N

N

Elastic Time Computation in QoS-Driven Hypermedia
Presentations
Bruno Bachelet, Philippe Mahey, Rogério Rodrigues, Luiz Fernando Soares

» To cite this version:

Bruno Bachelet, Philippe Mahey, Rogério Rodrigues, Luiz Fernando Soares. Elastic Time Com-
putation in QoS-Driven Hypermedia Presentations. Multimedia Systems, 2007, 12 (6), pp.461-478.
10.1007/s00530-006-0067-4 . hal-01703319

HAL Id: hal-01703319
https://hal.science/hal-01703319
Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01703319
https://hal.archives-ouvertes.fr

Elastic Time Computation in QoS-Driven
Hypermedia Presentations

Bruno Bachelet and Philippe Mahéy
LIMOS, UMR 6158-CNRS,
Université Blaise-Pascal, BP 10125, 63173 Aubiére, France

Rogério Rodrigues and Luiz Fernando Sodres
Departamento de Informéatica, PUC-RIo,
Rio de Janeiro, Brazil.

Research Report LIMOS/RR04-16

Ubachelet,mahey}@isima.fr
2{rogerio, lfgs}@inf.puc-rio.br

Abstract

The development of hypermedia/multimedia systems regtiive implementation of an element,
usually known as formatter, which is in charge of receivihg specification of a document and
controlling its presentation. In order to orchestrate ttesentation, formatters should build a pre-
sentation plan that will contain the scheduling time forredocument object and the inter media-
object synchronization information, including those witime of occurrence cannot be predicted,
like relationships coming from user interaction. Besidégsniing the presentation scheduling,
the plan will guide prefetching, reservation and adaptatieechanisms in charge of maintaining
the presentation quality of service. Adjustment in the danaof media objects is one of the

most important adaptation techniques in order to mainfaatic-temporal relationships specified
in a hypermedia document. Elastic time computation accisimgd this goal by stretching and
shrinking the ideal duration of media objects. This papesents new elastic time algorithms for
adjusting the hypermedia document presentation in ordavaa temporal inconsistencies. The
algorithms explore the flexibility offered by some hyperiiaechodels in the definition of media

object durations, choosing objects to be stretched or &hrunrder to obtain the best possible
quality of presentation. Our proposals are based on thefekitter and the cost-scaling methods
for minimum-cost flow problems on temporal graphs. An aggtien procedure enhances the
basic algorithm offering more flexibility in modeling relifle situations in comparison with other

previous work based on linear programming.

Keywords: hypermedia presentation, elastic time computation, minitost flow and tension.

Résumé

Le développement de systemes hypermédia/multimédiaeddiimplémentation d’'un élément,
généralement connu sous le nom de formateur, chargé dengesspécifications d’'un document
et de contrbler sa présentation. Afin d’orchestrer la ptésen, les formateurs doivent construire
un plan de la présentation qui contiendra la date planifiéehdgue objet du document et des
informations de synchronisation inter-objet, incluanteseou la date d’occurrence ne peut pas
étre prévue, comme les relations issues d’interactions lawdisateur. En plus d’orienter la pla-
nification de la présentation, le plan guidera les mécardstieemise en cache, de réservation et
d’adaptation en charge de maintenir la qualité de la présent L'ajustement de la durée des
objets multimédia est I'une des plus importantes techmigiedaptation pour assurer les relations
spatio-temporelles spécifiées dans un document hypermaaialcul de temps élastique réalise
cet objectif en étirant ou contractant la durée idéale degmtation des objets multimédia. Cet
article présente de nouveaux algorithmes de calcul de télapsque pour ajuster la présentation
de documents hypermédia, afin d’éviter les inconsisterarapdrelles. Les algorithmes explorent
la flexibilité offerte par certains modéles hypermédia darg&finition de la durée des objets mul-
timédia, choisissant les objets qui doivent étre étirésomiractés pour obtenir la meilleure qualité
possible pour la présentation. Nos propositions reposendes méthodes de mise a conformité
et de mise a I'échelle pour des problemes de flot de colt mimimians des graphes temporels.
Une procédure d'agrégation améliore I'algorithme de base pffrir plus de flexibilité dans la
modeélisation de situations réelles en comparaison avecadggents travaux reposant sur la pro-
grammation linéaire.

Mots clés : présentation hypermédia, calcul de temps élastique, ftenston de colt minimum.

Acknowledgements / Remerciements
This project was partially funded by France-Brazil coofieraproject CAPES-COFECUB 398/02.

Elastic Time Computation in QoS-Driven Hypermedia Presentations

Bruno Bachelet” Philippe Mahey" Rogério Rodrigues” Luiz Fernando Soares”
" {bachelet, mahey} @isima. fr "{rogerio, Ifgs} @inf.puc-rio.br
LIMOS, CNRS Departamento de Informatica
ISIMA, Université Blaise Pascal PUC-Rio
Abstract

The development of hypermedia/multimedia systems requires the implementation of an element, usually
known as formatter, which is in charge of receiving the specification of a document and controlling its
presentation. In order to orchestrate the presentation, formatters should build a presentation plan that will
contain the scheduling time for each document object and the inter media-object synchronization
information, including those whose time of occurrence cannot be predicted, like relationships coming from
user interaction. Besides orienting the presentation scheduling, the presentation plan will guide pre-fetching,
reservation and adaptation mechanisms in charge of maintaining the presentation quality of service.
Adjustment in the duration of media objects is one of the most important adaptation techniques in order to
maintain spatio-temporal relationships specified in a hypermedia document. Elastic time computation
accomplishes this goal by stretching and shrinking the ideal duration of media objects.

This paper presents new elastic time algorithms for adjusting the hypermedia document presentation in
order to avoid temporal inconsistencies. The algorithms explore the flexibility offered by some hypermedia
models in the definition of media object durations, choosing objects to be stretched or shrunk in order to
obtain the best possible quality of presentation. Our proposals are based on the “out-of-kilter”” and the cost-
scaling methods for minimum-cost flow problems on temporal graphs. An aggregation procedure enhances
the basic algorithm offering more flexibility in modeling real-life situations in comparison with other
previous work based on linear programming.

1. Introduction

The development of hypermedia/multimedia systems requires the implementation of a component,
from here on called hypermedia formatter' [BuZe93a, SORMO0], which is in charge of receiving the
specification of a document and controlling its presentation. Besides controlling content
presentation of different media types, hypermedia formatters should try to guarantee that specified
relationships among media objects are respected, assuring a document presentation of good quality.

The inter media-object synchronization issue [l which is related with spatial and temporal
relationships specified by the author, the duration assumed by each media object presentation, and
the time that each presentation action occurs (play, stop, pause, etc.) I is a QoS (quality of service)
problem, involving all service-offering-environment (SOE) components: client (formatter), servers
and communication providers [RoSo003].

In order to orchestrate a presentation, the formatter should build a presentation plan that will contain
the scheduling time for each document object and the inter media-object synchronization
information, including those whose time of occurrence cannot be predicted, like relationships

' Engine, player, etc. are other names given in the literature for this component.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

coming from user interaction. Besides orienting the presentation scheduling, the presentation plan,
indeed a temporal graph, will guide pre-fetching, reservation and adaptation mechanisms, which are
all important elements in the maintenance of the document presentation QoS.

Formatters should consider unpredictable factors related to a document presentation (unpredictable
object duration, media object alternatives, unpredictable relationships, etc.) and should be able to
adapt the document exhibition to improve its quality. Sometimes, formatters should be able to adapt
the durations of some objects to maintain the document spatio-temporal consistency. One
possibility is to perform adaptations before starting the presentation, when they are called compile-
time adaptations. In this situation, adaptation techniques may take into account the user profile and
preferences, and characteristics of the exhibition platform, including those of the transport network.

In order to minimize object presentation lags and to compensate content jitter caused by the service-
offering-environment components, the incorporation of a prefetching/caching mechanism in
hypermedia formatters is also desirable. In addition, prefetching is important to reduce the
probability of needing adjustments during document runtime, helping the temporal synchronization
maintenance. Prefetching tasks are simplified if the SOE provides QoS support [RoSo03].

Unfortunately, compile-time adaptations, prefetching and QoS provisioning are not sufficient to
guarantee a good presentation. There are situations that may impair the document exhibition as
planned by its author. For instance, in the prefetching, the cache memory may not have sufficient
space to store the needed data; or in the QoS provisioning, the SOE platform (operating systems,
networks, etc.) may not guarantee the requested QoS, or even offer only the best-effort service. In
all these cases, presentation adjustments are needed, like shrinking or stretching the presentation
durations (or presentation rates) of some objects, or replacing some objects by other ones with
lesser QoS requirements, or even discarding some objects.

Therefore, runtime adaptation techniques may be necessary. Like at compile time, they may take
into account the user profile, user preferences, and platform characteristics. However, different from
the compile-time adaptation, which is typically based on context information that is static or does
not change very much during the presentation, runtime adaptation techniques may also take into
account dynamic behaviors, like user interactions and SOE performance parameter changes that
may result in loss of synchronization.

Both at compile time and during runtime, adjustment in media object durations is one of the most
important adaptation techniques in order to maintain spatio-temporal relationships specified in a
document. Elastic time computation, as formerly named by [KiS095], accomplishes this goal by
stretching and shrinking the ideal duration of media objects. Of course, elastic time computation is
only meaningful when hypermedia systems are based on document models that provide flexibility
in the definition of media-object presentation characteristics. Usually, the specification of flexible
durations contains some kind of cost information that gives the formatter a metric for maximizing
the global quality of the presentation, while obeying other criterion, such as trying to minimize the
number of objects that will be stretched or shrunk. Besides the difficulty of modeling such problem
in real-life situations, where user interactions induces non-deterministic data, or where the
definition of quality metrics depends on multi-criterion analysis, it must also be kept in mind that
these kind of algorithms should run in very short execution time.

Some proposals for elastic time computation have been addressed in the literature [BuZe93b,
KiS095, LaSR02]. However, Firefly [BuZe93b] and Isis [KiS095] have limited their study to
simplified academic models, which lead to small-scale linear programs solved by the simplex
method. Furthermore, their algorithms are suitable only for compile-time adaptation. Madeus
formatter [LaSR02] presents a solution for runtime adjustment, but it is based on a greedy approach,
Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

ignoring any cost specification to improve the document quality. In this paper, new algorithms are
proposed. The first one is based on the “out-of-kilter” method for minimum-cost tension problems
[Pla71], which allows much more flexibility to model real-life applications. The algorithm is
validated in the deterministic case with general convex cost functions, being suitable for both
compile time and runtime. Another approach, the “dual cost-scaling” is also proposed, which
converts the problem into a minimum-cost flow problem solved with the “cost-scaling” method
[AhHO99]. This method is better adapted for big graphs at compile time. A new method, based on
the specific structure of temporal graphs and called “aggregation”, is also presented. It concentrates
on the sequential and parallel aspects of temporal constraints, providing efficient resolution time.
This makes the method well suited to developing runtime heuristics. The two last approaches work
with piecewise linear convex cost functions only.

