Keywords: minimum cost tension, binary costs, two-terminal series-parallel graphs tension de coût minimum, coûts binaires, graphes série-parallèles

The aggregation technique, dedicated to two-terminal series-parallel graphs (or TTSP-graphs) and introduced lately to solve the minimum piecewise linear cost tension problem, is adapted here to solve the minimum binary cost tension problem (or BCT problem). Even on TTSP-graphs, the BCT problem has been proved to be NP-complete. As far as we know, the aggregation is the only algorithm, with mixed integer programming, proposed to solve exactly the BCT problem on TTSP-graphs. A comparison of the efficiency of both methods is presented here.

Introduction

The study of tension problems in graphs is motivated here by synchronization problems in hypermedia documents [START_REF] Bachelet | Modélisation et optimisation de problèmes de synchronisation dans les documents hypermédia[END_REF]. These documents are composed of various media objects such as audio, video, text, image, applet... Authors need powerful tools to schedule automatically the temporal specifications of these objects in a document. Any media object u has an ideal duration o u and an interval [a u ; b u] in which its effective (i.e. scheduled) duration can vary. The author also specifies temporal constraints in order to express the way the presentation of the document should happen. The problem is finally to schedule the duration of each media object so that it satisfies both the tolerance intervals and the temporal constraints. This problem can be interpreted as a minimum cost tension problem (or MCT problem) in a graph [START_REF] Berge | Programmes, jeux et réseaux de transport[END_REF]. Let G = (X; U) be a graph, with X the set of nodes, U the set of arcs, m = |U | and n = |X|. The nodes represent events in the hypermedia presentation (i.e. the start or end of presentation of a media object), and the arcs express temporal constraints between two events (i.e. precedence and duration between two events). Let π : X -→ R be a function that assigns a potential to each node of the graph. It represents the date scheduled for each event. Hence, the tension θ u of an arc u = (x; y), which is the difference of potentials θ u = π yπ x , is the duration between events x and y, and is constrained to θ u ∈ [a u ; b u] ⊂ R. The minimum cost tension problem can finally be modeled as:

(P M CT)                minimize u∈U c u (θ u) with π y -π x = θ (x;y) , ∀(x; y) ∈ U a u ≤ θ u ≤ b u , ∀u ∈ U
To measure the quality of a document, many proposals were made for c u . The first studies consider piecewise linear costs, with a minimum for o u [START_REF] Buchanan | Specifying Temporal Behavior in Hypermedia Documents[END_REF][START_REF] Kim | Multimedia Documents with Elastic Time[END_REF][START_REF] Bachelet | Modélisation et optimisation de problèmes de synchronisation dans les documents hypermédia[END_REF]. The problem is thus expressed as a linear program, and many polynomial algorithms were developed for this specific problem [START_REF] Hadjiat | A Strongly Polynomial Algorithm for the Minimum Cost Tension Problem[END_REF][START_REF] Ravindra | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF]. [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF] proposed an aggregation method to solve the minimum convex piecewise linear cost tension problem (or CPLCT problem) on two-terminal series-parallel graphs (or TTSP-graphs). It was shown to be competitive on this class of graphs with the best dual cost-scaling algorithms [START_REF] Ravindra | Solving the Convex Cost Integer Dual Network Flow Problem[END_REF].

However, the number of objects that need to be modified (i.e. that are not scheduled at their ideal duration) is also relevant for hypermedia synchronization [START_REF] Medina | Automatic Scheduling of Hypermedia Documents with Elastic Times[END_REF]. Altering the duration of a media object is CPU consuming, thus in a real time context, minimizing this operation is important. We propose here to develop an aggregation method for the minimum binary cost tension problem (or BCT problem) on TTSP-graphs, where the cost functions are defined as:

c u (θ u) = 0, if θ u = o u 1, if θ u = o u (1)
Due to its discrete nature, this problem is NP-complete [START_REF] Kumar | An Efficient Scheme to Solve Two Problems for Two-Terminal Series Parallel Graphs[END_REF]. Lately, it was also proved that it is NP-complete on TTSP-graphs [START_REF] Celso | On the Complexity of Scheduling with Elastic Times[END_REF]. Our interest in this class of graphs is explained by the specific structure of the temporal constraints used in hypermedia synchronization, which leads us to manipulate graphs that are very close to TTSP-graphs [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF].

