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Abstract

We prove a Carleman estimate in a neighborhood of a multi-interface, that is, near a point where n
manifolds intersect, under compatibility assumptions between the Carleman weight e”#, the operators
at the multi-interface, and the elliptic operators in the interior and the usual sub-ellipticity condi-
tion. The compatibility condition at the multi-interface is a version of the known covering condition
for systems in the literature. This Carleman estimate is a generalization of the results obtained in
[6, 7]. Applications in control theory for second-order transmission problems are also considered, and
provide a generalization of the known results for one-dimensional networks of strings [4, 13, 19, 30|
to higher dimensions.

Keywords : Carleman estimate, elliptic operators, multiple interfaces, control, stabilization,
Lopatinskii condition.
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1 Introduction

We consider n smooth d—dimensional manifolds Q, d > 2, ¢ € {1,...,n} with boundary 9Q;. We
assume that they share parts of their boundary. More precisely, we denote by 8(2};, i =0,...,ng, the
different connected components of 0€2;. We assume that one of these connected components is shared
by all manifolds. For instance, we assume that we have

o0 =... =000,

We set Q@ =0, U---UQ,, and we call Z the common connected component of their boundaries. Note
that Q is not a manifold because of its topology near Z. We shall refer to Z as an interface between
the manifolds. It is itself a d — 1 dimensional manifold. An example of such configuration is given in
Figure 1. On each Q, we consider an elliptic differential operator Py of order 2my. In local coordinates
(21, ...,24) for Qi near a point 2° € Z, where Qy, is given by {z4 > 0}, the operator P reads

Pua,D)= Y ai(2)D",

|a|<2my,

where the coefficients a” (z) are C°° complex valued functions, D; = —i0,, and D = (Dy,...,Dy), and
a € N? is a multi-index. With their principal symbols given by

pk(xvf) = Z a’;(x)fa, 5 € Rdax € Qka (11)

|a|=2my,



the ellipticity assumption reads |py(z,&)| > C|£]?™, with C' > 0. We set m = mq + - -+ + m,,. For each
manifold €, we also consider a set of boundary operators T,f, l=1,...,m, of order less than or equal
to B < 2my, that take the following form in local coordinates

Ti(x, D)= Y th(x)D% Le{l,....m}, ke{l,...,n},
ol <B{

where the coefficients tik(ax) are complex-valued functions defined in a neighborhood of 7 in Q. We

denote by
¢
S e
le|=54,

the principal symbol of the operator Ty, for k € {1,...,n} and £ € {1,...,m}. Note that we may have
tﬁ = 0 if the actual order of 7} is less than ﬁf;. We assume that the orders satisfy the relations

Yo i= ka—6£=2mj—ﬁf, Vk,je{l,...,n},Le{l,...,m}. (1.2)

We shall consider the following elliptic system, coupled through the interface,

Pruy, = fr in Q, ke{l,...,n},
ZTf(m,D)uk‘I =g onZ, (e{l,....,m}. (1.3)
k=1

The main purpose of this article is the proof of a Carleman estimate for solutions of such system in a
neighborhood of a point 2% of the interface Z.

In [12], Carleman introduced weighted inequalities to prove uniqueness of the Cauchy problem associated
with an elliptic operator. The method has been developped later by Hérmander [17]. Carleman estimates
for general elliptic operators has been derived away from boundaries in [18]. Recently, for boundaries
and interfaces problems, Carleman estimates has been obtained in [6, 7, 29], under Lopatinskii-type
assumptions.. The purpose of this article is to generalize these results to systems such as (1.3).

Many Carleman estimates near boundaries and interfaces has been already obtained. For instance, local
Carleman estimates near boundaries for Dirichlet [25], Neumann [26], Ventcel [10] conditions has been
already obtained by using pseudo-differential methods. Near smooth interfaces, away from boundaries,
one can cite for instance [5, 15, 24, 20, 23, 14]. For interfaces that meet the boundary, very few are known.
We mention out the works pof [8, 9] where the authors obtained a Carleman estimate for medias with a
stratified structure. The Carleman estimate we prove, in a neighborhood of a point of the mult-interface
Z, has the following form

71 Z lle™ || + Z €71z trug|? < C(Z €7 Pyug|| + Z \ ZTkuMI

=1 k=1
where ¢ is a weight function on €, 7 is the usual Carleman large parameter, and truj denotes the
successive normal derivatives of uy, at the multi-interface Z, that is truy = (ug|,, Oy ug),, - .., 027 Tuy,).
As usual with Carleman estimates, in the interior, some compatibilty conditions between the operators
Py, and the weight ), are introduced, the so-called sub-ellipticity condition (see Section 2.1). At the
multi-interface, we also impose some compatibility conditions between the weights (y, the boundary op-
erators T} and the interior operators Pj,. These conditions are a natural generalization of the well-known
Lopatinskii condition (see Section 2.2) .

Carleman estimates are a powerful tool to prove control and stabilization properties. In the last section
of this article, we provide an application of the Carleman estimate we obtain to a natural transmission
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Figure 1: A sphere meets a surface and creates 4 smooth manifolds with boundaries. The shared interface
is a connected component of 99;, for all i € {1,...,n}.

problem. Under assumption on the control region, we prove the null-controllability result for the asso-
ciated parabolic problem, and a stabilization result for the associated hyperbolic one. This generalizes
what has been done for one-dimensional networks of strings in [4, 13, 19, 30], and the references therein,
to higher dimensions.

This article is organized as follows. In Section 2 we introduce the geometrical setting and the relevant
hypothesis on the operators and the weight functions. In Section 3 we prove that we can find proper
weight functions for which these conditions are satisfied in the special case of second-order operators
with transmission condition through the interface. The general Carleman estimate is proven in Section 4.
Finally, we state in Section 5 some of the immediate applications of the Carleman estimate of Theorem
2.6 to null-controllability of heat equation and to logarithmic stabilization of the damped wave equation,
provided a natural geometric condition is satisfied (see Section 5.1, and also Section (3.2)).

2 Statement of the problem and geometrical configurations

Let 2° € T be a point of the interface. In each manifold €, we consider an open bounded neighborhood

Uy of z° in Q) where local coordinates as above can be used. More precisely, for k = 1,...,n, we use
local charts:
br: U DUy — ViF =Vin{zg >0}, ¢ diffeomorphism, for all k € {1,...,n}, (2.1)

with V an open set of R?, satisfying ¢y (z°) = 0 and ¢(Z N Ux) = {xqg = 0} NV, for all k € {1,...,n}.
Setting V = NZ_, Vi, on R? and V* = {z4 > 0} NV, we consider Uy, = ¢; ' (VF), and U = UZ_, U}, in Q
so that we have

ér Qe DU, — VT, ¢y diffeomorphism, for all k € {1,...,n},

and ¢y, = ¢y, as sketched in Figure 2.

Throughout this article, two assumptions shall play a central role. The first one is the sub-ellipticity
assumption, that is classical when working with Carleman estimates, and the second one is the covering
condition (also known as the Shapiro-Lopatinskii condition, or complementing condition).

2.1 The sub-ellipticity condition
For two functions f(z,&) and g(z,€) in C(R? x RY), we recall that their Poisson bracket is given by

{f,9}(2,8) = 0cf(%,£)0ug(2,§) — O f(2,£)Deg(x,§).
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Figure 2: Local configuration and local charts in the neighborhood of the interface.

From symbolic calculus, {f,g} is the principal symbol of the commutator i[Op(f),Op(g)]. For k €
{1,...,n}, we let ¢} be a real C° function on €y, and we consider the conjugated operators

Prgy, = €77 Pre™ TPk, (2.2)

with principal symbol pi o (x, &, 7) = pi(z, £ +iTder(x)) in a semi-classical sense. In general, Py o, is not
elliptic. The sub-ellipticity condition states that [Py, , Pk ,,] is elliptic positive where Py, fails to be
elliptic. More precisely, we write the following definition.

Definition 2.1. Let k € {1,...,n}. We say that (Py, ) satisfies the sub-ellipticity condition on Uy if
dor # 0 on Uy, and if

1
Phipl.6,7) = 0= {Reprp Impig p(@,€7) = 2-{ P Prp (2, 6:7) > 0, (2.3)

2i
for allz € Uy, 7 >0, and all £ € RY, £ #0.

For the case of elliptic operators of order two, it is well-known that the following lemma gives a
construction of such a weight function.

Lemma 2.2. Let U be an open subset of R, M be an elliptic operator of order two, and v be a smooth
function on U such that Vi # 0 on U. We set oy = e ¥, for X\ > 0. Then, there exists \g > 0 such that
(M, @) satisfies the sub-ellipticity condition of Definition 2.1, for all A > Xg.