This paper is based on the HyperProp formatter, which was used to validate all ideas proposed here.
The HyperProp formatter is a specialization of the formatter framework [BSRS04] developed at the
TeleMidia Laboratory of the Catholic University of Rio de Janeiro. The framework provides
support for context adaptations; inter and intra media-object QoS provisioning; and support for
several hypermedia models and languages, through a collection of converters. The system already
has converters developed to read SMIL [W3CO01] and NCL/NCM? [Much03, SORM00] documents.
HyperProp formatter is implemented in Java and is available in http://www.telemidia.puc-
rio.br/formatter/. The next sections of the paper are organized as follows. Section 2 introduces some
document-model entities that are necessary when adaptations are available. The section highlights
that media-objects should have “elastic duration” in order to favor the maintenance of the document
temporal consistency. Compile-time adaptations, that is, those made before the start of the
document presentation, are discussed in Section 3, with special emphasis to elastic time adaptation.
Elastic time computation is the matter of Section 4, where the algorithms proposed in this paper are
presented. Two algorithms are extensively compared. The first one is an adaptation of the out-of-
kilter method to minimum-cost tension problems, while the second one is a dual cost-scaling
algorithm. Both outperform the simplex method when dealing with piecewise linear costs. The first
algorithm is more general, as it can deal with general convex costs; in addition, it is also more
flexible, as it can be adapted to runtime issues. The second method is better adapted for big graphs
at compile time. Another approach is also presented, an aggregation algorithm that offers similar
performances and proposes to concentrate on the sequential and parallel temporal constraints,
opening new possibilities for runtime computation. Section 5 discusses how pre-fetching and QoS
provisioning may be used to avoid, or to reduce, adaptations at runtime phase. Section 6 goes back
to the adaptation matter, but now during runtime, leaving for Section 7 the discussion about runtime
elastic time computation. Related work is presented and compared in Section 8. Finally, Section 9 is
left for the conclusions and future work.

2. Adaptive Hypermedia Document

The specification of a hypermedia document is accomplished by the definition of its basic elements
(text, audio, video, etc.) and their spatial and temporal relationships.

The basic elements, usually called media objects or content nodes, have as main attributes the
content to be presented (often a reference to the content) and some additional parameters that define
the object presentation behavior (e.g., duration, spatial characteristics, anchors, etc.).

2 NCM (Nested Context Model) is the document model of NCL (Nested Context Language).

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

Anchors are a subset of the information units of a media object and define events. As stated in
[PEL196], an event is an occurrence in time that can be instantaneous or can occur during some time
period. Hypermedia models define several types of events, among them: presentation event, which
is defined by the presentation of an anchor of an object; selection event, which is defined by the
selection of an anchor of an object; and attribution event, which is defined by a change in the value
of an attribute of an object.

Each event defines a state machine [SORMO00] that must be maintained by the formatter. Figure 1
shows the NCM presentation-event state machine, as an example.

Save |
Discard

Start Pause

prepared > < occurring > < paused

Stop | Start |
Natural end Resume

Prepare

Finished

Abort preparation

Stop

Figure 1 — NCM presentation-event state machine.

A presentation event can change from occurring to prepared in two situations: as a consequence of
the natural end of the presentation duration, or due to an action that stops the event. The duration of
an event is the time it remains in the occurring state. This duration can be intrinsic to the media
object or specified by an author, like in SMIL and NCL/NCM. Synchronizations between media
objects are indeed specified as relationships between event state machines, as will be seen further
on.

Some hypermedia models allow the definition of sets of alternative objects for presentation. Each
alternative object should be associated to an exhibition rule. When a rule is satisfied, the associate
object is chosen to be presented. Rules can evaluate user preferences or platform conditions
(available exhibition tools, network bandwidth, whether resource reservation is available, etc.).
Some kind of context aware mechanism (internal or external to the formatter) should be looked up
to support the evaluation [DeSA01].

Likewise, some models allow the definition of sets of alternatives of exhibition for the same
content. For example, a text object could have two presentation alternatives: one as a formatted text
and another one as a synthesized and synchronized audio and video’. Actually, exhibition
alternatives always can be specified as alternative objects (different media objects with different
presentation information attributes), but it is better for reuse purposes if the document model
separates media object content from presentation characteristics, enabling each part to be
independently adapted.

Of course selection rules can be composed. For example, from the user preferences, the formatter
may determine which text idiom to be selected. However, upon discovering that the user is driving a

3 HyperProp formatter has a player, called “Expressive Talking Heads” [Rodr04], which is able to receive a text as input
and to generate a synthesized audio, synchronized with an animated graph as output, representing a human face
enunciating the text.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

car (exhibition platform information), and being unable to read at that moment, the formatter can
also choose to synthesize the selected text.

SMIL formatters (called players) [W3CO01], NCL/NCM formatters and the Cardio-OP application
[KIGF99] are examples of tools able to make presentation adaptation based on media-object
alternatives (switches) and context information. In Cardio-OP, a cross-media strategy [BoKW99]
allows dynamic creation of alternatives. NCL/NCM formatters also make presentation adaptations
based on exhibition alternatives for the same content (descriptor switches).

Relationships among events of media objects are usually specified by links, compositions, or both,
depending on the conceptual model in use. Examples of composition usage can be found in parallel
and sequential elements of SMIL [W3CO1], in Isis primitives [KiS095] and in templates of NCL
[MuSo002]. Examples of link usage can be found in HTML hyperlinks, in NCL spatio-temporal
links [SoRMO0], in timed Petri net transitions of OCPN [LiGh90] and TSPN [DiS¢94], and in
Firefly temporal point nets [BuZe93a].

Depending on how they are specified, temporal relationships can be classified as causal or
constraint relationships. Causal relationships are based on conditions and actions. They define
actions that must be fired when some conditions are satisfied. An example of causal relationship is:
“when video A4 presentation finishes, stop playing audio B”. Constraint relationships specify
restrictions that must be satisfied during a presentation, without any related causality. An example
of constraint relationship is: “video 4 and audio B must finish their presentations at the same time”.
Although similar, the former example (causal relationship) does not ensure that both media objects
will be entirely played. If 4 finishes its presentation first, B presentation will be interrupted. On the
other hand, the latter example (constraint relationship) specifies that the presentations should finish
at the same time and in a way that both media objects have all their content presented. It is worth
mentioning that this constraint must be satisfied if and only if both media objects are presented
simultaneously (i.e., only the presentation of 4 or only the presentation of B also satisfies the
constraint relationship).

Both kinds of relations are important to hypermedia presentation modeling. Models based only on
temporal constraints do not capture the causality intrinsic to hypermedia scenarios and can lead to
specification ambiguities [DuKe95]. For instance, let us consider the meet constraint relation of
Allen [Alle83], exemplified in Figure 2. Just specifying that a media object X meets another media
object Y does not let one know if the end of X causes the start of Y, if the start of ¥ causes the end of
X, or if the end of X should coincide with the start of Y, the last one without any causal relationship.
On the other side, models purely based on causal relations do not allow an author to specify, for
example, that two media objects should finish their presentation simultaneously, both having their
content entirely presented, as previously exemplified.

X meets ¥

Y met by X

Figure 2 — Allen meets relation.

Models based only on causal relationships cannot generate temporal inconsistencies. However, they
can lead to deadlocks (objects whose presentation depends on impossible conditions) or spatially
inconsistent specifications, for example, resource contention (two objects that need to be presented
at the same position/resource and at the same time). On the other hand, models with constraint
relationships can have inconsistent temporal specifications. For these models, it is important to
verify whether all temporal constraints can be satisfied.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

Regarding temporal consistency checking, it is desirable to have models that allow the specification
of a flexible duration for media object presentation (and thus its events), taking advantage of the
fact that several media types can be temporally stretched or shrunk, without impairing human
comprehension. Instead of taking an inflexible ideal duration specification that could lead to
inconsistencies, it would be possible to present a consistent document, even with some loss of
presentation quality. However, with the introduction of flexibility, besides verifying the temporal
consistency of a document, it will be desirable to find the event duration values that satisfy all given
temporal constraints and leads to the best possible presentation quality of the whole document.
Obviously, temporally inconsistent documents may still exist, since the range of adjustments is
usually limited.

Models that support presentation flexibility should specify durations using cost functions. The idea
is to allow an author to specify a function “cost versus duration”, for each presentation event that
constitutes the object presentation. Figure 3 shows examples of cost functions. Intuitively, these
functions give the cost for shrinking or stretching the duration from an ideal value, where the ideal
value is given by the function minimum points. It is also important to allow durations to be
specified not only by real values, but also by unpredictable values. Media objects that are presented
until some external action interrupt them and media objects that finish their presentations by
themselves, but in some instant not known a priori, are examples of events with unpredictable
duration.

€2 f-------- -O—: €2 f----mmmmmmmm - €2 f-------------1 !
1 ! c
cl [--—0 . cl ---T T el |--- i
0— ;I I’ fl 0— 1 ? g t 0 :l — ! : ': 0—
emin eid emax emin eid emax emin eid emax

Figure 3 — Examples of cost functions. a) Step function; b) Simple discrete function; ¢) Continuous linear piecewise
function; d) Continuous non-linear function.

3. Compile-Time Adaptation

As aforementioned, there are two moments when formatters can apply adaptation strategies: at
compile time, when building the presentation plan (object scheduling plan for presentation); and in
runtime, when adjustments of the presentation plan are needed. Both compile-time and runtime
adaptations may take into account the user profile and preferences, user interactions and
performance parameters of the SOE (exhibition platform, servers and the transport network). This
section discusses compile-time adaptations, leaving the discussion of runtime adaptations to Section
6.

Usually, before starting a document presentation, a hypermedia formatter first resolves the rules
associated to sets of alternative objects and to sets of alternatives of exhibition for the same
content®. This will identify which objects will take part in the presentation plan and how they will
be presented. Afterwards the formatter may apply any necessary cross-media adaptation, like
transforming text into synthesized speech. Only then, elastic time adjustments may be applied in

* Some document models, as NCL/NCM and SMIL, also allow specifying rules directly associated to single objects,
without component alternatives. When a rule of this type is evaluated as false, the respective object is simply ignored
during the presentation.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

order to maintain the temporal synchronization defined in the document. The expected duration of
each event is then established, as will be discussed in the next section. The elastic time adjustment
can also take into account external constraints, as for example, the total document presentation
duration.