Section 2 proposes an overview of the TTSP-graphs and the aggregation approach. Section 3 explains how to adapt the method to the BCT problem. Then, comparative numerical results with mixed integer programming are presented in Section 4. Section 5 shows that the aggregation algorithm can be used to solve the BCT problem on any elementary cycle, a subproblem that can be significant to solve the BCT problem on any graph (i.e. without any specific structure) [START_REF] Bachelet | Hypermedia Synchronization: Modeling and Optimization with Graphs[END_REF]. We conclude with a discussion on some leads to solve the BCT problem on quasi-k series-parallel graphs and maybe on any graph, using the aggregation technique.

Aggregation Method

Two-Terminal Series-Parallel Graphs

A common definition of TTSP-graphs is based on a recursive construction of the graphs (e.g. [START_REF] Eppstein | Parallel Recognition of Series-Parallel Graphs[END_REF], or [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF] with the edge series-parallel digraphs) that is very intuitive and close to the way synchronization constraints are built in a hypermedia document. A digraph G is two-terminal series-parallel, also called TTSP-graph, if it is obtained from a graph with only two nodes linked by an arc, applying recursively the two following operations:

• The series composition, applied upon an arc u = (x; y), creates a new node z and replaces u by two arcs u 1 = (x; z) and u 2 = (z; y) (cf. Figure 1a). We call series the relation that binds u 1 and u 2 and denote it u 1 + u 2 .

• The parallel composition, applied upon an arc u = (x; y), duplicates u by creating a new one v = (x; y) (cf. Figure 1b). We call parallel the relation that binds u and v and denote it u//v. The series and parallel relations are gathered under the term SP-relations. During the construction process, a SP-relation that binds two arcs can become a relation between two TTSPsubgraphs. The SP-relations are binary operations, so we can represent a TTSP-graph by a binary tree called decomposition binary tree [START_REF] Kumar | An Efficient Scheme to Solve Two Problems for Two-Terminal Series Parallel Graphs[END_REF] or SP-tree, as illustrated by Figure 2. [START_REF] Valdes | The Recognition of Series Parallel Digraphs[END_REF][START_REF] Schoenmakers | A New Algorithm for the Recognition of Series Parallel Graphs[END_REF][START_REF] Eppstein | Parallel Recognition of Series-Parallel Graphs[END_REF][START_REF] Bachelet | Minimum Convex Piecewise Linear Cost Tension Problem on Quasi-k Series-Parallel Graphs[END_REF] propose different ways to find such a tree in linear time. For the CPLCT problem, numerical results in [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF] show that linear programming and the outof-kilter method take advantage of the particular structure of the TTSP-graphs and behave really better on this class of graphs than on non-specific graphs. However, the dual cost-scaling approach does not work that well on these instances, whereas it proves to be the most efficient for nonspecific graphs. Finally, the aggregation is the method that presents the best performance on TTSP-graphs.

Aggregation Method

The aggregation method, that allows to solve minimum cost tension problems only on TTSPgraphs, has been introduced in [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF]. The algorithm works on a SP-tree T of the TTSP-graph G and is recursive: considering a SP-relation in T , it assumes that the optimal tensions of the two subgraphs implied in the relation are known, and from them, it is possible to quickly build the optimal tension of the whole SP-relation. Hence, starting from the leaves of T , the optimal tension of each SP-relation is built to finally reach the root of the tree T .

From the definition of a TTSP-graph, it is obvious that a TTSP-graph has only one source node (i.e. without any predecessor) and only one target node (i.e. without any successor). Hence, the main tension θ of a TTSP-graph is defined as the tension between its source s and target t, i.e. θ = π tπ s . To get an efficient algorithm, the minimum cost function C G of a TTSP-graph G must be defined. This function represents the cost of the optimal tension where the main tension is forced to a given value:

C G (x) = min{ u∈U c u (θ u) | θ a tension, θ = x}
Let us consider two TTSP-subgraphs G 1 and G 2 , and suppose that their minimum cost functions C G 1 and C G 2 are known. The minimum cost function

C G 1 +G 2 of the SP-relation G 1 + G 2 is: C G 1 +G 2 (x) = min x=x 1 +x 2 C G 1 (x 1) + C G 2 (x 2) Thus, C G 1 +G 2 is the inf-convolution C G 1 C G 2 . The minimum cost function C G 1 //G 2 of the SP-relation G 1 //G 2 is: C G 1 //G 2 (x) = C G 1 (x) + C G 2 (x)
If all the functions c u are convex, as in the CPLCT problem, the minimum cost function C G is convex. From this assessment, a simple recursive algorithm [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF] for the CPLCT problem has been proposed to build the minimum cost function C G of a TTSP-graph G.