The proof of this lemma can be found for instance in [16]. Note that there exist operators such that
the sub-ellipticity condition cannot be achieved, independently of the choice of . This is for instance
the case for the Bi-Laplace operator. Indeed, in this case, we have py , = qi’w, where ¢y is the principal
symbol of the Laplace operator. The Poisson bracket is then given by

Ly Lo _ 2lar,0* o _
Z{pk,wapk,¢} = Z (3£Pk,<pazpk,¢ - 8mpk,<pa£pk,gp) = % (aqu,gpaqu,tp - a:L‘Qk,gpank,gO) 5



and we see that this cannot be positive on the characteristic set of py .

In addition to the sub-ellipticity condition of the couples (Py, ¢r), when considering systems as (1.3) with
general operators and boundary conditions, we have to impose some compatibility properties between
the operators in the interior and at the boundary, even for well-posedness properties. For Carleman
estimates, this is also the case, for the conjugated operator.

2.2 The covering condition

For x € Z, we shall denote by T,(Z) and T (Z) respectively the tangent and cotangent spaces to Z above
x,and T*(Z) = {(z,v), x € Z, v € T;(Z)}. We moreover define the conormal spaces, for « € Z,

ek (@) ={v € T; (%), v(Y) =0, VY € To(Z)},
and
Ng(Z) ={(z,v), x €T, v € Ny ,(T)}.
For all k € {1,...,n}, we define a boundary quadruple p;, = (z,Y, vk, 7), where
re€InU,Y eT;(I), v € N;(I), and 7 > 0. (2.4)

Moreover, we impose vy to be an inward pointing conormal vector, that is, v = (0,...,0,¢) with ¢ > 0 in
the local chart (U, ¢x) given in (2.1). We shall denote by £;*(Z) the set of such p,. We define for a
fixed x € Z,

Li(T) = {(x,Y,v1,. .. v, 7), VR €{L,....n}, pr = (2,Y 00, 7) € LT (D)}, (2.5)
and we also consider
L) :={(z,Y 1, s Un,T), Y1, v, T) € LA(T), z €T}, (2.6)

We introduce a weight function ¢ defined on U, which is smooth in each Qj and continuous across the
interface Z. We shall denote @5, = ¢, . For pj, € E:"”(I) we introduce, for all A € C,

Dheyo (Prs A) = pr(@, Y + Mg + itdor(z)).

Considering the following factorization, as a polynomial in A € C,
ﬁk,tp(pkv )\) = Ckﬁ];y;(pkh A)ﬁg,ga(pk; A)ﬁzw(pk’ A)? (27)

o , ; ~i , ; ,
with pg,gp(plﬁ A) = Hlmof;(pk)zo()‘_ai(Pk))uk and p ,(p, A) =11 1, ai}(pk)>0()‘_0£(fok))”kv where (07);
are the complex roots of Py, as a polynomial in A, with multiplicity z,. It should be kept in mind that
this factorization depends heavily on the choice of pi. We set

Rk (0hs A) = B (08, NP (Pks A).-
We also define at the boundary, for all A,
ti,w(/’ka A) = tf;(x, Y + Ay + itdpr(x)).

Definition 2.3. We say that (Tzf,@)ke{L...,n},@e{l,m,m} covers (Pr,©)re{1,...n} 0l p° € L*(T) if for
all polynomials fi, € C[N] there exists ci1,...,¢m € C and polynomials g, € C[\] such that, for all
ke{l,...,n},

FeQ) = ety (095 N) + (N ko (pR, ).
=1

We shall say that (T{,@)k.e covers (P, @)k at x if this holds for all p° € L:(Z), and we shall say that
(T, )k covers (Py, @) if this holds for all p° € L*(T)



Observe that in the above definition, we can restrict the degree of the polynomials fj to be less than
or equal to 2my — 1, using the Euclidean division. If we write m}c" = d°ky,, and m, = 2my, — mk , then
d°q;, is at most equal to 2my — mﬁ —1=m, — 1. We can reformulate the above definition as follows.
Introducing, for k € {1,...,n}

4 .
co0 v the(Pi ) if e {1,...,m}
ex Pk, A) { \- (m+1)nk¢(pk,>\) ifte{m+1,....m+my}, (2.8)

and the linear map

P C™ x (Cm; X e X (Cm; — CZml—l[/\] X+ X szn_lp\]

Cc1 qi,1 dn,1 m+mi m+m,
) P E Clel+ E q1,0— me17~' E Cge + E dn.0— me 5
Cm, ql,m; Qo t=m+1 L=m+1

Definition 2.3 is precisely equivalent to the surjectivity of the above map ®.

Remark 2.4. Like the sub-ellipticity condition, the covering condition is unvariant under a change of
coordinates. In particular, this definition does not depend on the sizes of the conormal vectors vy.

2.3 On the well-posedness of systems satisfying the covering condition

The well-posedness of elliptic systems satisfying the covering condition is a known fact for a non-
conjugated system (that is, in the case 7o = 0). We refer for instance to [1, 2]. In their setting,
they consider a more general system. It can be related to our problem as explained as follows. Near a
point of Z, we can choose a coordinates system for each €; and thus the problem can be reformulated in
Ri, as in Section2. This choice of coordinates has no impact on the covering condition as it is invariant
under a change of coordinates. In [1, 2], the authors consider systems of mixed-order elliptic operators
in the half-space, that are said to be properly elliptic, i.e the roots o; of det(A(z, ©1 + 202)), viewed as
a polynomial in z € C satsifies

#{Im(o;) > 0} = #{Imo; < 0}, for O, Oy € RY, linearly independant.

In our case, the considered matrix A is diagonal, thus the determinant is the product of the symbols
pr(,©1 + 203). If the system is properly elliptic, we obtain that m = m{ +---4+mf =m] +---+m. .
Hence,

dim(C™ x C™ x --- x C™n) = dim(Capn, —1[A] X -+ X Com, —1[N]),

and then ® is onto if and only if ® is one-to-one. The covering condition stated in [1, 2| precisely implies
that the map @ is one-to-one, and the covering condition in the present work implies that the map ®
is onto. Thus, in the setting of properly elliptic diagonal system of operators, those two conditions are
consistent. However, in the present article, we ask for the conjugated operator to satisfy the covering
condition, and moreover, as we shall see, the conjugated system may not be elliptic anymore. We give
the following definition.

Definition 2.5. Let (T{, Py) be a system of operators such as (1.3) satisfying
(T, 0)k.0 covers (Py,0)y. (2.9)
We say that the weight function o preserves the covering condition for (T}, Py) if we also have
(T,f,go)kyg covers (Py, ©)k.

An interesting question then arises: given a system (7, P;) that satisfies (2.9), can we always find
a weight function that preserve the covering condition for (T,f, P;) 7 We give a positive anwer for the
special case of transmission conditions for Laplace-Beltrami operators in Section 3.



2.4 Statement of the main result

The main result of this article is the following Carleman estimate in the neighborhood of the interface.
We define the following space of smooth functions defined in a neighborhood of the point of interest at

the interface. -
Co (Uy) = {w € C®(Q), supp(w) C Uy is compact in Q4 }. (2.10)

Theorem 2.6. Let zg € Z and let ¢ be a weight function on U such that ¢ € C°(U) and such that
Ply, € C%(Uy). In addition, assume that (Py, ¢x) satisfies the sub-ellipticity condition of Definition 2.1
(Pr, ©)keq1,...ny at xo € T (see Definition 2.3). Then, there exists a neighborhood U of o in 2, C' > 0,
and 19 > 0 such that

n n
T_l Z Heﬂpkuk”%mk,r + Z |eﬂp\1 tr uk|§mk71,1/2,7—
k=1 k=1
n

S C (Z ||€T<kakukH%2(Qk) + Z ‘ ZTlfuk‘I
k=1 =1 k

2
(211
'wl/Q,‘r) ( )

1
for all 7 > 7y, for all u € C(U) such that uy, := Uy o € Cy (U nT).

This Carleman estimate is local in a neighborhood of a point of the interface. Local Carleman estimates
can be generally patched together to obtain a global one. For such issue, we refer to Section 5.1. The
various norms are presented in Section 4.1.3. Let us simply mention that

1. |||ls,r is equivalent to 75||.||p2 + ||.|| = in some Qy;
2. |.|s,7 is equivalent to 7°|.|z2(z) +|.| g+ (z)- Norms on the interface are denoted by |.| for easier reading;
3. onZ, for r € N and s € R, we mean
T
‘ tr w|r,s,‘r = Z ‘afw\z ‘r—‘—s—[,rv
=0

using the notation of 2).