Static media object duration (like logos and captions) can be easily adjusted. Continuous media
objects derived from the synthesis of a static content usually are also easy to have their duration
adjusted [Rodr04]. On the other hand, durations of continuous media objects are difficult to adjust,
except by the simple cut or repetition of their last samples.

At compile time, several unpredictable factors may prevent building the whole presentation plan.
For example: there may be rules to chose alternatives that can only be evaluated during runtime; or
the time an object starts may depend on a user interaction over an anchor; or there may be a live
object with unknown duration making part of the presentation.

It should be noted that the presentation plan is not necessarily a timeline. A presentation-plan data
structure based on time chains of events was proposed in Firefly [BuZe93a, BuZe93b]. One main
temporal graph’ is built corresponding to a sequence of predictable presentation events, initiated by
the event that corresponds to the beginning of the document presentation. A predictable event is one
that can have its time of occurrence previewed, based on the occurrence time of another event. For
example, if the duration of an object is known, the event corresponding to the end of its exhibition
can be predicted from the event corresponding to the start of the exhibition. Another example of
predictable event occurs when there is a causal relationship between two objects specifying, for
instance, that the end of the first object exhibition must trigger the starting of the second object
exhibition.

Many multimedia documents have only the main temporal graph, but hypermedia documents
usually have one or more auxiliary temporal graphs of events, each one being initiated by an
unpredictable event; like a user anchor selection, the end of a live object with unpredictable
duration, etc. All events of an auxiliary temporal graph must be predictable in relation to another
event present in the same auxiliary graph.

During runtime, each auxiliary graph is joined to the main temporal graph, as soon as its initial
unpredicted event happens. Therefore, only at the time the last unpredicted event of the document
happens, can the whole temporal graph be obtained.

At compile time, it is only possible to maintain temporal consistency within a temporal graph.
Hence, elastic time computation is evaluated for each one of them, independently.

4. Elastic Time Computation at Compile Time

Algorithmic issues related to the computation of optimal elastic times at compile phase are analyzed
in this section. As explained in the preceding section, a temporal graph associated with the temporal
relationships between events will be built and used to model the optimization problem. It will be
assumed that each event has a variable duration which should be computed within a given elastic
time interval, so that all synchronization relationships between events are satisfied, and a given
criterion measuring the overall cost of the adjustments of object durations is minimized. Several

> Timed Petri Nets and other models can be used in the temporal graph specification, which will be more precisely
defined in Section 4.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

problems can be defined for each type of criterion and for each additional constraint introduced to
model some specific situation. The commonly used objective functions are (see Figure 3):

1. Minimize the weighted sum of absolute deviations from ideal duration values.
2. Minimize the maximal absolute deviation from ideal duration values.

3. Minimize the number of objects with at least one distorted event.
4

Minimize or maximize the total duration of the presentation (or of any subset of objects
contained in the presentation).

Observe that the first two objectives are particular cases of metric functions that measure the
distance to an ideal situation. Any positive convex function that is equal to zero when all events stay
at their ideal duration could be used. The case of euclidean norms (leading to least-square
minimizations) is quite interesting for optimization purpose as it ensures unicity of the optimal
solution, even if it yields a non-linear model. The choice 1 will tend to introduce many alternative
decisions and, at the opposite, the choice of criterion 2 will tend to spread the deviations on many
objects (see Annex 1 for a complete study of an academic model). A compromise between criteria 1
and 3 should be ideal but it is very difficult to be properly implemented, as the third objective
function is purely combinatorial.

Additional constraints can be added in the model, like fixing the duration of the presentation, or
forcing the deviations to lie in a discrete set. The first one is very easy to consider in the model, as it
is a simple synchronization relation of a dummy event associated with the whole presentation. The
second one will lead to mixed-integer mathematical programs, which are very hard to solve.

In the sequel, criterion 1 is chosen for consideration. The main algorithm for continuous convex
cost functions with no additional constraints is analyzed, based on the out-of-kilter method for
minimum-cost flow problems [Fulk61] adapted to temporal graphs (where the flows are induced by
the optimality conditions as dual objects with respect to durations, as explained below). A second
algorithm based on cost-scaling [AhHO99] will also be presented. Temporal graphs are mainly built
from sequential and synchronization constraints and may correspond to a very specific class of
graphs, the series-parallel graphs [BaMa03a], which are wusually much easier to treat
computationally. Unfortunately, not all temporal constraints can be modeled by a series-parallel
structure, which leads to consider quasi series-parallel graphs. A third method is then proposed,
called “reconstruction”, which combines the out-of-kilter with the ‘“aggregation” technique
[BaMa03a].

The numerical study will not only rely on the computational performance of the algorithms, but will
show that the methods should be as simple as possible in its formal adaptation to the real-life cases.
The methods should be scalable, in the sense that the elastic time computation algorithms should
take profit of the results computed before any mismatch® happens, in order to improve the on-the-
fly calculus performance. Discussion on these runtime issues continues in Section 7.

However, the final goal of this study is to provide methods for elastic time computation that take
into account other criteria than the objective function 1 introduced above. It is also important to be
able to:

1. Minimize the number of objects that will have events with expected duration different from
ideal duration (if there is more than one optimal choice with the objective function 1).

% We say that a mismatch occurs when the expected time for an event occurrence, defined by the formatter algorithm, is
no longer satisfied.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

2. Choose the fairest solution that spreads changes in the ideal duration across the objects (in
the case that there is more than one solution that satisfies the synchronization constraints).

3. Minimize the total cost of shrinking and stretching, given a fixed duration for the whole
document presentation.

4. Find the shortest and longest possible duration for the document.

5. Evaluate new ranges for which the temporal consistency of the document is valid, when a
media object begins to be presented. This will be very important to help the formatter in
adjusting object duration on-the-fly.

4.1. Temporal Graph and Optimality Conditions

The basic model is a directed graph G=(X;U), where X is the set of nodes and U is the set of arcs
(let n:|X | and m:|U |). Nodes represent event-state transitions (the start or end of a presentation

event), and arcs represent the precedence relationships between these events. Head and tail nodes
are added to connect all nodes with no predecessor or successor, respectively, in order to represent
the start and the end times of the temporal scenario. Except for the head outgoing arcs (and the tail
incoming arcs), each arc is assigned a cost function. The function defines a feasibility interval

[@“i“,@mx], containing an ideal length é’u , and is supposed to be a positive convex and real function
on the feasibility interval.

When two or more arcs are incident to a common node, synchronization constraints occur, which
correspond in terms of graph theory to the existence of cycles (e.g. [AhMO93]) made of two
directed paths. A graph that represents these synchronization constraints will be called a temporal

graph.

4.1.1. Modeling

We must first observe that, with the temporal graph, we do not intend to model the whole author’s
specification, but only to represent the main part of the temporal constraints. Here are some
examples of how to model author specifications by the temporal graph:

* Let i be a presentation event, as defined in Section 2 and presented in Figure 4a. In the temporal
graph, 7 is modeled by two nodes, s; and e;, which represent the start (s;) and end (e;) of event i
occurrence. Note that some actions, like the preparation (pre-fetch) of the event, are not
considered here. An arc u; is also created to model the duration of event i occurrence. The cost
function related to this duration is then assigned to u;.

* Consider now two presentation events, i and j, which must start at the same time, as shown in
Figure 4b. In the temporal graph, i and j are modeled as above, but the nodes s; and s; are
merged to be a single node s;;.

* Similarly, if i and j are two presentation events that must end at the same time, as illustrated in
Figure 4c, the nodes e; and e; are merged to be a single node e;;.

Note that the resultant graph can contain multiple arcs. Indeed, two events specified with the same
starting and ending time will be represented by two arcs with the same source and target nodes.
Temporal graphs are thus by nature multigraphs.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

10

Event i Event i
A
{ y
Event | Event |

()——()

@) (b) ©

Figure 4 — Temporal graph representation for author specification of hypermedia event relationships.

4.1.2. Definitions

Some definitions that are useful for the description of the mathematical model must be recalled (all
related notions can be found in [AhMO93]). Given a graph:

* A cycle is a chain of arcs, in an arbitrary direction, with a start node coinciding with the end
node. For instance, an elementary cycle is the one formed by two paths with the same source
and target nodes. A cycle v can be seen as an m-vector, where its elements v are equal to +/ (if
the arc u belongs to the cycle in a given direction), -/ (if the arc u belongs to the cycle in the
other direction) or 0 (if the arc u does not belong to the cycle).

* A cut is the set of arcs that connects one subset of nodes to its complement. Like a cycle, a cut w
can be seen as an m-vector, where its elements w. are equal to +/ (if the arc u belongs to the
cut in a given direction), -/ (if the arc u belongs to the cut in the other direction) or 0 (if the arc
u does not belong to the cut).

* A flow is a vector of values assigned to each arc, such that the flow conservation law is satisfied
at each node (thus, the algebraic sum of the flow values on a cut is necessarily zero).

* A potential is a value assigned to a node.

* A tension is a vector of values assigned to each arc, such that each tension value of an arc is the
difference between the potentials of its end nodes (thus, the algebraic sum of the tension values
on a cycle must be necessarily zero).

4.1.3. Minimum-Cost Tension Problem

Former proposals for elastic time computation have been addressed with linear programming. These
models use piecewise linear convex cost functions: [BuZe93b] defined a model based on potentials,
whereas [KiS095] defined a model based on cycles. We will extend the models to deal with general
convex cost functions and give a complete description of the optimality conditions.

Back to the temporal graph, if an initial date 77 is arbitrarily assigned to the head node, we can
assign a date 77 to each node i, which we call the potential of the node. We define 77as an n-vector
with components 77 for each node i. The duration of an object associated to a given arc u=(i,j) can
be seen as the difference of the potentials of its end points. This is indeed the definition of a tension
vector & on the graph, such that 8, =77,—77 on each arc u. The problem is then a minimum-cost
tension problem on the temporal graph [BeGh62]. Using vectorial notation and the node-arc
incidence matrix of the graph, i.e., the (mxn) matrix 4, with elements g, equal to -/ (if u goes out
of node i), +/ (if u goes into node 7) and 0 (for all other cases), the problem is simply:

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

11

Minimize ZCu(a)

ullU

Subject to G=A" 77 Omin<O<Gmx

Note that the problem can be modeled without introducing potential variables, but we need to know
in advance all synchronization cycles. For any cycle, the sum of the arc durations in one direction
must be equal to the sum in the other direction. If S is the arc-cycle incidence matrix, where each
column is a cycle vector (Section 4.1.2), then =477 = S76=0. The problem can thus be modeled

as:

Minimize ZCu(a)

ullU

Subject to S76=0, Gnin<H<H

One may ask how to build the cycle matrix S. Obviously, it is not possible to enumerate all the
cycles of a graph. However, it has been proved that only a subset of cycles, called the cycle basis, is
enough to ensure the tension property. How to find such a cycle basis is presented in [Bach03].

