; bu] becomes[−bu;−au] and its ideal tensionou becomes−ou.

It is easy to check that the constraints and the objective functions of both problems are equiva-
lent. Numerical results for elementary cycles (not introduced in this paper because very similar to
those presented for TTSP-graphs in the previous section) show that this method to solve the BCT
problem on an elementary cycle is more efficient in practice than mixed integer programming.

6 Conclusion

This article provides a first alternative to mixed integer programming in solving the BCT problem
on TTSP-graphs. Moreover, the practical efficiency of the aggregation method is far above mixed
integer programming. It can thus be useful in the resolutionof the BCT problem on non-specific
graphs: as shown in Section 5, it provides a way to solve the problem on an elementary cycle,
which is relevant to generate cuts for the linear program of the BCT problem [3]. We also hope
to find better cuts with the aggregation algorithm: the BCT problem can be solved optimally and
quite quickly for TTSP-subgraphs of any graph, which provides bounds for new constraints.

The aggregation method results in more than just an optimal tension. As presented in this
article, it provides aggregated information, which allowsto adapt optimally the tension of a TTSP-
graph to any main tension in polynomial time5. It is the idea of thereconstructiontechnique that
solves the CPLCT problem onquasi-k series-parallelgraphs (ork-QSPgraphs) [5]. A graph is
k-QSP if the removal of a minimal subset of arcs (of sizek) makes the remainder of the graph two-
terminal series-parallel. For the CPLCT problem, the out-of-kilter technique can use efficiently
the aggregated information provided by the aggregation technique on TTSP-subgraphs. For the
BCT problem, no equivalent method actually exists. However, as the aggregation technique is
really efficient for the BCT problem, the study of a reconstruction approach fork-QSP graphs
seems interesting.
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