2.5 Conditions in a neighborhood of the interface

Let 9 € Z. We use the local chart introduce in (2.1) and the neighborhood V* = {z4 > 0} NV in R%.
We shall often use the notation x = (2, z4) and £ = (£/,£4). We also introduce

T (V) = {u_ ue CP(V)), (2.12)

the set of restrictions to V+ of smooth and compactly supported functions in V. Note that Definition
(2.12) is consistent with (2.10).
In this coordinate system, the operators P reads

la|<2my
for x in VT, and near the boundary V N {z4 = 0}, the boundary operators read

Tlf: thxk‘Dav k:1,...,n7€:1,...,m,

¢
|| <8y



with B¢ € {1,...,2mg — 1} and m = mq +- - - +my,. We call py(z,£) and ti(z, &) their principal symbols.
We also introduce the symbols

pk,tp(x7 ga T) = pk('ra 5 + de‘Pk)7 ti,g@(m7 67 T) = tﬁ(xvé. + de(pk)a

which are respectively the principal symbols of the conjugated operators Py, , := e™¥* P,e™7%* and T,f_¢ =
eT?rTre~ %%, In this coordinate system, we make the following identification

L@ ={p=(2.67) € {za=0}NV) x R{ x RT}.

We furthermore allow one to identify all the LZ"”(I) to one another. Moreover, as Definition 2.3 is

coordinate invariant (see Remark 2.4) we can identify £*(Z) with £y (Z) for all k € {1,...,n}. We also
set the cotangent bundle over Z with parameter 7 as

LY ={p =(2,8,7) € {za=0}NTV) x R x RT}.
For o' € V+ x R¥™! x R*, we consider the complex roots oy 1(p'), ..., 0%, (p') of multiplicity pg ;
(satisfying pg1 + -+ + pre, = 2mg) of the symbol py (o, &q), viewed as a polynomial in £;. Let
ph € VF x RI~1 x R* be fixed in what follows. From Lemma A.2 in [Bellassoued- Le Rousseau], there

exists a conic neighborhood V of pf) in VT x R? x RT and three smooth and homogeneous polynomials
P (0, €a), PL(p, €4) in €q, such that

1. each polynomial is of constant degree for p’ € V;

2. we have the following factorization

Pro (0, €a) = a(p Dl (0, €a)pse o (0 E)PR o (P, €a), P/ EV, (2.13)
where a(p’) is the leading coefficient;

3. the roots of p: (P(p’ ,€q) and p, Lp(p' ,&4) have positive and negative imaginary parts respectively for
all p’ € V;

4. at p' = p}, we have

P (P €a) = II Ea—ori (00, Pha(oo.éa) = T[  (€a—ony(ph))™.

ilmak)j(p6)>0 ImUk,J(P6)20

Note that the decomposition thus depends on pj. Note also that for p’ € V, the sign of the imaginary
part of the roots of p%_’w(p’ ,&€4) is not prescribed. However, at p’ = p{, those imaginary parts vanish.

We set ki o(p',€a) = pﬁ,@(p’,fd)pgw(p’,éd). In fact, while the roots oy ;(p’) are only continuous,
since they can cross each other, we shall work with the polynomials given in (2.13); they are smooth,
which permits the use of semi-classical calculus. We can reformulate the covering condition at pf, as
follows: for all family of polynomials (fx)req1,...n} € C[€a]™, there exists (ci,...,cp) € C™ and a family
of polynomials (gx)ref1,....n} € C[€4]" such that

m

Fel€a) =D et (P €a) + ak(Ea)rnp (ph: €a)s Vh € {1,...,n}.

=1
In this setting, the covering condition can also be stated in a more convenient way, such as follows.
Setting m, = dop;w, we write
2mp—my;

/fk7tp(p/7§d) = Z K’;c,tp(pl)gév

=0



where m}lma is homogeneous of degree 2my, —m, — ¢ in (¢, 7). Similarly, we write

o0 6a) = Zt 31 (2.14)

where ti’i@ is homogeneous of degree 8 — i in (&',7). Arguing as in (2.8), we introduce

PO TSR ) if ¢€{1,...,m} 015
ex(p's&a) = 02 (m+1) , £/ ) _ (2.15)
fd Hk,w(ﬂafd) if £ € {m+ ,...,ermk},
and the covering condition is equivalent to the surjectivity at p’ = pg of the map
P C™ x (C"L; X oo X CMn — (Cgml,l[fd} X e X Canfl[fd]
(4] q1,1 dn,1 m+m] m4m,
) ) ZC€€1+ Z q1,0— ’mela" ch + Z qn.— me
Cm ql,m; qn,m; l=m-+1 {=m-+1

If we write ef(p, &4) = 2?21071 ef;’ip(p’ )€i, the coefficients ei’ip (that are homogeneous in (¢, 7)) are given
by

4,0 e - 4
' . £ (p) ifie{0,...,8)
foedl,... i) =4 ke o

o ifte{l,...,m}, ek,ap(p) { 0 otherwise,

i—f+m—+1/ 7/ Cra —
. N X ISV (p') ifiel—(m+1)+{0,...,2my —m, }
o ifle{m+1,...,m+m,}, ek,w(p) { 0 otherwise.

if m;; > 0. Then, for k € {1,...,n}, we set the 2m;, x m matrix

M) = (i)

(i,0)€{1,...2mp} x{1,....m}

If moreover m;, > 0, we set the 2m;, x m, matrix

200 — < m£,i—1 /) )
i (0) Ck,p (o (i,0)€{1,....2my } x{1,....,m }

With M? and M}, we define the 2m x (m +mj + - -+ +m, ) matrix

Ml(p') Mi(p') 0 0
My(p') 0 MZ() ... 0
M(p) = . . . ; (2.16)
: : 0 . 0
My(p') 0 MZ(p')

where the column associated with MZ(p’) only occurs if m; > 0. For convenience, we shall say that
MZ(p') =0 if m;; = 0. With this matrix, the covering condition at p’ = py is equivalent to

Rank M (pf,) = 2m. (2.17)

Remark 2.7. Considering the size of M(p'), a necessary condition for the covering condition to holds
sm+my +---+m, > 2m.



Lemma 2.8. If the covering condition is satisfied in a point p)y € LT(T), then there ewists a conic
neighborhood V' of ply in LT (I) such that the rank condition (2.17) is fulfilled for every p’ € V.

Proof. If Rank M (p) > 2m, then there exists a 2m x 2m submatrix S(pj) such that det S(pg) # 0.
As the symbols of M} and of M} are continuous and homogeneous in (§',7) of order 8] — (i + 1)
and 2my — m, + j — i — 1 — m respectively, where i and j index the rows and the columns. As a
result, det S(pg) is also continuous and homogeneous in (¢, 7). We restrict ourselves to the compact set
p' € LT(I)NS(¢r 7)=1. By continuity, there exists a neighborhood Vg of pfy in L7 (Z) N S(¢r )=1 such that
det S(p’) # 0 for all p’ € Vy. The result follows by homogeneity. O

Remark 2.9. Note that we proved that if the covering condition is satisfied in some point ply € LT (T)
then there exists a conic neighborhood V of pj such that (2.17) holds, but we did not proved that the
covering condition is satisfied for any p’ € V. In what follows, we shall only need Lemma 2.8.

3 The case of second-order operators

3.1 The transmission problem

Here, we address the important case of second-order elliptic operators with real principal symbol, for
k =1,...,n, namely Laplace-Beltrami operators associated with some metrics g, on each manifold. We
consider the following transmission problem

Agup =0, k=1,...,n in the interior of

Uy, = = Up|g, onZ (3.1)

> ope1 Oy, =0 on Z,
where Ay = —A,, +lower order terms, where({), gr) are Riemannian manifolds with boundary 7 sat-
isfying 7 := 1, = --- = 1, where Ay, is the Laplace-Beltrami operator associated with the metric gy,
and v, denotes the unit outward pointing normal vector of Z;, with respect to the metric g;. Following
Section 2, in Q = U}_, Y, in a neighborhood of a point y € Z we can use coordinates ' = (x1,...,24-1)

on 7 and coordinates x = (z/,z4) on € such that locally Z = {4 = 0} and Qi = {zq4 > 0}. In this set
of coordinates, System (3.1) reads

Py(z,D)u, =0, k=1,...,n inQuN{zs >0}
u1|I == un|z onZ (3.2)
ZZ:l aykuk|z =0 on I,

where the principal part of Py (, D) is of the form 37, ; . ; D; a¥ ;Dj, where a¥ i j are coeflicients dependent
on the metric g;. These transmission conditions can be rewrltten as the following equations

n d
u1|z —Ug|; = 0, 'U/Q‘I —Uz|z = 0, cee ’u"—l\z — Up|z = 0, E E azjukh =0.
k=1j=1

Here m = n. With the notation of System (1.3), we consider the following set of operators

{ TY = 6ke— Okt ke{l,..ony, £e{l,...,n—1}, (3.3)

mn d
Tk :ijl (LZJ(Z')D]-, ke {1,...,n}.