4.1.4. Optimality Conditions

The optimality conditions for convex costs have been derived by Rockafellar for piecewise smooth
convex functions [Rock84] as a generalization of the primal-dual optimality conditions for the
linear case [Fulk61]. They are based on the existence of dual multipliers for tension problems that
define a flow vector ¢ (indeed, the multiplier vector must be orthogonal to the tension space

defined by S76=0, which implies that it is a linear combination of cycle vectors, i.e., a flow). Then,

for each arc u, the pair (@,(Iﬁu) of tension and flow values must lie on the so-called kilter curve,
defined by the graph of the subdifferential of the cost function. In other words, let ¢'(é.) denotes a
subgradient (left or right derivative) of the cost function ¢, so that we have:

1. . (GL):¢u on each arc, such that grin<@, <@,
2. . (Hu)—¢u >0 on each arc, such that &, =@in |
3. cu (Hu)—¢u <0 on each arc, such that g, =g

Thus, the flow value is the marginal cost of the decision on the arc (positive for stretching, negative
for shrinking and zero for keeping the object duration with its ideal value). An immediate
consequence is that, if two arcs belong to the same path in the same cycle, i.e., if they belong to a
common sequence of presentation with no synchronization constraint between them, they have the
same flow (due to the conservation law), so the same marginal cost. Indeed, the flow conservation
implies that the flow values are equal on both arcs.

4.1.5. Feasibility Issues

In the deterministic case, a feasible schedule is characterized by the following conditions. For each
synchronization cycle consisting of two paths p and p’, we have:

:E:ébﬁnSZE:6bmm
ull) ullp' (f)
6%““3 éﬂnm

ulp' ullp

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

12

Consequently, the flexibility interval for a given cycle (p,p’) is:
[maX{H;l)nin, HIIFin},min{H;)nax’ H;Fax}] (* *)

where @, stands for the total path duration. Hence, conditions (*) (that ensure that a feasible

schedule exists) also guarantee that the intervals (**) are not empty. Finding out an initial feasible
tension is by itself an interesting issue that should be solved at real-time, when some unspecified
event affects the predefined schedule during the document presentation.

Cycle Increase Method

A very simple and quite efficient algorithm can be used to solve the problem. It starts with a null
tension. For each arc u, where g, < 0;““ , a cut containing u can be found, for which the tension can
be increased without making any other arc incompatible. The maximum increasing value is
determined and applied to this cut. If g, is still inferior to @™, another cut is searched to increase
the tension of u, else it goes on with another incompatible arc [Hadj96].

Shortest Path Method

Another algorithm, less intuitive, uses the shortest path method. The idea is to consider a potential
7T as the shortest distance between the head node and the node i. It is known that, if the potential
on the whole graph represents shortest distances, the following property is verified for all arc
u=(;j)U : =1 <d,;, where d ; is the length of an arc (**%).

In order to find a feasible tension, we have to look for a potential such that Grin<77,—77 <@ .
Going back to the optimality conditions (***), we would like to have an arc where
7T, —1 <d,; ,=6"> and another arc (the opposite one) where 77 —71,<d;,=—@r"". Thus, the idea is to
search for the shortest distances on the new graph made from the original graph, where all arcs (i,j)
are doubled: when the existing arc (i;j) has the distance 8", a new arc (j,;i) is added with the
distance —@ri» (cf. Figure 5). Using, for instance, the algorithm of Bellman and Ford [AhMO93] to
find the shortest distances, we get a potential that defines a feasible tension. This method is faster
than the previous one (it was shown to be 5 to 50 times faster, depending on the size of the graph
[Bach03]). However, with the previous solution, it is possible to start from an “almost feasible”
tension, what may be interesting during runtime.

e;nax
(i) _ >(j) = i
(6", 6,"] _
_ e Zﬂn

Figure 5 — Transformation to a shortest path problem.

4.2. The Out-of-Kilter Method

The first method proposed in this paper to satisfy the criterion 1 of Section 4 (minimize the
weighted sum of absolute deviations from ideal event duration values) is an adaptation of the out-
of-kilter method [Fulk61], first applied to minimum-cost tension problems [Pla71] in the linear
case. Polynomial and strongly polynomial algorithms have been recently studied [Hadj96], but their
performance in the convex case are still too slow for our purpose. The out-of-kilter algorithm is a

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

13

primal-dual method, which updates tensions and flows, iteratively, until optimality is reached. The
main advantage is that the computations are distributed among the arcs, allowing much more
flexibility than direct methods. The key tool is the kilter curve, which represents the local optimality
condition on a specific arc. We consider two kinds of costs: piecewise linear costs (Figure 6al) and
convex smooth costs (Figure 6a2).

Consider now the kilter curve of an arc u relating its tension &, with its flow @,. For the linear cost,
the kilter curve is represented by Figure 6bl, and for the convex cost, it is shown in Figure 6b2. In
both cases, it is said that an arc u is in-kilter if the pair (6, ; @,) lies on the curve, otherwise the arc
is said out-of-kilter. We can easily prove that if all arcs of the graph are in-kilter, then the tension is
minimum (see the optimality conditions in Section 4.1.4). So, all difficulty is to bring all arcs on
their kilter curve. We first explain how to perform that for piecewise linear costs. Then, we discuss
the convex costs case. The solution strategy is inspired from [Pla71] and [Hadj96] in solving the
minimum-cost tension problem with linear costs.

C 0
Au | Au |
| |
| |
j 77777%777 777_eumax
S A B 6
s g min
| | u
! ! Do
A, 0 <, “
(al) (b1)
c 0,
A" A

(a2) (b2)

Figure 6 — a*) Cost functions. b*) Kilter curves. *1) Piecewise linear. *2) Convex smooth.

4.2.1. Piecewise-Linear Costs
First, we classify the arcs of the graph into 4 categories:

1. arcs below the kilter curve,

2. arcs above the kilter curve,

3. arcs on a horizontal part of the kilter curve,
4. arcs on a vertical part of the kilter curve.

For arcs in category 1, their tension must be increased or their flow must be decreased in order to
improve their position towards the kilter curve. For arcs in category 2, their tension must be
decreased or their flow must be increased. In categories 3 and 4, arcs are in-kilter. For arcs in
category 3, only their flow can be modified without making them out-of-kilter, while for those in
category 4, only their tension can be changed.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

14

Following the seminal work of Fulkerson [Fulk61], we can set that:

» for an arc u in category 1, we can find either a cycle containing u for which the flow can be
decreased, or a cut containing u for which the tension can be increased;

e for an arc u in category 2, we can find either a cycle containing u for which the flow can be
increased, or a cut containing u for which the tension can be decreased.

These statements allow us to present the following algorithm that improves the position of an arc to
its kilter curve:

algorithm improveArc:

if (uis below the curve) then
find a cycle yto decrease the flow of u
or acut wto increase the tension of u;

if (cycle found) then

find A the maximum value the flow on ycan be decreased;
¢= ¢6- Ay
else (cut found)
find 1 the maximum value the tension on wcan be increased;
0= 6+ um
end if;
else /* u is above the curve */
find a cycle yto increase the flow of u
oracut wto decrease the tension of u;

if (cycle found) then

find A the maximum value the flow on ycan be increased;
¢= ¢+ Ay
else (cut found)
find the maximum value the tension on wcan be decreased;
0= 0- um
end if;
end if;

Thus we can propose the following method to make all arcs in-kilter, determining the minimum-
cost tension. The method just applies the previous algorithm successively and repeatedly upon each
arc of the graph until all arcs are in-kilter:

algorithm linearlInKilter:

make &compatible;

¢= 0;
while (an arc u is out-of-kilter) do
for all arc u do
if (u out-of-kilter) then improveArc(u);
end for;
end while;

4.2.2. Convex Costs

The method is slightly different in the case of general convex costs. Indeed, as previously discussed,
to move an arc u closer to its kilter curve, a cycle or a cut (containing «) must be found and the flow
(or the tension) on this cycle (or this cut) must be modified. The flow (or the tension) of all arcs in
the cycle (or the cut) is then modified. However, the flow and the tension are modified one at a
time; they cannot be modified together in a same iteration. If the kilter curve is made of horizontal
and vertical lines (Figure 6b1) like with piecewise linear costs, it is possible to move an in-kilter arc
(by changing either its flow, or its tension) without leaving its kilter curve. In the case of general
convex costs, the kilter curve is no more made of horizontal and vertical lines (Figure 6b2), which

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

15

means that changing either the flow or the tension of an in-kilter arc will automatically make it out-
of-kilter. In order to avoid this problem and still use the out-of-kilter technique, we approximate the
kilter curve by a staircase curve. We then use the method presented for the linear costs to bring all
arcs on their approximate kilter curve and after that we improve the approximation of the curve.
The procedure is repeated until we obtain the desired precision. It is recommended to start with a
weak approximation and then progressively improve it, instead of directly starting with a sharp
approximation. We outline below the algorithm for this method, where p is the precision:

algorithm convexInKilter:
£=0.1 sup{ gfax - gumm , uin U}

while (&> p)do

make all arcs in-kilter with precision & I* Uses algorithm linearInKilter.*
e=sup{ O0.1¢ p}

end while;

4.3. The Dual Cost-Scaling Method

The second method proposed has the same goal as the previous one: to bring all arcs on their kilter
curve. However, the way arcs are moved is quite different. It is based on an algorithm called cost-
scaling for the minimum-cost flow problem [AhMO93], and has been proposed in [AhHO99].

A tension is said &optimal if all arcs of the graph are less than & far from their kilter curve on the
tension component, i.e., on the curve or in the gray area in Figure 7.

0,
A
max €
. %J
A le
eu IS I
min_ IE
0, IS
: 1 ! > ¢u
M -c, c M

Figure 7 — &kilter curve.