Aggregation for the BCT Problem

In the BCT problem, the minimum cost functions have no specific properties, they are neither convex, nor continuous. Moreover, for each aggregation, the minimum cost functions of the subgraphs must be entirely expressed, because any part may be of interest in the whole process. As we know that the problem is NP-complete, it should be expected that the size to store the detail of a minimum cost function will grow exponentially (in theory) with the size of the graph. To sum up, computing the minimum cost function can be done the rough way and can lead to an explosion in time and space of the algorithm. That justifies the modeling we choose here to represent a minimum cost function.

We consider a minimum cost function C G as a set of cases, a case e being a set of arcs S e of G scheduled at their ideal value. Let I G = [M IN G ; M AX G] be the interval in which C G is defined, and W G the maximum value of C G . With each case e is associated the feasibility interval i e = [min e ; max e] (of the main tension θ) in which e can occur, and its cost c e . As an example, we suppose a single arc u. Its minimum cost function C u is defined as follows:

C u    W u = 1 ; I u = [a u ; b u] Case 1: S 1 = {u} ; c 1 = 0 ; i 1 = [o u ; o u]
As shown in Figure 3a, the value of C u is usually W u = 1 (the worst case). If case 1 occurs, i.e. θ u = o u , then the cost is 0.

Parallel Aggregation

In this section, we explain how to build the minimum cost function C G of a graph G that is the parallel relation G 1 //G 2 where G 1 and G 2 are two TTSP-subgraphs with their minimum cost functions C 1 and C 2 respectively. But first, let us consider G 1 and G 2 as single arcs u and v with their minimum cost functions C u and C v defined as above for u and as follows for v (cf. Figure 3b): We define now the minimum cost function C u//v of the parallel aggregation of u and v. In the general case, the cost of the function is W u + W v = 2 (the sum of the general cases of both arcs). Then we must identify all the particular cases:

C v    W v = 1 ; I v = [a v ; b v] Case 2: S 2 = {v} ; c 2 = 0 ; i 2 = [o v ; o v] o v b v a v 1 θ v C v o u b u a u 1 θ u C u b u a v 1 θ u // v o u o v C u // v 2 (a) (b) (c)
• Case 1': Case 1 for u and general case for v. The cost is c 1 + W v and the case is feasible only when both cases occur, i.e. when the main tension θ u//v ∈ i 1 ∩ I v .

• Case 2': General case for u and case 2 for v. The cost is W u + c 2 and the case is feasible when θ u//v ∈ I u ∩ i 2 .

• Case 3: Case 1 for u and case 2 for v. The cost is c 1 + c 2 and the case is feasible when

θ u//v ∈ i 1 ∩ i 2 .
To sum up, the minimum cost function C u//v is defined as follows (see also Figure 3c):

C u//v            W u//v = W u + W v ; I u//v = I u ∩ I v Case 1': S 1 = {u} ; c 1 = c 1 + W v ; i 1 = i 1 ∩ I v Case 2': S 2 = {v} ; c 2 = c 2 + W u ; i 2 = i 2 ∩ I u Case 3 : S 3 = {u; v} ; c 3 = c 1 + c 2 ; i 3 = i 1 ∩ i 2
The idea here is to check all the possible cases and determine their feasibility and their cost. Algorithm 1 explains the general process to build the minimum cost function However, just from the simple example above, it is obvious that for practical instances, lots of combinations of cases will not be possible in parallel (their feasibility interval will be empty). For instance, it seems reasonable to think that case 3 happens rarely in practice.

C 1//2 of the parallel relation G = G 1 //G 2 , from the minimum cost functions C 1 and C 2 of its TTSP-subgraphs G 1 and G 2 . Algorithm 1 Parallel aggregation. if I 1 ∩ I 2 = ∅ then W 1//2 ← W 1 + W 2 ; I 1//2 ←

Cases Redundancy and Overlapping

Moreover, the number of cases might be virtually overestimated: it is possible, in the same minimum cost function, to get two cases with the same interval. In order to avoid this redundancy (and later useless combinations of cases), one of the cases must be removed: the one with the worst cost (if they are equal, it does not matter which one to eliminate). For instance, if we suppose in the example above that o u = o v , then cases 1' and 2' become redundant with case 3, so both of them must be removed.