This type of transmission condition across an interface has a natural physical meaning. It simply implies
continuity of the solution at Z and that the fluxes add up to zero. We shall conjugate the operators with

10



a function ¢, which is chosen smooth in each Z, and only continuous across the interface. We shall denote
Plo, = ¢k In this example, the principal symbols of the conjugated operators at the boundary read

ti7<p(x,§77') = ti(axf), k=1,....n,j=1,...,n—1,
as these operators do not involve any derivative, and
d
tk¢ Zadﬁ )& + 70, 01)
j=1

= ag () (€a+ G,

where

Ck = 70y, 01(x) + (&5 + im0, 1) (3.4)

Observe that Im ¢} is a function of dyy near Z, but not of ¢y, itself. As the operators Py are elliptic, we
have ag4,q # 0. We also have, as a; ; = a;;,

d
pk,cp z f, Z a; gj + ZTawﬁOk)(ff + ZT@M@’C)

Jt=1

U

-1
= ag q(x)(a +i702,0)° + 2(6a + T, 01) D af o(@) (& + 70z, 1)

s

1

o~
I

d—

Y ale@)( +irdu,0n) (Ee + 100, 01)

Jb=

a.4(2) ((6a + Cr(@, €', 7))% + qi(, €', 7))
§7d($) (gd + Ck(x 5 ) + iak(mv 5/7 T)) (gd + Ck(x’ 5/7 T) - iak(xv 5/7 T)) ’

"'7), and ag(z,£,7) € C is chosen so that Reay > 0

—

+

a

Il
&)

where g (z,£’,7) is homogeneous of order 2 in (£
and o3 (z,&',7) = qi(z, &, 7). Defining

O’;:(.T,f/,’]’) = 7<k(x7§/a7_) + io‘k(‘r7§/77—)7 0]: = 7<k(xa§/77—) - iOzk(I',f,,T), (35)

we can factorize the principal symbols of the operators
Php(2.6,7) = ag g(2)(€a — o3 (2,6, 7)) (€a — o7 (2, €, 7)).

Observe that Im olj > Imo, always holds. Several cases can occur, depending on the sign of the
imaginary part of the roots of the py ,, viewed as polynomials in 4. To discuss the sign of the imaginary
parts of the roots ak , we introduce the following sets
St =3%()={ke{1,...,n}, Imo;,Imo; >0},
Y= (p)={ke{l,...,n}, Imo;, Imo, <0}, (3.6)
20 =%%p) ={ke{l,...,n}, Imo; >0, Ima, <O0}.
We recall that the covering condition holds if the matrix M built in (2.16) satisfies the rank condition

(2.17). In this particular case, we have m = n. The 2 x n sub-matrices M, ,% are only related to operators
at the boundary, and do not depend on the sign of the imaginary parts of the roots of the operators in

11



the interior. We detail here how to construct those matrices in the present example. The coefficients té’i o

of M} correspond to the coefficients of the principal symbols of the ti’w. The operators that acts on wuy
for £ € {1,...,m} are respectively (see (3.3))

n
T, =1,T,=0,..., T7;' =0, and T} = ¥ _aj ;(x)(D; + it0x,¢1(x)),
j=1
and the coefficients of their principal symbols written in the form (2.14) are given by
t%’o =1, t%’l =0, ..., t?_l’o =0, t?_l’l =0, and tTf’O = a}z,dCb t?’l = alli’d(x),

with (7 defined in (3.4) for kK = 1. Then, we obtain

10 .0 al,G
1_ d.d
Ml_(o 0 ... 0 aé)d>' (8.7)

Arguing the same way we have, for k € {2,...,n — 1}, we find

(k‘ _ 1)th k‘th

yi_(0 ... 0 -1 L 0 ... 0 af
oo 0 0 0 ... 0 ad,

and ’
00 ... 0 -1 aj
L _ d,d5n
M”(O 0 ... 0 0 azd)'

We also detail the structure of the matrices M ,f in different situations depending on the cardinal of the
sets given in (3.6).

e For k € ¥°, we have m, = 1 and then M? ="( — o/, 1).
e For k € X7, we have m, = 2 and then M,f =1Id,.
e For k € £, we have m;, = 0 and then M? = (), with the meaning given below (2.16).

We now investigate what configurations yield (2.17).

First case. We first focus on the case where Card ¥+ > 2. Without any loss of generality, we may
assume that {1,2} € %, that is Imo¥ > 0 and Imoy > 0. In this case the matrices M? and M3 are
empty, and the matrix M reads

1 0 0 - aq.q61 i

0 0 0 - agg !

VR I B P

o o0 0 A,
* Lk

with either N =0 or N = {) (in the sense given after (2.16)). We then see that the second and the fourth
rows are linearly dependent. As the number of lines of M is equal to 2m, this implies that the rank

12



condition (2.17) fails to hold.

Second case. Here, we assume that X7 = (). Consider ¢ € {1,...,n}. Without any loss of generality,
we may assume that {1,...,/} € X% and {£+1,...,n} C ¥~. The matrix M then reads

Al B, 0
M = 20
(Ag(n—[) 0 Id2(n—€)> ’

where,
—oi 0 0 0
1 0 0o 0
0 —o'; e 0 0
By — 0 1 ... 0 0 € Maye(C),
0 ... 0 0 -—of
0 ... 0 0 1

and Ids(,—¢) denotes the identy matrix of dimension 2(n — ¢). If £ = n we set Idg = 0 in the sense given below
(2.16). Moreover, for £ # 1,n, we have

(Z _ 1)th fth
1 0 0 0 0 ay.G
0 0 0 0 0 g;,d
-1 1 O O O adédCQ
A%g =0 0 0 0 0 Qa4 | e Moy n(C),
0o ... -1 1 ... 0 af;kdg,_;
0 ... 0 0 ... 0 aby
and
(f)th (6 + 1)th
0 -1 1 0 ay G
o+1
0 0 0 zagti
0 0 -1 0 adtie §é+2
Ay =0 0 0 0 agly € Main—p)n(C).
0 ... 0 0 co =1 al gl
0 ... 0 0 .0 al 4
For £ =1, we have
1 _ (1 0 0 0 0 ajq 1 C
AQe = (0 0 0 0 0 aé,d € M> n( )7
-1 1 0 af;:ll@-q-l
0 0 agt)
0 -1 0 ag d2Ce+2
042
Ajnpy=10 0 0 Qd,d € Man-1)(C)
0 0 -1 agqln
0 0 0 ag q



Finally, for £ = n, we have

1 0 0 0 0 ayq.C
0 0 0 O 0 ag.q

-1 1 0 0 0 al.le
0 0 0 0 0 a3

Ab, = e Mann(©), Adn_ = 0.
0 0 0 -1 al4n
0 0 0 0 aly
Note that we have
Rank(M) = Rank(T) +2(n — ¢), with T = Rank (Ag, By.) (3.8)

By operations on the lines and columns of the 2¢ x (n + ¢) matrix T" we can obtain:

o If { < m, it is of maximal rank. Indeed, from (3.8), this is equivalent to have Rank(M) =
Rank (Aéz Bz) = 2/. Yet, by reorganizing columns, we have

1 —of 0 0 0 0 ajs
0 1 0 0 0 0 ay g
-1 0 1 —of 0 0 a?i’zd@
Rank (A3, B¢) = Rank 0 o o0 1 ... 0 0 44,4
0O 0 0 0 1 —of afl’[l@
0 0 0 0 0 1 g q
1 000 0 0 al,(G+of)
0 1.0 0 0 0 ajq
-1 010 0 0 a2, (CG+o7)
CRank| O 0 0 1 ... 0 0 a2,
0 000 1 0 af (CG+oa))
0 0 0 0 0 1 a4
1 0 0 O 0 0
0 1 00 0 0
-1 01 0 ... 0O
>Rank [ 0 0 0 1 ... 0 0] _—9op
0 000 10
0 0 0 0 0 1
as the final matrix is in Moy (C).
e If / = n, it is of maximal rank if and only if
> ah (G + o)) #0. (3.9)

Jj=1
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Indeed, from (3.8), this is equivalent to have Rank (A2, B,) = 2n. Yet,

Rank (A3, By)

1 0 0 0 0 aj,6 —of 0 0 0

0 0 0 0 0 aj, 1 0 0 0

-1 1 0 0 0 aj,c 0 —oF 0 0
—Rank| 0 O 0 0 0 ajy 0 1 0 0

0 -0 0 -1 aj6n 0O ... 0 0 —of

0 0 0 0 ajy o ... 0 0 1

1 0 0 0 0 aj4(G+of) —of 0 0 0

0 0 0 0 0 0 1 0 0 0

-1 1 0 0 0 aju(Ge+oy) 0 —o5 0 0
—Rank| O 0 0 0 0 0 0 1 0 0

0 -0 0 -1 a(Cu+ot) 0 0 0 =-—oFf

0 0 0 0 0 0 0 0 1

1 0 0 0 0 ayq(C+0o7)

-1 1 0 0 ag 4(C2+03)

0 -1 1 0 0 a3 4(Cs+07)
—Rank | O 0 -1 1 0 aid(§4+ajf) + n,

00 0 0 ... 1 aj'(¢hrtoiy)

0 0 0 0 ... =1 ai,(Cutof)

and we see that (3.9) is a necessary and sufficient condition to obtain the rank condition (2.17).
Let us prove that (3.9) is always satisfied. If not, we have

n n

J o J +
E @ qIm¢; = E agqlmo; .
j=1 j=1

Yet, Imaj = —Im(; + Rea;. This implies Z?Zl aihd Rea; =0. As Rea; > 0 and ag’d > 0 for all
j€{1,...,n}, then Rea; = 0. Hence, both roots Uj+ and o have the same imaginary part, for all
j € {1,...,n}, in contradiction with having {1,...,n} c X°.