The algorithm starts with a high value of & so that any feasible tension is obviously &optimal. It
has been proved that € =4 = mm%x(ﬁ,fni“ ;87 is such a value [AhMO93]. It has been also proved

that if £<1/n (where n is the number of nodes in the graph), then any &optimal tension is optimal
[AhMO93]. The algorithm reduces the £value, in each step, making the tension &2-optimal from an
&optimal tension. Note that, for the purpose of the algorithm, it is required to bound the flow in an
interval [-M;M], where M is chosen to be the cost of any feasible tension [Bach03]. The main
procedure of the algorithm can be stated as follows:

algorithm dualCostScaling:

= 0;
E=A;
¢= 0;

while (&£ = 1/n)do

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

16

make 77 goptimal;
= 4d2;
end while;

Making the tension &2-optimal from an &optimal tension is defined as follows. First, a pseudo-
flow is built, i.e., the flow values of the arcs are put directly on the curve, on the nearest point (see
Figure 8a). Hence, the flow conservation law is not satisfied anymore (i.e., for any node i,

Z¢u - Z¢u =0 is not always verified).
u=()) u=(i)

o - £/2
\/

€/2] |

(@) (b)
Figure 8 — Pseudo-flow.

Then, without moving any arc from the &2-kilter curve, the algorithm attempts to satisfy the flow
conservation law. The process consists in finding an excess node i, i.e., a node with
Z¢u— Z¢u >0 . The excess of flow is then withdrawn from the adjacent arcs. In other words, we
u=(ii) u=())
search for incoming arcs whose flow can be reduced or outgoing arcs whose flow can be increased.
To avoid any loop in the algorithm, the flow of an arc is increased/decreased only if it is
above/below the curve [AhMO93]. If the flow cannot be entirely evacuated, the node potential is
decreased of &2 (Figure 8b), therefore tensions of the incoming arcs decrease and tensions of the
outgoing arcs increase. Thus, these arcs are moved to potentially provide flow capacity to evacuate
the excess of flow. Note that this operation does not move any arc from its kilter curve. The whole
procedure to make a tension &optimal can be stated as follows:

algorithm makeEpsilonOptimal:

build pseudo-flow #;

while (an excess node i exists) do

a= D b= D b

u=(j;i) u=(i; j)

while (g>0) do

if (an arc u=(i;j) canincrease its flow without leaving its kilter c urve) then
increase @y to its maximum;
else if (an arc u=(j ;i) can decrease its flow without leaving its kilter ¢ urve) then
decrease @y to its minimum;
else n= m- 42

end while;

end while;

4.4. The Reconstruction Method

Although the previous two methods work on any graph, we propose to investigate the class of
series-parallel graphs (or SP-graphs), because they bear many common features with hypermedia

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

17

temporal graphs. Indeed, these latter graphs get their particularities from the existence of parallel
paths (representing parallel presentations) between two nodes (events that synchronize the parallel
presentations), and the cycles formed by these paths are nothing but elementary series-parallel
graphs.

However, hypermedia temporal graphs are not exactly series-parallel. We explain later that, for
instance, the overlaps temporal relation is modeled with a graph that is not series-parallel, but is
very close. Such graphs are called quasi series-parallel graphs, or QSP-graphs. We propose first a
method, called aggregation, to solve the tension problem on SP-graphs, and then we explain how to
extend the technique to QSP-graphs.

4.4.1. Introduction to Series-Parallel Graphs

Formally, an SP-graph is a graph that cannot be reduced to a complete graph of 4 nodes (the K4
clique). More intuitively, they are graphs that can be constructed by iterative application of the two
basic operations:

* Sequential (or series) splitting: an arc u=(x,y) is separated into two consecutive arcs, u;=(x,z)
and u,=(z;y), by the introduction of an intermediate node z (Figure 9a). The series relation that
binds u; and u, is denoted u;+u,.

» Parallel splitting: an arc u=(x,y) is substituted by two parallel arcs, u;=(x,y) and u,=(x,y), with
the same end points (Figure 9b). The parallel relation that binds «; and u; is denoted u;//u,.

u -) u 2 u -
(@)

®)
Figure 9 — SP-relations.

Series and parallel relations are gathered under the term SP-relations. The SP-relations are binary
operations, so we can represent an SP-graph by a binary tree called SP-tree. Figure 10 shows an SP-
tree of an SP-graph. Reference [BaMa03a] explains how to find such a tree in linear time.

Figure 10 — Example of SP-tree.

As shown by Figure 11, most of Allen’s temporal relations are series-parallel. Only the overlaps
relation is not series-parallel: the arc linking the start of object B with the end of object 4 breaks the
series-parallel property.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

18

ANy B oty ©

A meets B @ e

O A »O) »O B > - e B
A before B

@) @ O
B
-4 8 e
L o4 B
A finishes B o a - e B
@
@)

A starts B
B D,
~
@ @

A equals B —

O
A during B
= No SP-tree
O O

A overlaps B

Figure 11 — Allen relations and series-parallel property.
4.4.2. The Aggregation Technique

The aggregation method, which allows solving the minimum-cost tension problem only on SP-
graphs, has been introduced in [BaMa03a]. The algorithm works on an SP-tree 7 derived from an
SP-graph G, recursively: considering an SP-relation, the algorithm assumes that the optimal
tensions of the two subgraphs implied in the relation are known, and from them, it is possible to
quickly build the optimal tension of the whole SP-relation. Hence, starting from the leaves of 7, the
optimal tension of each SP-relation is built to finally reach the root of the tree 7.

From the definition of an SP-graph, it is obvious that an SP-graph has only one head node and only
one tail node. Therefore, the main tension @ of an SP-graph is defined as the tension between its
source s and target ¢, i.e., @=77 —7% . To get an efficient algorithm, the minimum cost function Cg of

an SP-graph G must be defined. This function represents the cost of the optimal tension, where the
main tension is forced to a given value:

Cs(x) =min{ZCu(a,)E:x}

ullU

As each function ¢, is convex, the minimum cost function is indeed convex. We try now to find a
procedure to build this function for an SP-relation. Let us consider two series-parallel subgraphs

G, and G, , and suppose that their minimum cost functions C, and C_ , respectively, are known.

1

The minimum cost function C_ , =~ of the SP-relation G; +G, is given by:

G,

C =min C_ (x)+C _ (x
G, +G, x=x, +x, Gl(1) Gz(2)
As explained in [BaMa03a], this function can be built in linear time, needing precisely O(p)
operations, where p is the sum of the pieces of both functions C, and C_, (Figure 12a).
1 2
Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

19

>

\4

v
\4

>

Cu +G >
A
CG‘ G
A
(a) (b)
Figure 12 — Aggregation technique.
The minimum cost function C, ~— of the SP-relation G, /G, is:
1 2

Co,16,=C, 0)+Cg, ()
This is a simple sum of functions that can be built also needing O(p) operations (Figure 12b). The
full details of the aggregation technique are proposed in [BaMa03a]. However, the main procedure
consists in starting from the leaves with a single SP-relation between two arcs, and building the
minimum cost function associated with the SP-relation u;+u, (or u;//u;). The procedure then goes
on with another node of the tree, i.e., with another SP-relation, until it reaches the root node. At this
moment, the minimum cost function of the whole graph is known, making it easy to identify the
minimum cost value and thus to build the associate minimum cost tension.

4.4.3. Decomposition and Reconstruction

Hypermedia temporal graphs are very close to SP-graphs (e.g. the overlaps relation in Figure 11).
However, they are quite more complex. Most of their structure is series-parallel, and a few
constraints are added that break this property. We propose the notion of SP-perturbation, to measure
how far they really are from the series-parallel graphs.

A quasi SP-graph or QSP-graph G=(X;U) is such that the removal of a minimal subset of arcs, U’
[J U, from G makes the remaining graph G’'=(X;U\U’) series-parallel. The ratio |U’|/|U] is called
the series-parallel perturbation, or SP-perturbation, of graph G. This value indicates how many
arcs of G are disturbing the series-parallel property of G. From this definition, any connected graph
is a QSP-graph, but we prefer to use this term for graphs with a small SP-perturbation (in
applications issued from the hypermedia field, 10% seems a satisfying threshold).

As the aggregation method cannot be used “as it is” on QSP-graphs, and the dual cost-scaling
approach proves to be less efficient than the out-of-kilter on SP-graphs (see Table 1), we propose a
method called reconstruction to solve the minimum-cost tension problem on QSP-graphs. This new
approach combines the aggregation and the out-of-kilter techniques based on an SP-decomposition
of the graph.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

20

Decomposition Phase

We call series-parallel component or SP-component of a graph G an SP-subgraph of G. A series-
parallel decomposition, or SP-decomposition, of a graph G is a set of arc-disjoint SP-components,
whose union is G. [BaMa03b] discusses ways to obtain a “good” SP-decomposition that fits the
reconstruction process.

The method starts with the search for an SP-decomposition D of a graph G. Then the minimum-cost
tension problem is solved on each SP-component of D with the aggregation method. Thus, for each
component D, in D, its minimum cost function C, and its optimal tension & are known, so D, can
be seen as a single aggregated arc u with a convex piecewise linear cost function ¢,=C, and a
tension & .

Reconstruction Phase

The method attempts next to put the SP-components back together. An iterative process consists in
adding one by one the aggregated arcs into a new graph, rebuilding the original graph G. Starting
with H°=(X%U%=(1;0), at each step an aggregated arc wu=(x;y) is added, i.e.,

H* =X+ ey U 0fu}) .

The newly added arc u may be out-of-kilter (and it is the only one) because even if its tension is
optimal, its flow must be set to 0 in order to keep the flow conservation law on the whole graph H".
Fortunately, as this arc is the only one out-of-kilter, repetitive search for a cycle or a cut to modify,
respectively, either the flow or the tension of the arc u can be performed with few operations
[BaMa03b]. Once the arc is in-kilter, the whole tension on H* is optimal and another aggregated arc
v can be added.

Tension Adjustment

However, adding an arc into the graph is not that obvious. Consider the aggregated arc u=(x,y); the
optimal tension &, of u may not be equal to the difference of potentials 7z,—7%:. This can be

achieved using the minimum cost function C, of the arc u to optimally adapt the main tension of the
SP-component aggregated behind u. This computation can be performed in linear time, as explained
in [BaMa03b].

SP-Component Splitting

For the need of the reconstruction, we assume a partial order on the components of the SP-
decomposition D, such that if the head node or the tail node of an SP-component D, belong to an
SP-component D,, then D,<D,. Decomposition methods presented in [BaMa03b] prove that such an
order exists for any graph. During the reconstruction phase, the SP-components are added following
this partial order.

Another problem arises when adding an aggregated arc u=(x,y) into the graph H*: maybe the head
node x and/or the tail node y of u are not present in H*, because they are simply hidden in one of the
aggregated arcs v of the graph H*. Hence, the arc v should be replaced by the whole SP-component
D, it is hiding, making thus x and/or y visible. All arcs of the SP-component D, are then brought

back into the graph H* (i.e., H*'=H*OD, —{v}). We call this operation the splitting of arc v.