We choose to detect redundancy each time a case e is added to the minimum cost function of a series or parallel relation. We oppose the case e with each case f already in the minimum cost function of the SP-relation. There are three possibilities:

• if c e ≥ c f and i e ⊆ i f , there is redundancy of the cases, then case e is not added;

• if c e ≤ c f and i e ⊇ i f , there is redundancy of the cases, then case f is removed and e is added;

• otherwise, there may be overlapping of the cases, but e is added.

Notice that we do not attempt to build a minimal set of cases for a SP-relation, i.e. a set of disjoint, i.e. non-overlapping, cases (remark: this is not the set with the minimal number of cases; if you look at Figure 3c, the minimal set would have 5 pieces, whereas C u//v , as we build it, has only 3 pieces). As it seems difficult to maintain this minimal set (that is not even the set with the minimum number of pieces), we decide to deal with cases that are overlapping (e.g. cases like e and f where i e ∩ i f = ∅, but neither i e ⊆ i f nor i f ⊆ i e).

Series Aggregation

In this section, we explain how to build the minimum cost function C G of a graph G that is the series relation G 1 + G 2 where G 1 and G 2 are two TTSP-subgraphs with their minimum cost functions C 1 and C 2 respectively. But first, let us consider G 1 and G 2 as single arcs u and v with their minimum cost functions C u and C v defined as previously. We define then the minimum cost function C u+v of the series aggregation of u and v. In the general case, the cost of the function is W u + W v = 2 (the sum of the general cases of both arcs). Then we must identify all the particular cases:

• Case 1': Case 1 for u and general case for v. The cost is c 1 + W v and the case is feasible on the interval of case 1 "plus" the interval of the general case for v, i.e. when the main tension

θ u+v ∈ [min 1 + M IN v ; max 1 + M AX v].
• Case 2': General case for u and case 2 for v. The cost is W u + c 2 and the case is feasible when

θ u+v ∈ [M IN u + min 2 ; M AX u + max 2].
• Case 3: Case 1 for u and case 2 for v. The cost is c 1 + c 2 and the case is feasible when

θ u+v ∈ [min 1 + min 2 ; max 1 + max 2].
To sum up, the minimum cost function C u+v is defined as follows (see also Figure 4):

C u+v                            W u+v = W u + W v ; I u+v = [M IN u + M IN v ; M AX u + M AX v] = [a u + a v ; b u + b v] Case 1': {u} ; c 1 = c 1 + W v ; i 1 = [min 1 + M IN v ; max 1 + M AX v] = [o u + a v ; o u + b v] Case 2': {v} ; c 2 = c 2 + W u ; i 2 = [min 2 + M IN u ; max 2 + M AX u] = [a u + o v ; b u + o v] Case 3: {u; v} ; c 3 = c 1 + c 2 ; i 3 = [min 1 + min 2 ; max 1 + max 2] = [o u + o v ; o u + o v]
The idea here is similar to the parallel aggregation. It is to enumerate all the cases and determine their cost (they are always feasible). Algorithm 2 explains the general process to build the minimum cost function C 1+2 of the series relation G = G 1 + G 2 , from the minimum cost functions C 1 and C 2 of its TTSP-subgraphs G 1 and G 2 . At the opposite of the parallel aggregation, all the cases are possible. However, it is still possible to detect redundant cases to remove. As an indication, on a practical instance of TTSPgraph with 20 nodes and 40 arcs, we observe more than 2 million cases in the final minimum cost function, if we keep the redundant cases. With the constant elimination of these cases, we observe less than a hundred cases in the final minimum cost function (cf. Table 1).

a u + o v a u + a v o u + o v o u + b v o u + a v b u + o v b u + b v 1 2 C u + v θ u + v
Algorithm 2 Series aggregation.

W 1+2 ← W 1 + W 2 ; I 1+2 ← [M IN 1 + M IN 2 ; M AX 1 + M AX

Conclusion Proposition 3

The aggregation method, for the BCT problem, generates a minimum cost function with at most 2 m -1 cases, and requires O(2 m) operations.