As a result, the covering condition holds in this case.

Third case. In this case, we assume that Card X+ = 1 and Card X% = n — 1. In such a situation,
the matrix has only 2n — 1 columns, and from Remark 2.7, the covering condition fails to hold.

Fourth case. We finally assume Card X" = 1 and Card X% < n — 1 (or equivalently Card X~ > 1).
Let £ = Card X% and assume, without any loss of generality, {1,...,¢} =X {{+1,...,n—1} = X7,
and {n} = ¥*. Then the matrix M reads

M=(A B)
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where

1 0
0 0
M 1 1
A= : |= 0 ©
M :
0
0
and
_J;F
1
M? 0
0
_ _ 0
B= Mp | =
0 0
0 0 0
0
0
0

o O O O

o

o O O O

o O OO

o oo o o

o0 -

o O o o

1
ag,qaC1

ag,d<2

aq 4

ag qGn

n
Aq 4

= O

o O OO

(=R e e M)

co -

S MZn,n((C)a
0
0
0
0
S M2n,2n7£72((c)7
0
0
1
0
0

as M?2 = (). We shall make operations on lines and columns to compute the rank of M. First, note that

using the last line of M, we obtain Rank M = Rank (.A’ B) , with

—_

A=|0

o= OO

o O OO

o

0

0
0
0

0
0

0

0
0
0

-1
0

o O OO

Then using the even lines of B, as the associated lines of A" are only made of zeros, we obtain Rank M =

Rank (A" B'), with
0

—_

o O O

B/

O O OO

0

o = O o [an}

OO OO

o oo o O

o0 -

16
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o O oo

o

0

o o oo

o

o

0

oo, O O oo o




and we see that the rank of (A’ B'), is equal to 2n.

Conclusion. As the four cases we considered are exhaustive, we find that we have to construct a
weight function ¢ such that the first and third cases described above do not occur, meaning that we
require

CardX*(p)) <1, Vp €7, (3.10)

and moreover

CardX(p') = 1 = Card X°(p') < n — 1 (or equivalently CardX~(p’) > 1). (3.11)

Let ip € {1,...,n} be fixed. First note that if we have, for all i # iy,

d—1
T(aﬁcd(pi + Za?l,j/afi,daﬂcj 901) < 07 (312)
j=1
then (3.10) is satisfied as Imo, = —7(0,,9: + Z _ adj/afi,damj vi) — Reay; with Rea; > 0. Second,
observe that Im T > 0 implies
d-1 4
_T(aid(pio + Zafio,j/ald?damj 901'0) > Re @i, = 0.
j=1

Hence, if we construct a weight function ¢ satisfying

d—1

T(azd%‘o + Z ailo,j/afi(jdamj Spio) > Re Qi
j=1

{ (axd@ll + Z =1 adj/ d,d Qf,@h) <—Re Qiys (313)

(8141@7/_'_2.] 1adj/ad,d wjgpl) <Real) VZ#iOaila
for some i; # ig, then both (3.10) and (3.11) hold. Observe that (3.13) can be achieved by requiring
(3.12) and additionaly
aﬂdeD’LO + Z] 1 ad]/ad d TJSQ'LO
azd@’tl + Z] 1 a’d]/ zlldamy 5011

In order to fix ideas, assume that ¢, = i (x4) does not depend on the variable 2’. Then, conditions
(3.12) and (3.14) read

(Rea,) < Re ay,. (3.14)

. O, pi
Vi # i, Oz,pi > 0, and GraPio K,
xqPis
where K is a positive constant that only depends on the coefficients aéoz and a?l. Hence, if we choose a
weight function ¢ such that, near the interface,

O0z,pi, <0, and Oy,p; > 0, for i # iy, and moreover satisfying 0,,9i, > 0,p:, for some i1 # 4o,
(3.15)
then the covering condition is satisfied. Allowing back a dependance with respect to the variable 2’ is
possible, for instance, if we impose |V | < |0y, k|, for all k # .

Remark 3.1. In applications, this means that if we want to observe the interface, according to Theorem
2.6, the observation has to be made from at least n — 1 sides of T (we recall that in Carleman estimates
and applications, the observation region corresponds to regions where the weight function is the largest).
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3.2 On the optimality of the observation regions for the transmission problem

In this section, we discuss the optimality of the above conditions on the weight function. First, observe
that in the case of two operators (n = 2), we precisely recover the condition of [7], which is proven
to be optimal in the case of operators with constant coefficients in [22]. Second, in some particular
geometric configurations, note that if we observe from only n — 2 sides of Z, then the unique continuation
property may fail, which prevents the possibility of proving a Carleman estimate. We consider ) =

(R/27Z) x (0,7), for k € {1,...,n},n € N*, n >3, and Z = (R/27Z) x {0}. Take Cj = <(1) CO>, such
k

that c,?l/ ’e N*, and consider the diagonal operator

—div (C1V) 0 0
0 —div(C,V) 0 0
Q= . . (3.16)
0 0 o —div(CV)
with domain
D(Q) = {(ul, ceyUp) € @HQ(Qk), Uy =+ =1uyonlZ, ch@gzukm:o =0on I}.
k=1 k=1

We have the following proposition on the eigenfunctions of Q.

Proposition 3.2. For all j € N and £ € {2,...,n — 1}, the function

0

0
eI sin(c[l/zsz)
%= e sin(c, { j2)

e . —1/2 .

et sm(cn_/1 jxa)
1/2 n—1 1/2 QT o —

—cp wep € e sin(en

2.
Y Jx2),
where the first £ — 1 componants are equal to zero, is an eigenfunction for System (3.16) associated with
the eigenvalues j2.

If ¢ € {1,...,n — 1}, the eigenfunction has ¢ — 1 vanishing components. In the particular case
¢ = n — 1, the eigenfunction has n — 2 vanishing components. Thus, Proposition 3.2 shows that the
unique continuation property fails to hold from less than n — 1 sides of the interface, due to the presence
of such invisible modes. Since a Carleman estimate near the interface as in Theorem 2.6 implies the unique
continuation property, the derivation of the Carleman estimate cannot be achieved in this geometrical
configuration. Using Remark 3.1, this means that in (3.15), having 9,,¢;, > 0, for i € J C {1,...,n}
with Card J > n — 1, is necessary. However, in the example (3.16), this is mainly due to the symmetry
of the domains . The investigation of general configurations where the unique continuation property
holds true remains an interesting question.
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4 Carleman estimate in a neighborhood of the interface

4.1 Semi-classical calculus
4.1.1 Classes of symbols

We recall some classes of pseudo-differential operators that we use in what follows. This allows us to
introduce some important notation. As above, we write p = (z,£,7) € U x R? x Rt and p' = (2,¢,7) €
U x R x RY.

Definition 4.1. The symbol class ST is the space of a(p) € C=(R? x R?) that depends on the large
parameter T > 1 satisfying for all multi-indices o, B € N¢

0202 a(p)] < CapA™ Pl forallz e RY, £ €RY, 7 >1,

where X is the order function \ = (12 + [€2))Y/2. The principal symbol of such a, denoted by o(a)(p) is
the class of a in the quotient space S™/S™~1.
We also introduce the tangential symbol class S7'. as the space of a(p’) € C*° (R? x RI=1) that depends

on the large parameter T > 1 satisfying for all multi-indices o € N¢, € N4—1
0202a(p)| < CasA™ Pl for allz e RY, ¢ € R, 7> 1,
z Uer O\P BAT

where Ap is the order function Ay = (12 + |€2|)'/2. The principal symbol of such a, also denoted by
a(a)(p) is the class of a in the quotient space 85?)7/5?;1.

We shall consider symbols that are polynomials in the &g-variable with coefficients in the class of
tangential symbols. More precisely, we consider ST the space of a(p) € C=(R? x RY) that depends on
the large parameter T > 1, and such that

alp) =y _a; ()&}, a; € ST (4.1)
j=0
The principal symbol of such a, denoted by o(a)(p) is defined by

o(a)(p) = 3 o) ()€l

Jj=1
It can be understood as a representative of a in 8™ /SM 1,
We also introduce poly-homogeneous symbols.