The drawback of this technique is that the biggest SP-component, added behind a single aggregated
arc at the first step, is certainly split at the second step, because nodes will obviously be needed for

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

21

the second added arc. This approach reveals to be extremely inefficient, as most of the arcs will be
brought back in the graph only at the second step. Thus, we need a smarter way than totally splitting
a SP-component. [BaMa03b] proposes a technique to split an SP-component into several pieces,
reducing their numbers to the minimum necessary.

Conservation of the In-Kilter Property

After splitting an aggregated arc u=(x,y), the resultant arcs must be in-kilter to keep the whole
graph H* optimal. Thus, knowing arc tensions, it is straightforward to find an interval in which arc
flows must lie: indeed, with our assumptions, the kilter curve is a step function [BaMa03b].

For each arc v of the SP-component D,, an interval /e, f,/ can be defined. Let suppose an arc w
from the head node x to the tail node y of the SP-component, with the capacity interval [¢u;¢u],
where @. is the flow of u in the whole graph H Finding a flow ¢@. for each arc v of the SP-
component D, turns to find a feasible flow @ in the SP-component (with the added loop arc w).
Suitable methods to solve this classical network flow problem can be found in [AhMO93].

Algorithm

The following algorithm summarizes the whole process of the reconstruction method.

algorithm reconstruction:

find SP-decomposition D:{Du }u=l..k ;
let Hbe an empty graph;

for all (SP-component D,00D) do
find minimum cost tension for D, using aggregation;
let u=(x;y) be the aggregated arc of D, ;

while (exists D, with Dy<D, and(xUID, and YLD,))do
split D, ;
find tension for each arc of D, using C ;

find flow for each arc of D, ;
end while;

add arc uin H;

find minimum cost tension for H using out-of-kilter;
end for;

for all (aggregated arc uin H)do

split D, ;

find tension for each arc of D, using Cu ;
end for;

4.5. Computational Results

Extensive computational testing on medium- and large-scale temporal graphs has been performed to
compare the behavior of the algorithms presented in this section for different objective functions. In
the case of piecewise linear cost functions (which include the min-sum and min-max metric
functions), the comparison could be extended to linear programming codes like GLPK’. Tables 1, 2

7 http://www.gnu.org/software/glpk/glpk. html

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

22

and 3 present a practical comparison of methods with piecewise linear costs. The tables offer an
idea of how the methods behave on SP-graphs (Table 1) and on QSP-graphs (Tables 2 and 3). Table
1 shows performances for SP-graphs when their size varies. Table 2 shows results when the size of
the QSP-graphs varies. Table 3 points out the performances of the methods for various SP-
perturbations.

Results are expressed in seconds on a Celeron 500 MHz processor under a Linux operating system.
We used GNU C++ 2.95 compiler and its object-oriented features to implement the methods. The

results are means of series of 10 tests on randomly generated graphs. Both 4 = rnDax(H;‘i“ ;80™) and
uldU

B= mD%X(CiQCf) are fixed to 1000.

Nodes | Arcs | GLPK | Kilter | Dual | Aggregation
(O] e |))

50 200 0.11 0.02 | 0.04 0.01

50 400 032 | 0.04 | 0.07 0.03
100 400 0.39 | 0.05 | 0.09 0.03

100 800 1.23 0.12 | 0.20 0.06

500 | 2000 | 9.66 | 091 | L.55 0.15
500 | 4000 | 33.69 | 1.85 | 3.32 0.33
1000 | 4000 | 39.73 | 2.80 | 5.2 0.32
1000 | 8000 | 132.81 | 4.53 | 9.5 0.67

Table 1 — Results on SP-graphs.

On Table 1, the aggregation technique appears clearly to be more efficient than any of the other
methods. However, the graphs are too ideal for real hypermedia synchronization cases.

Nodes | Arcs | GLPK |Kilter | Dual | Reconstruction
®) ®) ®) (s

50 200 0.08 0.02 | 0.03 0.05

50 400 0.23 0.04 | 0.07 0.10

100 400 0.25 0.07 | 0.09 0.12

100 800 1.05 0.16 | 0.18 0.24

500 2000 7.56 148 | 1.57 0.95

500 4000 | 3479 | 3.21 | 3.24 1.97
1000 | 4000 | 35.51 5.27 | 4.54 2.69
1000 | 8000 | 249.61 | 11.43 | 8.70 5.62

Table 2 — Results on QSP-graphs, graph size influence (SP-perturbation=4%,).

On Table 2, with a SP-perturbation set to 4%, the reconstruction method appears to be the most
efficient on large graphs (over 500 nodes and 2000 arcs), whereas the single out-of-kilter method is
faster on small ones (below 500 nodes and 2000 arcs). The way the graph is decomposed in SP-
components and how the components are split during the reconstruction process is a key to good
performances. Further information can be found in [BaMa03b].

SP-Perturbation | GLPK | Kilter | Dual | Reconstruction
(%) (s) (s) (s) (s)
2 12.58 1.85 | 2.28 1.13
4 17.65 | 2.21 | 2.45 1.45
6 21.63 | 2.63 | 2.27 1.78
7 26.50 | 2.80 | 2.11 2.03
8 25.17 | 2.83 | 2.12 2.26
9 28.51 3.07 | 2.11 2.42

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

23

10 2832 | 327 | 2.12 2.78
15 37.38 | 3.86 | 2.06 4.41
20 45.05 | 447 | 2.02 6.43

Table 3 — Results on QSP-graphs, SP-perturbation influence (500 nodes, 3000 arcs).

Only the out-of-kilter method can deal with convex differentiable costs. Table 4 shows its behavior
when the objective function is a least squares function (see Annex 1) and the precision of the results
varies. The performances indicate that such costs can only be considered at compile time.

Precision Kilter
1/n (s)
1 1.89
10 2.61
100 343
1000 5.18
10000 12.25

Table 4 — Results for convex costs (100 nodes, 400 arcs).

5. Prefetching and Reservation Issues

At compile time, mismatches can be smoothed out by adaptation mechanisms, improving the
resultant document appearance. However, unpredictable behavior can be handled only during
runtime. Unfortunately, during runtime, mismatches (event occurrence different from its expected
time in the presentation plan) are detected only when part of the document has already been
presented. This delay in detection limits the formatter ability to smooth out mismatches. Even
though the synchronization can be recovered, part of the presentation will lose quality. These are
reasons why a formatter needs not only supporting both compile-time and runtime adjustments, but
also having some mechanism that anticipates actions specified in the document, reducing the
probability of adjustments during runtime.

The main idea is to build a prefetching plan. Based on this plan, document objects (their contents)
are prefetched before they are requested to be played, even in the case of random requests. The
addition of a prefetching/caching mechanism in hypermedia formatters is important not only to
reduce the probability of adjustments during document runtime, but also to minimize object
presentation lags and compensate content jitter.

The prefetching plan can be built based only on the presentation plan information. However, it is
important that it also takes into account context aware information, such as the performance
parameters of the Hypermedia System SOE - service offering environment (Section 1) — (delays
and jitters imposed by the network, operating systems, media players, and other components;
available bandwidth; etc.), history of past requests, object lengths, availability for resource
reservation, etc. Note that the prefetching plan may indeed be a timeline as opposed to the
presentation plan.

SOE resource reservation information can be obtained from in advance QoS negotiation
mechanisms. Resource reservation in advance will return the best moment to accomplish the
prefetch and to reserve resources in the Hypermedia System SOE. However, neither network
signaling protocols nor operating systems do this kind of reservation in current implementations.
Thus, heuristics must be employed to build the pre-fetching plan, based only on assumptions about
the SOE performance parameters. Several strategies for building the plan were proposed in the
literature [JeHK97, KhTa01].

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

24

Analogous to the presentation plan, the prefetching mechanism can be divided into two phases:
compilation and execution. At compile time, the prefetching plan is generated. During execution
phase, the prefetching plan actions are scheduled and monitored, triggering adjustments when
possible mismatches occur.

If the prefetching plan is built without resource reservation in advance, a QoS request for each
object must be made based on the time specified for the object prefetch. If a QoS request cannot be
provided, or if any violation on the QoS established contract occurs, the prefetching plan should be
corrected.

Some Hypermedia SOEs, however, do not allow QoS negotiation on all their resources (or none of
them); for example, a hypermedia system using a communication provider implemented by a
network without QoS guarantees. In this case, the real prefetching parameters for each object should
be monitored. If a mismatch between these parameters and those used to estimate the prefetch time
occurs, the prefetching plan should also be corrected.

In any case demanding corrections, if they are possible or not, the presentation plan must be
adjusted accordingly. On the other hand, at any time and for any reason, once the presentation plan
is modified, the prefetching plan must be adjusted.

6. Execution Time Adaptation

As aforementioned, during compile time, several unpredictable factors may prevent building the
whole presentation plan, such as rules to choose alternatives that must be evaluated during runtime,
object start time that depends on a user interaction, live object with unpredictable duration, etc.

During runtime, context information is in continuous change, especially those associated to SOE
performance parameters, which may cause changes in the presentation plan.

As pointed out in the previous section, the presentation plan can also be adjusted due to necessary
adjustments in the prefetching plan. If in any moment the loading of document objects cannot be
guaranteed in restricted accordance to the presentation plan, this plan should be adjusted.

Presentation events coming from exhibition tools (video, audio, text and other content players)
should also be monitored and compared with their predicted time as established by the presentation
plan, in order to prevent loss of synchronization among document objects.

In general, if any change or violation that impairs the presentation is detected, the presentation plan
should be adjusted. Every time the presentation plan changes, adaptations may be required,
particularly those to maintain the temporal consistency of the document. Note that in this case,
adaptations are made on the fly, and must be rendered as fast as possible. Sometimes, elastic time
computation may be necessary to resolve or minimize the problem (modifying content presentation
bit rate or duration).

7. Elastic Time Computation During Execution Time

7.1. Mismatches

As aforementioned, during runtime, mismatches are detected only when a portion of the document
has already been presented. This delay in detection limits the ability of the formatter to smooth out
mismatches. During compile time, the possible mismatches can be smoothed out improving the

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

25

appearance of the resultant document. However, only at runtime, unpredictable behavior can be
handled. These are the reasons why a formatter needs to support both compile-time and runtime
adjustments.

When runtime mismatches cause adjustments in event duration, the expected duration of the
subsequent events should be recomputed, since the calculus made at compile time may be no more
valid. The formatter should run again the elastic time algorithm, now considering the exact duration
of the already presented events and the real-time computation requirement. Thus, the elastic time
computation should be scalable, in the sense that the algorithm should take profit of the results
computed before any mismatch happens, in order to improve the calculus performance that must be
done on-the-fly.