Proof. We can establish that for a TTSP-graph G k with k arcs, at most 2 k -1 cases compose the minimum cost function C k of G k . For k = 1, it is obvious. Assume now that the property is true for any TTSP-graph with at most k arcs, and consider a TTSP-graph G k+1 with k + 1 arcs. By definition of TTSP-graphs, it is either a series or a parallel composition of two TTSP-graphs G p and G q , with p and q arcs respectively, such that p + q = k + 1. From propositions 1 and 2, the minimum cost function of G k+1 has (2 p -1) + (2

q -1) + (2 p -1)(2 q -1) = 2 p+q -1 = 2 k+1 -1 cases.
Also from propositions 1 and 2, each composition i needs O(2 k i) operations, where k i is the number of arcs in the composition i. As there are m -1 SP-relations in the TTSP-graph [START_REF] Bachelet | Minimum Convex-Cost Tension Problems on Series-Parallel Graphs[END_REF], the whole aggregation method finally requires O(m-1 i=1 2 k i) operations (we suppose that the compositions are numbered in the same order they are performed in the aggregation process). It is known that m i=1 2 i < 2 m+1 , and it can be verified by recurrence that m-1 i=1 2 k i ≤ m i=1 2 i , thus the whole aggregation method requires O(2 m) operations.

Numerical Results

As the complexity presented in the previous section represents worst case situations, we must study the practical behavior of the algorithm. As far as we know, the only other method that solves the BCT problem is mixed integer programming. As proposed in [START_REF] Medina | Automatic Scheduling of Hypermedia Documents with Elastic Times[END_REF], the BCT problem can be modeled as a mixed integer program (P BCT). It is based on the generic (P M CT) program defined in Section 1, with the binary cost functions c u defined by formula (1). These c u functions are modeled with binary variables y u and additional constraints (a), (b) and (e).

(P BCT)                                minimize u∈U y u with -θ u -(o u -a u)y u ≤ -o u , ∀u ∈ U (a) θ u -(b u -o u)y u ≤ o u , ∀u ∈ U (b) π y -π x = θ (x;y) , ∀(x; y) ∈ U (c) a u ≤ θ u ≤ b u , ∀u ∈ U (d) y u ∈ {0, 1}, ∀u ∈ U (e)
The following tables present a practical comparison of the aggregation technique with mixed integer programming, which is always difficult and questionable due to all kinds of biases. But the goal here is to get an idea of how the methods behave on TTSP-graphs. Results are expressed in seconds on an Intel Xeon 2.4 GHz processor under a Gentoo Linux operating system. We used GNU C++ 3.3 compiler and its object-oriented features to implement the methods, linked to the CPLEX 8.0 Callable Library for mixed integer programming.

Results are based on series of 30 tests on randomly generated graphs 3,4 . To generate an instance, the following parameters must be given: the number of nodes n, the number of arcs m and the tension bound A = max u∈U b u . A TTSP-graph structure with n nodes and m arcs is randomly built, based on the constructive definition of TTSP-graphs in Section 2. Then, using the topological order of the nodes, a potential π x is affected to each node x, such that θ u = π yπ x < A for each arc u = (x; y). The bounds a u and b u are randomly chosen to satisfy 0

≤ a u ≤ θ u ≤ b u ≤ A. Finally, the ideal tension o u is randomly chosen in the [a u ; b u] interval.
Table 1 shows results where the size of the graphs varies, with A = 1000. Each value in columns "CPLEX" and "Aggregation" is the mean of a series of tests, and the number in parentheses is the associated standard deviation. Due to the combinatorial aspect of the problem, the time to solve an instance can vary significantly in a same series. However, these results allow to catch the general evolution of the computation time for each method. In order to compare the methods, we propose two last columns in the table to present the relative time difference between the methods. We denote t aggregation and t CP LEX the resolution times of the aggregation and linear programming respectively. The first column is the mean of where linear programming is faster than the aggregation. We choose to present the relative time difference instead of a time ratio like time CP LEX time aggregation to compare the methods, because extreme situations like a very short time for the aggregation and a long time for CPLEX on the same instance makes the mean estimation useless. If the relative difference is close to 0, that means the resolution times tend to be similar. At the opposite, if the difference is close to 1, that means the resolution times tend to be infinitely different. We also indicate into parentheses the number of times a method is faster than the other. Notice that when the resolution times are identical, it is considered that linear programming is faster.