Definition 4.2. We say that a € ST (resp. Sp', ) if there exist a; € S (resp. Sp7), j €N,

,C

homogeneous of degree m — j in (§,7) (resp.(§',7T) such that, for all jo € N,
Jo _ )
a— Zaj € S0t (resp. S:,TCTT_JO_l).
§=0

We say that a € S:LC]T if

m
a(p) = Zaj(p')le, with aj" € S;f;grr
3=0
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4.1.2 Semi-classical pseudo-differential operators

For u in the Schwartz space .7 (R?), we denote by @ the Fourier transform, that is,

w(§) = /Rd e Sy () da.

Definition 4.3. For a € 8 (resp. 8™

1) we define the pseudo-differential operator

Op(apu(e) = oy [ e Sale ety = g [ e al, g pula)ayde,

for all u € Z(R?), and we write Op(a) € V™ (resp. W™, ). The principal symbol of the pseudo-

7,cl

differential operator Op(a) is 0(Op(a)) = o(a) (see Definition 4.1 and 4.2). We also define tangential
pseudo-differential associated with a symbol b € S (resp. St 1) by

]. . ! ’ !
Opr(b)u(z) = @r)a T /Rd_1 /Rd_1 (2, T)uly ) dy'dE

foru € S(R?) and x € RY, and we write Opy(b) € W (resp. VT, ). The principal symbol of the
pseudo-differential operator Opr(b) is o(Opy (b)) = o(b) (see Definition 4.1 and 4.2).
4.1.3 Sobolev norms
For s € N* and 7 > 1 we introduce the following parameter dependent Sobolev norms
n S S
2 =2 ) 7 N, and |12, =Y 7L g, (4.2)
k=0 t=0 t=0

where [|.||g¢(q,) and |.| g+ (z) denotes the standard Sobolev spaces in {2; and on the interface Z respectively.
We define the Sobolev spaces H(2;) and H(Z) as the completion of C*°(§y) and C*°(Z), the spaces
of smooth functions, with respect to the norms (4.2). Algebraically, the spaces H™ () and H™(Z)
are equal to the standard Sobolev spaces. However, they are not endowed with equivalent norm in the
semi-classical limit 7 — 400. As we deal with operators with orders 2my > 2, we shall need to estimate
traces of the solution and its iterated normal derivatives at Z. Hence, we introduce the Hilbert sum

H:_n,s — @Hm—j-&-s(z-),
=0
endowed with the norm
Ulrsr =D 52 jisr with U= (ug, ... up). (4.3)
=0

We shall also apply this norm to the following vectors composed of the various traces of iterated normal
derivatives of a function u € C*° () as

tr'™(u) = (u|,, Dyujy, ..., D)y, ), where D, = —id, and v € N;(T),

(for the definition of N} (Z) we refer to the beginning of Section 2.2). However, for the sake of simplicity,
we shall write | tru|,, s » instead of | tr™(u)|m,s,~, Whenever no ambiguity may occur.
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We introduce the space of smooth functions in the half space, with rapid decay at infinity
—d
S RY) = {u,, ., ve LR},

that is the space of restrictions to the half space of functions in the Schwartz space. Pseudo-differential
—d
operators that behave polynomially in the &; direction such as (4.1) may act on functions of /(R ).

Hence, we introduce the norms in Ri
—d
lull7s.r = [10Pr(A)ullZ o u € L(RY),

with [|.||;n, introduced in (4.2), and the norm at the interface Z = {z4 = 0} ~ R4~!

o _ m—+1
|U|12n,s,‘r = Z I OpT(A%)uJ"ranj,‘r’ U= (uOv v ’um) € (y(Rd 1)) " )

=0

with |.|;m—j,- given by (4.2). In what follows, we shall denote the inner product of L?(R%) and L?(R%~1)

by
(r9) = [, (wo),= [, o™

respectively, for f,g € L?(R%) and u,v € L?(R*"!) o~ L*(Z). We shall also write

IR = [ 15

We state the following continuity results for the classes of pseudo-differential operators introduced in
Section 4.1.2.

Proposition 4.4. Let a(p) € S™°.Then, for every m' € N and s’ € R there exists a constant C > 0
such that

I Op(“)”HTn’,S’,T < C||“Hm’+m’5’+s,77

for all u € #(R}).

4.2 Sub-elliptic estimate near the interface

The following estimation is classical and based on integration by parts. It describes how the sub-ellipticity

property yields an estimation, here with the case of a quadratic form Re (Av, ti)
+

Lemma 4.5. Let U be an open subset ofVJr. Let a € S™° and b € S™~11 be real symbols homogeneous
of degree m in (&, 7). Set

Qab(v) = 2Re (Av,z’Bv>+, A= 0p(a), B = Op(b). (4.4)

Assume that
a(p) =b(p) = 0= {a,b} >0
for x € U, for (£,7) #0. Then there exists C,C', 79 > 0 such that

Cllell, < € (11A0l2 + |[Bell3 + 6002,y 1o, ) +7(Qualv) = ReBas(v)),

for T > 19, for all v € C‘X’(@i) with suppv C U, and where B,y s a quadratic form at the interface
{zq = 0}, satisfying
|Ba7b(U)| S Ol' trvﬁn—l,l/Q,T'

A proof of this result can be found in [6].
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4.3 An elliptic estimate near the interface

We consider, on R%,
Pk_rgp =e"P*PLe TPk € \szk’o,

of principal symbol py ,(p) = pi(z, § +irdpg(z)) € S2™=0, where pj, denotes the principal symbol of Pj.
We also define at the boundary

. . J
] oTPETI p—TPE B0
T, =€ Tle ™%k € Wk,

. . J ) p
of principal symbol tfwo(p) =t (x,§ +itder(x)) € Sf’“’o, where ¢, denotes the principal symbol of T}.
Considering an operator with principal symbol with roots that have negative imaginary parts, we may
obtain an estimate of all the relevant traces at the boundary (or the interface) without the use of any
boundary condition. This is the result of the following lemma, which proof can be found in [6].

Lemma 4.6. Let h(p', &) € SFO, with k > 1, be a monic polynomial function in &g with homogeneous
coefficients in (¢',7) and H = Op(h). Let U be a conic open subset 0fV+ x R¥=1 x R*. Assume that all
the roots of h have negative imaginary part for all p' € U. Let x(p') € SOT, homogeneous, be such that
suppx C U, and let N € N. There exist C > 0 and 79 > 0 such that

107 (CO)wl[i 7 + [t1(Opr () w)[i_1.1/2,» < C (IH Opr (0wl + [[wll§ v - + [tr(w) i1 v -)

for allw € Y(ﬁi) and T > T19.

Observe that this lemma provides an estimate on all the traces at the boundary, up to microlocal
remainder terms, which will be absorbed when patching all the microlocal estimates on the whole phase-
space, by taking 7 > 0 sufficiently large.

Below, we consider operators that admit roots with non-negative imaginary parts. The covering
condition imposed at the multi-interface Z on the set of operators (P, T}, ) is then a key element to
obtain an estimation.

4.4 Interface quadratic forms

Definition 4.7. For w = (wq,...,wy) € (Y(Ki))”, N € N we define the following quadratic forms

N n n
_ § s § : s
- Akwk|wd:07 Bkwk|wd:o )
k=1 F)

s=1

with A7 = Op(a}), and Bf = Op(b}). We say that G is an interface quadratic form of type (2m; —

1,...,2my, — 1,0) if, for each s € {1,...N} we have a},b; € S?C”l" Lok for all k € {1,...,n}, with
o1+ -+ 0, = 20. Moreover, for z = (21,...,2,),2 = (Z1,...,%,) € C>™ x ... x C?™n where
2k = (20, 23, . .. zim" Y and z, = (22,2&,...,2,37"’“_1), we define
N n
g(p',2,%) ZZEa ', 2k Zst 0 Zk),
s=1k=1 k=1
where, for a symbol a(p) = Z?:o a;(p )fd T’(‘:l, we set
P
Salp',2) = Zaj(p’)zj7 for z = (20,...,2,) € CPTL.
s=0
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Definition 4.8. Let W be an open conic set in R*™1 x R¥=1 x Rt and let G be an interface quadratic
form of type (2my — 1,...,2m,, — 1,0) associated with the bilinear symbol Xg(p', z, Z).

positive definite in W if there exists C > 0 and R > 0 such that

n 2mg—1
2(2mp—1—j '
ReZg(pLdﬂ,z,z) > C’Z Z )\T( mg J+O'k)|zi|27
k=1 j=0

2mp—1
forz=(z1,...,2,) €C¥™, 2, = (20,..., 2" ") € C*™*, 7 >0, A\r > R, pimd:O

We have the following Garding-type inequality. The proof follows [7].