Depending on the severity of the mismatches, the real-time calculus may require heuristics, since
the optimum calculus can be very time expensive. However, looking back at the results of Section
4, it appears that for common sizes of hypermedia documents (less than 100 temporal constraints),
the compile-time algorithms are fast enough to be used in real-time.

Nevertheless, there are situations where it is possible to use smarter techniques to keep the
synchronization optimal and avoid recomputing the whole schedule. Let us consider the temporal
graph of Figure 13, and suppose that an optimal tension has already been computed for that graph.
We identify three different cases of mismatches that can occur during the presentation:

:

mismatch detection

Figure 13 — Mismatch examples.

* A delay appears in the presentation of one media object, modifying the length of one active
event, for instance in chain C, in Figure 13.

* An unpredictable event appears, for instance the user clicks on a button that starts a new
chain of presentation, for example Cy in Figure 13.

* The user decides to stop a chain, e.g. Cs in Figure 13.
7.2. Recovering an Optimal Schedule

Note that the out-of-kilter method is scalable. Let consider a single delay in chain C;, and suppose
the detection of the delay appears at the time events B and D should start. That means chain
C;’+C5//C3+C, must be shrunk, and/or chain Cs’’ stretched. We choose an arc u, for instance the
first arc of C;’” and decrease its tension so the tension of C;’+C,//C;+C, equals the tension of Cs”’.
Thus the arc u is not in-kilter anymore, and maybe is not even compatible (i.e., out of its tension
bounds). The idea is to use the improvement procedure of the out-of-kilter method (cf. Section 4)
and apply it to arc u until it becomes in-kilter. For arcs that have already been presented, the tension

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

26

bounds are fixed to their past duration. As no other arc of the graph is out-of-kilter, at the end of the
procedure, either the arc is still not compatible, which means that no solution exists for the set of
synchronization constraints, or the arc is on its kilter curve and the synchronization schedule is
optimal. Only a few iterations of the improvement procedure are requested (which is a fast
procedure in O(Km) operations, where m is the number of arcs in the graph and K is a constant
established from the data of the synchronization constraints [Bach03]).

In the case of an unpredictable event that adds a chain Cy in the temporal graph at event D, the
strategy will be close to the former one. An arc u of chain Cg is chosen and its tension adapted so
the tension of Cys equals the tension of Cs’’. The arc u is still the only one not in-kilter because, at
compile time, an optimal schedule of Cs has been determined, totally independent of the other
chains of the temporal graph. In this situation too, if a synchronization is possible, an optimal
schedule is found.

If the user decides to stop chain Cs at event D, the remaining presentation will be correctly, but not
optimally, presented, according to the new temporal graph. The chain Cs’’ is removed, but the flow
conservation law is not satisfied anymore for the nodes D and F. To recover the correct balance, a
fictitious arc u is added between D and F with a flow equal to the flow of Cs’’, a null cost and no
tension bounds. The only out-of-kilter arc is u, but in opposition to the other cases, a
synchronization is always possible. Like in the previous situations, an optimal schedule can be
found with a few iterations of the improvement procedure applied on arc u.

7.3. Series-Parallel Chains and Aggregation

The study on SP-graphs of Section 4 can be interesting for the real-time computation of an optimal
schedule. As explained in that section, the aggregation technique, which solves the minimum-cost
tension problem on a SP-graph, does not only provide an optimal tension, but also provides a
minimum cost function and associate information that allows, in linear time, to adjust the
presentation of a whole SP-graph optimally. To sum up, a series-parallel chain can be replaced by a
single arc (of course, with a much more complex cost function, but still a step function fully
adapted to the out-of-kilter technique), as presented for the reconstruction technique in Section 4.

Therefore, it can be considered to use the aggregation technique at compile time to compute the
minimum cost function of all the elementary series-parallel chains of the temporal graph, and try to
use them during runtime to speed-up the improvement process of the out-of-kilter. This technique
seems promising but needs to be thought through to identify situations where the gain is significant.

8. Related Work

The Firefly system formatter [BuZe93a, BuZe93b] has introduced the idea of temporal chains (one
main schedule and zero or more auxiliary schedules). It has also separated the presentation control
in two phases, compilation and execution. One of the main drawbacks in Firefly is that its execution
plan (temporal graph) is a simple timeline of presentation actions, making difficult the
implementation of runtime adjustments.

Elastic time computation has been addressed in Firefly and Isis [KiS095]. However, they only
consider models with piecewise linear convex cost functions (Firefly model is based on potentials,
whereas Isis model is based on cycles). They propose to solve them with the simplex method, which
is suitable only for compile-time adaptation. As discussed in Section 4, our proposal extended these
models to general convex cost functions and gave a complete description of the optimality
conditions. Section 4 and 7 also discussed how our proposals can be used in runtime computations.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

27

Moreover, Firefly and Isis formatter architectures do not preview the existence of prefetching
mechanisms.

Madeus [LaSR02] is an authoring and presentation system for interactive multimedia documents
based on spatio-temporal constraints among media objects. The system also offers temporal
flexibility through media object duration specifications, which can be defined as an interval,
establishing a lower and an upper limit value.

In its compile phase, Madeus formatter computes for the predictable (or controllable) objects their
expected duration (the nominal duration) and builds a temporal graph, named HSTP (Hypergraph
of Simple Temporal Problems). This graph can be considered as the Madeus presentation plan.

During the execution phase, the formatter monitors the effective duration of each media object and
compares them with the expected values. When any deviation that can cause a future
synchronization loss is perceived, the Madeus formatter applies an adjustment algorithm, but
without considering optimization metrics. The main goal is to quickly find a new presentation
arrangement that satisfies the duration interval constraints. The Madeus formatter also monitors the
duration of unpredictable events in order to verify if their presentation end require duration
adjustments.

The Madeus formatter does not deal with prefetching and context-oriented adaptation issues.
Although offering an algorithm for elastic time adaptation on the fly, the solution uses a greedy
approach, without concerning about the qualitative result.

Similar to the other formatters, CMIFed formatter (named CMIFed Player) [Ross93] builds a graph
of temporal dependencies to identify the moments to fire the presentation actions. Basis for GRiNS®
player implementation for SMIL [W3CO01] document presentation, the system can perform some
context-based adaptations, but no elastic time adjustment is mentioned. In SMIL version 2.0 the
introduction of intervals for defining object duration allows elastic time computations, but like
Madeus, no metrics are available for measuring the adapted presentation quality. Actually, we are
now investigating how to extend SMIL to accommodate elastic time computation algorithms.

Jeong et al. [JeHK97] developed a mechanism for pre-scheduling multimedia presentations.
However, the proposal only considers documents exclusively based on predictable relationships and
predictable media object durations. During document runtime phase, there is a monitor that
compares the object actual prefetching duration with the expected duration previewed in the plan. If
the actual duration overcomes the predicted one, the system runs an instant scheduling algorithm for
recalculating object presentation durations, in order to maintain the temporal segment
synchronization. When necessary, the algorithm sacrifices static media objects, shrinking their
durations. No elastic time computation based on metrics are available for measuring the adapted
presentation quality.

Finally, it is important to comment that although some proposals discussed in this section deal with
the elastic time computation, none of them comments about how to apply these adjustments in
continuous-media contents, except by the simple cut or repetition of their last samples. HyperProp
players, exemplified by the “Expressive Talking Heads” [Rodr04] is a step towards this goal.

¥ http://www.oratrix.com

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

28

9. Final Comments and Future Work

This paper proposes new algorithms for elastic time computation. One of them is based on the “out-
of-kilter” method for minimum-cost tension problems, which allows much more flexibility to model
real-life situations. The algorithm is general, in the sense that it can deal with general convex cost
functions.

Another approach, the “dual cost-scaling” is also proposed, which converts the problem into a
minimum-cost flow problem solved with the well-known “cost-scaling” method. This method is
better adapted for big graphs at compile time.

Both algorithms are extensively compared and both outperform the simplex method, used in
previous work, when dealing with piecewise linear costs.

In order to be used during runtime, the elastic time computation should be scalable, in the sense that
the algorithm should take profit of the results computed before any mismatch happens, in order to
improve the calculus performance that must be done on-the-fly. This is the case of the out-of-kilter
method, which can be adapted to runtime issues, as discussed in Section 7.

A new method offering similar performances and based on specific structure of temporal graphs,
called “aggregation”, is also presented. Working only with piecewise linear convex cost functions,
the aggregation-and-reconstruction technique manages the series-parallel aspect of the temporal
constraints. The technique provides an efficient resolution time that makes the method not only
suitable to be used in the compile-time algorithm, but also to develop runtime heuristics, opening
new possibilities for runtime computation.

Turning back to the five goals presented in the beginning of Section 4, it is possible to discuss
directions for future work.

The first goal is an NP-Complete problem, requiring the use of heuristics and approximations,
which is a research already under development [MeRS02]. A solution for series-parallel graphs has
also been developed, using the aggregation technique [Bach04]. Although the theoretical
complexity of the method is exponential, results show a good practical behavior: for a 50 nodes and
100 arcs graph, the problem is solved in 0.5 second on a 1800 XP+ processor.

The results presented in this paper allow to conclude that the second goal can be easily reached for
continuous cost functions. However, for discrete functions it is also an NP-Complete problem that
must be investigated.

The third goal is naturally reached by the proposed temporal graph, by adding two nodes, N; and
N>, and three arcs: the first linking N; to N, and having the desired presentation duration, and the
other two linking the head node to N; and N to the tail node, respectively. The fourth goal was also
solved by the temporal graph. To obtain the minimum and maximum possible duration for a given
presentation, the idea is similar to the previous one, but now, instead of fixing the N; to N, arc
duration, one should set its feasibility as indeterminate.

Goals concerning on-the-fly issues are discussed in Section 7, in special using series-parallel chains
and aggregation. It can be considered to use the aggregation technique at compile time to compute
the minimum-cost function of all the elementary series-parallel chains of the temporal graph, and
try to use them during runtime to speed-up the improvement process of the out-of-kilter. This
technique seems promising but needs to be thought through to identify situations where the gain is
significant.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

29

Regarding cost function specification, SMIL 2.0 introduces intervals for defining object duration,
allowing elastic time computations, but no metrics are available for measuring the adapted
presentation quality. We are now investigating how to extend SMIL to accommodate elastic time
computation algorithms.

Finally, static media object duration can be easily adjusted but the same is not true with continuous
media. We are also concerned in how to apply duration adjustments in continuous-media contents,
besides the simple cut or repetition of their last samples. HyperProp tools for synthesized audio and
video, exemplified by the ETHs [Rodr04] is a step towards this goal, as aforementioned. We are
now working on multimedia content analysis for content adaptation for MPEG audio and video, and
audio analysis for MPEG video adaptation.