With these informations, it appears that the aggregation is faster than mixed integer programming for most of the instances. The fact that linear programming is faster in some cases is due to the fact that the aggregation can not deal very efficiently with a chain of series compositions: in a parallel relation, there are cases that can immediately be detected infeasible, whereas in a series relation, all the cases are potentially feasible, but many of them will be eliminated later in the aggregation process. Thus, even if its theoretical complexity is exponential, the aggregation provides a quite efficient way to solve the BCT problem on TTSP-graphs with a size far above what is requested in hypermedia authoring: a 50 nodes and 100 arcs graph is already considered a large instance.

Even in the same series, some instances are easier to solve. If we look at the number of cases generated by the aggregation, there is also a significant variation among the instances of a same series. However, the number of cases is not clearly related to the resolution time. As the number of non-redundant cases is not significant to determine the complexity of an instance, we think that the aggregation explores more redundant cases in the difficult instances. Identifying precisely the reasons of this behavior is not that obvious. Intuitively, the ideal tension is crucial: for instance, there are situations where the tension can not be fixed to its ideal value. The aggregation and mixed integer programming have their own mechanism (the redundancy detection for the aggregation) to detect some situations more easily than others.

To show that the tension data are significant in the resolution time of both methods, Table 2 proposes results where the tension bound A varies. The aggregation method is still more efficient than mixed integer programming in most cases, but the difficulty to solve the instances, for both methods, increases with A. [START_REF] Bachelet | Hypermedia Synchronization: Modeling and Optimization with Graphs[END_REF] explains that solving the BCT problem on an elementary cycle C of a graph G can be useful to find cuts to add in the mixed integer program that models the BCT problem on the whole graph G. However, in this article, the problem was solved using mixed integer programming. We propose here to use the aggregation technique to solve exactly, and more efficiently than linear programming, the BCT problem on an elementary cycle. The idea is simply to transform the cycle C (Figure 5a) into a TTSP-graph H (Figure 5b), making the BCT problem (P) on H equivalent to the BCT problem (P) on C. To perform the transformation, the orientation of some arcs of C must be changed so the cycle becomes two directed paths P 1 and P 2 in parallel, e.g. H = P 1 //P 2 (cf. Figure 5). Thus, H is two-terminal series-parallel and in order to make (P) equivalent to (P), the tension data of any arc u that has been reversed must be modified as follows (cf. Figure 5): its interval [a u ; b u] becomes [-b u ; -a u] and its ideal tension o u becomes -o u .

BCT Problem on an Elementary Cycle

It is easy to check that the constraints and the objective functions of both problems are equivalent. Numerical results for elementary cycles (not introduced in this paper because very similar to those presented for TTSP-graphs in the previous section) show that this method to solve the BCT problem on an elementary cycle is more efficient in practice than mixed integer programming.

Conclusion

This article provides a first alternative to mixed integer programming in solving the BCT problem on TTSP-graphs. Moreover, the practical efficiency of the aggregation method is far above mixed integer programming. It can thus be useful in the resolution of the BCT problem on non-specific graphs: as shown in Section 5, it provides a way to solve the problem on an elementary cycle, which is relevant to generate cuts for the linear program of the BCT problem [START_REF] Bachelet | Hypermedia Synchronization: Modeling and Optimization with Graphs[END_REF]. We also hope to find better cuts with the aggregation algorithm: the BCT problem can be solved optimally and quite quickly for TTSP-subgraphs of any graph, which provides bounds for new constraints.

The aggregation method results in more than just an optimal tension. As presented in this article, it provides aggregated information, which allows to adapt optimally the tension of a TTSPgraph to any main tension in polynomial time 5 . It is the idea of the reconstruction technique that solves the CPLCT problem on quasi-k series-parallel graphs (or k-QSP graphs) [START_REF] Bachelet | Minimum Convex Piecewise Linear Cost Tension Problem on Quasi-k Series-Parallel Graphs[END_REF]. A graph is k-QSP if the removal of a minimal subset of arcs (of size k) makes the remainder of the graph twoterminal series-parallel. For the CPLCT problem, the out-of-kilter technique can use efficiently the aggregated information provided by the aggregation technique on TTSP-subgraphs. For the BCT problem, no equivalent method actually exists. However, as the aggregation technique is really efficient for the BCT problem, the study of a reconstruction approach for k-QSP graphs seems interesting.