Lemma 4.9. Let W be an open conic set in R4 x R4 x Rt and let G be an interface quadratic form
of type (2mq — 1,...,2m, — 1,0) that is positive definite in W. Let x € S%T be a homogeneous symbol
satisfying supp Xlay—o CW and let M € N. There exists C >0, C' > 0 and 79 > 0 such that

n n
Reg(OpT(X)u) Z C Z | tr OpT(X)u‘gmk—l,o’k,‘r - C/ Z |tI‘ uk@mk—l,ak—M,T’

k=1 k=1

—d
foru = (uy,...,ux) € (L(RL)", 7 > 7.
Proof. Using Definition 4.7, G reads

N n n
_ s s : s s 2my, — la;C
U) = Z (Z Akuklzd()’ZBkuklde) N Wlth AkﬂBk (S ‘117_ cl
k=1 k=1 E)

Using tangential pseudo-differential calculus, with classical symbols, there exist aj > by ; € S%T’Cl such

that

2my —1 2my —1

>~ Opr(ai;) Opr(A\F™ 171 )D) By = > Opp(by ;) Opp(AT™ 7 D),

Jj=0 Jj=0

Denoting by a#b, a € ST

,7,cl?

) = 3 I agalonble) . ras € Sy

|al<N

and a* the adjoint symbol, that is, for all M € N,

_i)lal
* ? —_— m
a*(p) = E ( a)' 3?8§a(p/)+7“M, M ESTT?{7
la| <M ’

the quadratic form G can be written as

G(u)
s=1 \k=1 j7=0 k=1 j=0

n 2my —12my—1
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be S’T’f;d the product of symbols, that is, for all M € N,

b

N n 2mp—1 n 2mp—1
Z <Z Z Opy(ar;) Opr(A7™ 17 ””")Déukhd ovz Z Opz(br.j) Opr (A7 1~ ]+0k)D]uk|md:o

o 2 ) =1—35" 4o, i’
Z Z (OPT 9 Opp (T~ I8 Dhyy,, Opp (A7 ™ ) D] Wuﬁo)a
k; =1

We say that G is

).



where gf ]k € S%TCI is given by

N
kk' *
g = D (bh,) #ak i
s=1
We recast this equality into a system formalism. We then consider the following matrix symbol

gt ) - gt (o)
G =| C = () e
0<h<m,y, —1
gt g ) S
It is then sufficient to follow the proof of Lemma 3.3 in [7]. O

With the covering condition, we have the following positivity result, at the symbol level. In the
following section, this positivity property will yield an actual estimate at the interface by means of
Lemma 4.9.

Proposition 4.10. Assume the covering condition of Definition 2.3 holds at py € LT (I). There ezist a
conical neighborhood U of py in T xR x R*, C > 0 such that

2(v;-1/2) 2(m+m;; —j+1/2)
S w0 e 3 s,

k=1j=m+1

n mp—1

k
—CZ Z )\2T(2mk—1/2—1)|zé|2’
k=1 j=0

for all p' € U, for all zj, = (29, ...,22™ ") € C™*.

Proof. As the covering condition is fulfilled at pf, € LT (Z), there exist an open conic neighborhood U
of pfy in VF x R4~ xR such that the rank condition (2.17) is satisfied at p’, for every p’ € U. Yet, consider
the compact set K := U N S(¢/,7)|=1, Where Sj¢r r)=1 := {(#,&,7) € RL x R x RT, €2 4+ 72 = 1}
Let p' € K. in view of (2.17), we have that M(p') is of maximal rank, that is M(p') = 2m. Taking

2= (21,...,2,) With 2 = (20,..., 2" ) € C*™* we have

(“M()z. " M(p)2) 2 |12l e, (4.6)

Recalling the form of M in (2.16), we have

(M) M(F)z2) =13 MU )2l + Y " MEE )2
k=1 k=1

m n n mtmy
:Z|Zzti 0y zk) +Z Z e, (s z1) %
j=1 k=1 e k=1j=m+1 e

and with (4.6), we have

n m+mk

SISy G+ X 12y (0l 2 Izl (4.7)

j=1 k=1 k=1j=m+1

Then, by continuity, (4.7) is true in a neighborhood of p/, and with a compactness argument, is true for
all p’ € K. Yet, we define

H>\T (P/) = (‘T7 >‘T£/7 )\TT)a
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and thus for every p' € K, we have o/ = H,_ 1 p with p/ := Hy.p'. We set Zi = )\ka_l/Q_jzi, Zr =

ka 1

(2.2 )and Z = (21,...,2,). By homogenelty of the symbols, (4.7) yields

n n m4my

m
SIS, G+ Y By (a2
j=1 k=1 k=1j=m+1
which reads
m n n m+m
2mk+1/2 ,Bk m+mk +1/2—j3 ) 2
3 Sy (W 430 D A S (72l
j=1 k=1 k=1j=m+1
n 2mp—1 )
Z )\ka71/2szi|2.
k=1 j=0
Using assumption (1.2), this yields the result. O

4.5 Estimate with the covering condition

The following proposition shows how the covering condition allows one to estimate all the traces at the
interface. The estimate is microlocal near a point where the covering condition holds.

Proposition 4.11. Let py = (z0,&0,70), To € Z, such that the covering condition of Definition 2.3 holds

at py. Then, there exists a conic neighborhood V of pp in V' x R&1 x Rt such that for x € S%’T
homogeneous in (', T) with supp x C V, there exist C > 0 and 71 > 0 such that

m n
CZHTOPT Yok —1,1 /20 S DD T S0kl o|yJ—1/2T+Z||Pk<p”k||+
J=1 k=1 k=1
n
+ Z (||Uk||§mk,—1,7' + |trvk‘§mk—1,—l/2,r)7 (48)
k=1
—d

forall T > 7, v=(vi,...,0) € (L (R))".

Proof. Consider the factorization described in Section 2.5
Prp (P €d) = Dy, o (0, €a)i (P, €a), (4.9)

for p’ in a conic neighborhood V, of p/, with Pr.pr Bk polynomials with homogeneous coefficients, Pro
being monic. Using Proposition 4.10, there exists a conic neighborhood V; of pj, V1 C Vg, such that

SRS w5 S AT

k=1j=m+1

n 2mp—1

2(2 1/2—
Z Z )\ (2mp—1/ ])|Zk|2 (410)
k=1 j=0

holds for all p’ € V; and for all z = (z1,...,2,) € C*™, with 2z, = (20,... zim’“ 1y e ¢, Now
we consider a conic neighborhood V of p satisfying ¥V C Vi, and x € SO’T homogeneous such that
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suppx C V, and x € S%T homogeneous such that suppy C Vi, and x = 1 in a neighborhood of V.
Consider a smooth extension Pry outside Vy. Note that by symbolic calculus, we have Opy(x)Pr,, =

Op(py,) Opr(X) Op(Xkk,p) + Ri, and Ry € \1127"’“71. Take also v = (v1,...,v,) € (5’(@1))" By
definition, Pk has only roots with negative imaginary parts. Thus we can apply Lemma 4.6 to the

function wy = Op(Xkk,,)Vk € Y(@i), and we obtain, for all k € {1,...,n}, for any N € N,
10pr OOwell7, -+ 1tr(0p2 (0Wk) iz _1.1/2.+ (4.11)
< 110p(y,) Opr(Vwsl? + w2y +trwsl?,

S ||P]€#PU]€H?F + ||Uk|‘§mk,717' + |trvk|gmk71,fN,‘r' (412>
By definition, we have | tr(Opp(x )wk)|72n e = ka - \Dé OpT(X)wk‘fnk_.—l/2—j7T7 thus (4.12) gives

my —1

Z |Dé OpT(X)kaiL;,l/Q,j)T g ||qu<.9vk”3- + H,Uk”gmk—l,r + ‘tr ngmk—l,—N,T' (413)
j=0

Yet, we recall that for j € {0,...,m; — 1}, from (2.15), we defined e} ™" (¢, &4) = & k.o (p',€a), for
p’ € V. Hence, by symbolic calculus, for j € {0,...,m, —1}

D} Opr(x) Op(Xkke) = Op(Xe ™) Opg(x) + Ry
where the remainder R}, € G2ETE T From (4.13), this yields

n
Z Z | Op(xet,) Opr(x )Uk|m 12— Z 1Prvrl 3 + [0kl 1,7 + [0 0k[3n, -1 12, (4.14)
k=1m+1 k=1

From (4.10), as x = 1 on V, we have for all p’ € V,

M —

2 —1/2 2(m+m, —j+1/2
Z)\(’)’J /)|ZZ 3 ,0 Zk‘ _,_Z Z )\( k —J /)| (I)Eeiw(f)lvzk)ﬁ
k=1j=m+1
n 2 k 1 ) )
>0 ST AETEIIR (45)
k=1 j=0

Yet, consider the following quadratic form, for v = (uy,...,uy) € (ﬂ(@i)) ,

m n
— 2
= 3D ST 3 Z | 0Pkttt -0z 41725

j=1 k=1 k=1 j=m+1

which symbol is given by

p . Z ZAZ(’Y;*l/Z (Z ti’v(p/’zk)> (Zzti,w(pl’ék)>
k=1

k=1

n m4tm;