The final goal is to integrate the elastic time computation algorithms with players that are able to
perform the calculated adjustments without perceptual losing (or losing a minimum) of presentation
quality.

References

[AhMO93] Ahuja R.K., Magnanti T.L., Orlin J.B. Network Flows, Prentice Hall, 1993.

[AhHO99] Ahuja R.K., Hochbaum D.S., Orlin J.B. Solving the Convex Cost Integer Dual Network Flow
Problem. Lecture Notes in Computer Science, volume 1610, 1999, pp. 31-44.

[Alle83] Allen J.F. “Maintaining Knowlegde about Temporal Intervals”. Communications of the ACM,
26(11), November 1983, pp. 832-843.

[Bach03] Bachelet B. Modélisation et optimisation de problémes de synchronisation dans les documents
hypermédia. PhD Thesis, Université Blaise Pascal, Clermont-Ferrand, France. Available in
http://frog.isima.fr/bruno/?doc=phd_thesis.

[BaMa03a] Bachelet B., Mahey P. Minimum Convex-Cost Tension Problems on Series-Parallel Graphs.
RAIRO Operations Research, volume 37,2003, pp. 221-234,

[BaMa03b] Bachelet B., Mahey P. Minimum Convex Piecewise Linear Cost Tension Problem on Quasi
Series-Parallel Graphs. Research Report RR-03-19, LIMOS, Blaise-Pascal University, Clermont-Ferrand,
France, 2003. Available in http://www.isima.fr/limos/publi/paper/2003/RR03 19.pdf-

[Bach04] Bachelet B. Aggregation Approach for the Minimum Binary Cost Tension Problem. Research
Report RR-04-08, LIMOS, Blaise-Pascal University, Clermont-Ferrand, France, 2004. Available in
http://www.isima.fr/limos/publi/paper/2004/RR0408.pdf.

[BeGh62] Berge C., Ghoula-Houri A. Programmes, jeux et réseaux de transport. Dunod, 1962.

[BoKW99] Boll S., Klas W., Wandel J. “A Cross-Media Adaptation Strategy for Multimedia Presentation”.
ACM Multimedia, Orlando, USA, October 1999.

[BuZe93a] Buchanan M.C., Zellweger P.T. “Automatic Temporal Layout Mechanisms”, ACM International
Conference on Multimedia, California, USA, 1993, pp. 341-350.

[BuZe93b] Buchanan M.C., Zellweger P.T. “Automatically Generating Consistent Schedules for
Multimedia Documents”. ACM Multimedia Systems Journal, Springer-Verlag, 1(2), September 1993, pp. 55-
67.

[BSRS04] Bulterman D., Soares L.F.G., Rodrigues R.F., Soares Neto C.S, “QoS Provisioning in Adaptive
Hypermedia Formatters”, Technical Report of TeleMidia Lab, PUC-Rio, Rio de Janeiro, Brazil, May 2004.

[DeSA01] Dey A.K., Salber D., Abowd G.D. “A Conceptual Framework and a Toolkit for Supporting the
Rapid Prototyping of Context-Aware Applications”. Human-Computer Interaction (HCI) Journal - special
issue on Context-Aware Computing, 16(2-4), 2001, pp. 97-166.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

30

[DiSé94] Diaz M., Sénac P. “Time Stream Petri Nets, a Model for Timed Multimedia Information”,
Proceedings of the 15th International Conference on Application and Theory of Petri Nets, Zaragoza, 1994,
pp. 219-238.

[DuKe95] Duda A., Keramane C. “Structured Temporal Composition of Multimedia Data”. Proceedings of
the IEEE International Workshop on Multimedia Database Management Systems, Blue Mountain Lake,
USA, August 1995.

[Fulk61] Fulkerson D.R. “An Out-of-Kilter Method for Minimal Cost Flow Problems”. SIAM Journal on
Applied Math., vol. 9, 1961, pp. 18-27.

[Hadj96] Hadjiat M. Problémes de tension sur un graphe — Algorithmes et complexité. PhD Thesis,
Université de la Méditerrannée, Marseille, France, 1996.

[JeHK97] Jeong T., Ham J., Kim S. “A Pre-scheduling Mechanism for Multimedia Presentation
Synchronization”. IEEE International Conference on Multimedia Computing and Systems, Ottawa, Canada,
1997, pp. 379-386.

[KhTa01] Khan J., Tao Q. “Prefetch Scheduling for Composite Hypermedia”, [EEE International
Conference on Communications - ICC 2001, Helsinki, Finland, June 2001.

[KiS095] Kim M., Song J. “Multimedia Documents with FElastic Time”. Proceedings of ACM
Multimedia’95, Sdo Francisco, USA, November 1995.

[KIGF99] Klas W., Greiner C., Friedl R. “Cardio-OP — Gallery of Cardiac Surgery”. IEEE International
Conference on Multimedia Computing and Systems (ICMS’99), Florence, Italy, June 1999.

[LaSR02] Layaida N., Sabry-Ismail L., Roisin C. “Dealing with uncertain durations in synchronized
multimedia presentations”. Multimedia Tools and Applications Journal, Kluwer Academic Publishers, 18(3),
December 2002, pp. 213-231.

[LiGh90] Little T., Ghafoor A. “Synchronization and Storage Models for Multimedia Objects”. /[EEE
Journal Selected Areas of Communications, 8(3), April 1990, pp. 413-427.

[MeRS02] Medina M.T., Ribeiro C.C., Soares L.F.G. “Automatic Scheduling of Hypermedia Documents
with Elastic Times”. Parallel Processing Letters, 2002, pp. 45-59.

[MuSo002] Muchaluat-Saade D.C., Soares L.F.G. “XConnector & XTemplate: Improving the
Expressiveness and Reuse in Web Authoring Languages”, The New Review of Hypermedia and Multimedia
Journal, Taylor Graham, vol. 8, 2002, pp. 139-169.

[Much03] Muchaluat-Saade D.C. “Relations in Hypermedia Authoring Languages: Improving Reuse and
Expressiveness”, PhD Thesis, Informatics Department, PUC-Rio, Rio de Janeiro, Brazil, March 2003.
Available in fip://fip.telemidia.puc- rio.br/pub/docs/theses/2003_03 muchaluat _ingles.pdf

[PéLi96] Pérez-Luque M.J., Little T.D.C. “A Temporal Reference Framework for Multimedia
Synchronization”. IEEE Journal on Selected Areas in Communications (Special Issue: Synchronization
Issues in Multimedia Communication), 14(1), January 1996, pp. 36-51.

[Pla71] Pla J.M. An Out-Of-Kilter Algorithm for Solving Minimum Cost Potential Problems.
Mathematical Programming, 1, 1971, pp. 275-290

[Rock84] Rockafellar R.T. Network Flows and Monotropic Optimization. J. Wiley. 1984.

[RoS003] Rodrigues R.F., Soares L.F.G “Inter and Intra Media-Object QoS Provisioning in Adaptive
Formatters”, ACM Symposium on Document Engineering, Grenoble, France, November 2003.

[Rodr04] Rodrigues R.F., Lucena-Rodrigues P.S., Feijo B., Velho L., Soares L.F.G. “Cross-Media and
Elastic Time Adaptive Presentations: the Integration of a Talking Head Tool with a Hypermedia
Formatter”, Technical Report of TeleMidia Lab, PUC-Rio, Rio de Janeiro, Brazil, March 2004.

[Ross93] van Rossum G., Jansen J., Mullender K.S., Bulterman D. “CMIFed: A Presentation Environment
for Portable Hypermedia Documents.” ACM Multimedia, Anaheim, USA, August 1993.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

31

[SORMO00] Soares L.F.G., Rodrigues R.F., Muchaluat-Saade D.C. “Modeling, Authoring and Formatting
Hypermedia Documents in the HyperProp System”, ACM Multimedia Systems Journal, Springer-Verlag,
8(2), March 2000, pp. 118-134.

[W3C01] World-Wide Web Consortium (W3C). “Synchronized Multimedia Integration Language (SMIL
2.0) Specification”. W3C Recommendation, August 2001. Available in http://www.w3.org/TR/smil20.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

32

Annex A

The theoretical aspects of the minimum-cost tension problem described in Section 4 are illustrated
here on a very simple example, corresponding to the synchronization of two events. The three basic
metrics (min-sum, min-max and least-squares) will be compared for the following model in R’:

Minimize ¢ (6)+c,(6,)
Subject to g —6,=0
Grin<) <Gmax
6yin<6, <67
We suppose 8 <6, , where 91 and éz are the ideal durations, and let e = éz - 91.
A.1. Min-Sum Criterion

6,-6,

Lets consider the objective function min‘é’l -6 ‘+

. It represents the /, —distance between the

ideal solution 7 :(Q;@) and the constraint 8 —6,=0. Looking at Figure 14, it appears that the
optimal solution is not unique, but a continuous set of possibilities. In fact, fixing the tension §
between é{ and 92 , the tension &, is also deduced between 91 and 92 . In Figure 14, the solutions
are represented by the full segment [(é ;él)i(92;92)] .

ez
A
e | R
6, i
0;" | |
i e
<+—>
! ‘ ‘ ' > 91
erlm'n él éz erllmx

Figure 14 — Optimal solution example, with the min-sum criterion.

A

Observe that solutions where only one object is distorted exist, for instance 6, = 6,,6, = 92 —e= él.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

33

A.2. Least-Squares Criterion

Lets consider the objective function min(@1 -6)Z+(6A’2 —92)2. It represents the euclidean distance
(norm /,) between the ideal solution / Z(é{ ;éz) and the constraint § —&,=0. As that norm is strictly
convex, the optimal solution is always unique. It is the orthogonal projection of (él ;92) on the
constraint 6 —-6,=0. In Figure 15, the solution is represented by point S, where

0, =6 +e/2,6, =8, —e/2. Note also that both objects are equally distorted.

9,
A

max
e -

D>
N

éz—e/Z

min
i

-

@' 8, B,+e/2 @™
Figure 15 — Optimum solution example, with the least-squares criterion.

A.3. Min-Max Criterion

Let consider the objective function min maxﬂél -6,:16, -6, } Here we try to minimize the

maximal absolute distance (norm /) between the ideal solution 7 :(91;92) and the constraint

6 —6,=0. It appears that the optimal solution is unique (in this example, but not in the general case)
and it is the same as for the least-squares criterion, i.e. point S in Figure 15.

Research Report LIMOS/RR04-16
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2004.