2 Figure 1 :

 21 Figure 1: Series and parallel compositions.

Figure 2 :

 2 Figure 2: Example of SP-tree.

Figure 3 :

 3 Figure 3: An example of parallel aggregation.

Figure 4 :

 4 Figure 4: An example of series aggregation.

Figure 5 :

 5 Figure 5: Transformation of an elementary cycle into a TTSP-graph.

 I 1 ∩ I 2 ; for all cases e in C 1 such that ie ∩ I 2 = ∅ do [All the cases of G 1 combined with the general case of G [All the cases of G 1 combined with all the cases of G 2] for all pairs of cases e in C 1 and f in C 2 such that ie ∩ i f = ∅ do let e be a new case of C 1//2 ; S Let n 1 and n 2 be the numbers of cases in C 1 and C 2 respectively. The number of cases of C 1//2 can not exceed n 1 + n 2 + n 1 × n 2 , and the parallel aggregation G 1 //G 2 requires O(n 1 × n 2) operations.Proof. Algorithm 1 considers n 1 + n 2 + n 1 × n 2 cases (the single cases + the combinations of the cases).

	f ;
	end for;
	end if;
	Proposition 1

2] let e be a new case of C 1//2 ; S e ← Se; c e ← ce + W 2 ; i e ← ie ∩ I 2 ; end for; for all cases e in C 2 such that ie ∩ I 1 = ∅ do [All the cases of G 2 combined with the general case of G 1] let e be a new case of C 1//2 ; S e ← Se; c e ← ce + W 1 ; i e ← ie ∩ I 1 ; end for; e ← Se ∪ S f ; c e ← ce + c f ; i e ← ie ∩ i

 for all cases e in C 2 do [All the cases of G 2 combined with the general case of G 1] let e be a new case of C 1//2 ; S e ← Se; c e ← ce + W 1 ; i e ← [mine + M IN 1 ; maxe + M AX 1]; end for; for all pairs of cases e in C 1 and f in C 2 do [All the cases of G 1 combined with all the cases of G 2] let e be a new case of C 1+2 ; S e ← Se ∪ S f ; c e ← ce + c f ; i e ← [mine + min f ; maxe + max f]; end for;

2]; for all cases e in C 1 do [All the cases of G 1 combined with the general case of G 2] let e be a new case of C 1+2 ; S e ← Se; c e ← ce + W 2 ; i e ← [mine + M IN 2 ; maxe + M AX 2]; end for;

Table 1 :

 1 Numerical results, graph size influence.

	Nodes	Arcs	CPLEX		Aggregation			Time Difference	
	n	m		Time		Time	Cases	Aggregation	CPLEX
	10	20	0.01	(0.01)	0.01	(0.01)	32.3	(35.9)		(0/30)	0.000	(30/30)
	20	40	0.03	(0.03)	0.01	(0.01)	86.4	(68.2)	0.637	(24/30)	0.000	(6/30)
	30	60	0.09	(0.14)	0.01	(0.02)	143	(157)	0.749	(26/30)	0.396	(4/30)
	40	80	0.43	(0.92)	0.03	(0.03)	231	(264)	0.861	(25/30)	0.290	(5/30)
	50	100	4.2	(14.9)	0.08	(0.13)	342	(365)	0.841	(27/30)	0.447	(3/30)
	60	120	9.1	(18.5)	0.19	(0.35)	498	(577)	0.884	(27/30)	0.571	(3/30)
	70	140	276	(1049)	0.29	(0.58)	445	(574)	0.900	(27/30)	0.842	(3/30)
	80	160	982	(5027)	0.22	(0.3)	464	(467)	0.957	(28/30)	0.175	(2/30)
	90	180	3172	(6153)	0.9	(1.4)	844	(730)	0.963	(28/30)	0.158	(2/30)
	100	200	8490	(19298)	1.1	(3.2)	783	(904)	0.976	(28/30)	0.492	(2/30)

Table 2 :

 2 Numerical results, tension scale influence.

Tool available at http://frog.isima.fr/bruno/?doc=bpp_library+ch=build_graph.

Instances available at http://frog.isima.fr/bruno/retrieve.htm?archive=bct_instances.