2(m+m, +1/2— - 7 7 =
+Z Z o)l )\( / s, 1 (P 26) 2 (P, Zk),
k=1j=m+1
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with z = (21,...,2,), where z; € C?™. With (4.15), and the Garding inequality of Lemma 4.9, for
N € N, there exists 79, C,C’ > 0 such that

n

G(Opr(x)v) = C Y |tr(Op())vkl3m, 1,1 /2,r = C' D 1400k B, —1 —v.rs (4.16)
k=1 k=1

for 7 > 79. Hence, inserting (4.16) in (4.14), we obtain

m n
Z ‘ tI‘ Op Uk |2mk 1,1/2,7 Z | Z OpT ’Uklld 0|’2YJ_1/2 T

j=1 k=1

n
+ 2 U1Pegvrl 5+ orllBm, 17+ 10050, 1 —1j20)- (417)
k=1

It remains to see that Tlisa Opr(x) = OpT(X)T,g#J [T/ i0r OP7(X)] to obtain

m n m n m n
2
POIDIXIISIICTARI- SIS i) or  ITINNAS 9 Sil Tt I

j=1 k=1 j=1 k=1 j=1k=1

Using the definition of the norms on the traces (4.3), we have

B, 2mp—1
2 _ ¢ 2 ‘ 2
|trvk|,8i72mrﬁjk;3/2; - E :‘D Uk|a:d:0|2mk—€—3/2,‘r < E |D ’Uk|xd:0|2mk—€—3/2,‘r
£=0 £=0

= |tr Uk|gmk—l,—l/2,‘r’

and the proof is complete. O

4.6 Microlocal estimate with operators satisfying both sub-ellipticity and
covering condition
Using both the covering condition (by means of Proposition 4.11) and the sub-ellipticity condition (by

means of Lemma 4.5), we are ready to prove the following microlocal Carleman estimate, in a conic
neighborhood of a point in £7(Z).

Theorem 4.12. Let xq € ZNV. Assume that (P, 1) satisfies the sub-ellipticity condition in a neighbor-
hood of xo in V+, and that (T,g, ©) covers (Py, @) atp’ € LL (I). Then, there exists V a conic neighborhood

of p' in V' xR x R such that for x € S%T homogeneous of degree 0 satisfying supp x C V, there
exist C, 19 > 0 such that

*1Z|\0pT ol + 3 1 OPOOD By 12 < C (anvkm

k=1

m n n
+ Z | Tlg,gavk\md:oﬁrl/z,r + Z |7 [ —— Z |trvk|gmk71,71/2,‘r)’ (4.18)
=1 k=1 k=1 k=1

for T > 19, forv=(vi,...,v,) € (y(ﬁi))"
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Proof. Consider a neighborhood U of zy in V" such that the sub-ellipticity condition holds in U.
First we write

Pk#, = Pk72 + ZPkJ, with Pk72 = (Pk,g + Pk72) R Pk,l = Z (Pk72 — Pk,2) . (419)

M| —

We shall denote by py,, € Smr0 Dk2 € Smr0 py 1 € 8™~ L1 their principal symbols, respectively. Let
U be a conical neighborhood of pj given by Proposition 4.11. We have from (4.19)

108|317 + [ Propvrl 2 2 11 OPr () 0k 3y, 1,7 + [ Prp OP7 () vkl 13
2 |1 Op(pr.2) Opr ()|} + 1| Op(pk,1) Opr ()| + Qpy s (OPF (X))
Z 7 H10p(pk,2) Opr () vk 3 + 77 Op(pr,1) Opr (X)okl[ 3
+ Qprizpre (OP2 (X) V1), (4.20)

where Qp, , p,, is the quadratic form defined in (4.4). We have from Lemma 4.5, as the sub-ellipticity
condition holds,

Ct 0 () vk, r < C'77 (1] Op(pr,2) Opr ()l 3 + || OP(Pk,1) Opr (X)vk %
+ [ tr OpT(X)Uk‘gmk—l,l/Q,‘r) + (ka,27pk,1(OpT(X) k) — Re Bpk 2,Dk, 1(OPT(X)Uk))a (4.21)

where By, , ,, , satisfies
By 21,1 (OPr(X)0k) < C| tr(OpT(X)Uk)|§mk—1,1/2,f~
From Proposition 4.11, with the covering condition, we have

m n

CZ|tTOPT Uk|2mk 1,1/2,7 §Z|ZT1€¢ Ukloy= o|yj—1/27+Z||Pk,son||+

j=1 k=1 k=1
n
+ Z (Hka%’mk,—l,T + ‘tr vk|§7nk—1,—1/277)' (422)
k=1

Combining estimates (4.21) and (4.22), we obtain, with C’ taken sufficiently large

_12 | Opr(x Uk||2mk‘r+CZ|trOpT( YUk |3 —1,1 /2,0
k=1

< C’( 1> 110D (pr.2) Opr )kl 3 + 771 Y 110p(pr1) Opr COvel 13+ D 1D T vkl —ol2, —1/2.0

k=1 k=1 j=1 k=1
+ 2 1Prgoelly + > (lowl 3, —1.- + b0 vklgmrlﬁl/gﬁ)) + > Qi (OPP()VR).  (4.23)
k=1 k=1 k=
It remains to use (4.20) to obtain the sought result. O

4.7 Proof of the main result.

Let 29 € Z and V be like in Theorem 4.12. By assumption the covering condition holds for all
(0, Y V1, ..y Un,T) € 550 (Z). Using the local coordinates introduced in Section 2, we can only con-
sider p = (z,¢',&q,7), with (2,£',7) € S(¢/,7)|=1. According to Theorem 4.12, for all p' = (z,£’,7), there
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exists a conic neighborhood U, = O, x Cy of p' in V x R4~ x R such that the Carleman estimate
(4.18) holds in U,y. By a compactness argument, we can extract from the family of the U, a finite
number of conical subsets U; := O; x C;, j € J such that Sy =1 C UjesC;. First we set W = N;e;0;
and V; = W x C;. We construct a partition of unity (x;)jes, X;j € S%T, homogeneous of degree 0 in
(&',7) > C > 0 such that

ij(p’) =1, for (¢,7) > C >0, supp(x;) CV;.
jeJ

Applying Theorem 4.12, we have

P S0P ()l + D0 D 16 (ODOG) ) By 1,172, < C (D 1Prnll
k=1

j€J k=1 j€J k=1

+ Z | ZT Uk\zd 0 'yjfl/27' + Z ||U’€H2mk,fl T + Z |tI”l}k|2mk 1,—-1/2, -r) (424)

j=1 k=1

for all vy, Eégw(W),k: 1,...,n. From the fact that ¥ :=1-3", ; x; belongstOS in WxRITIxRT,
for all N € N, we have that

n n n
T_l Z Hka%mkr + Z ‘ tr(vk)@mkfl,l/l’r < T_l Z Z || OpT(XJ)/UkH%mk,T
k=1 k=1

jeJ k=1

+ Z Z | tr(OP(Xj)Uk)|§mk—1,1/2,r + Z ||Uk||§mk—1,1/2—N + Z | tr(vk)|§mk—1,1/2—N,m (4.25)

jeJ k=1 k=1 k=1

as supp(wy) C W. Combining (4.24) and (4.25), we obtain by taking 7 large,

n n
T Z Hkagmk—m/Q,T + Z | tr(vk)‘gmk—m/zf > (Z || P, gpka—&-
k=1 k=1
n

m
+Z‘ T} k Ukl y= 0%*1/2 T)
J=1 k=1

Going back with the original variable uy = e™#*vj, yields the result, taking into account of the change
of variable described in (2.1). With the notation introduced there, the open set U can be chosen as
U=np_ ¢, (W). O

5 Applications to control theory for the transmission problem

In this section, we shall place ourselves in the following setting. We consider p smooth compact Rieman-
nian manifolds (€, gx) of dimension d > 2, k = 1,...,p, with boundary 9. We set Q = U;_ Q). We
assume that ) is connected and that 9 has n, connected component, with ng > 1. We further assume
that the manifolds shares some of the connected component of their boundary with others. More pre-
cisely, we shall denote by Zy, £ € {1,..., L} the set of interfaces that are shared by at least two manifolds,
and we shall denote by By, k € {1,..., K} the remaining connected components of the boundaries. As
in Section 3, we shall consider the Laplace-Beltrami operator on each €2 and a transmission problem as
in (3.1) at each interface Zy, £ € {1,...,L}. The case d = 1, corrseponds to the case of elliptic problems
on a connected graph. However, as we prove our Carleman estimates only for d > 2, we do not consider
the case d = 1 is what follows. For such issues, we refer to [4, 13, 19, 30] and the references therein.
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Figure 3: We recast geometrical configurations under a graph form: the edges represent the manifolds
Qk, and the vertices the interfaces Z;, or the boundaries By.

5.1 Observable domains

We propose a method to describe the global geometrical configuration we can deal with. Indeed, due to
the discussion made at the end of Section 3.1, locally, we have to observe any n-interface from at least
(n — 1)-sides.

Let w be an open subset of . We shall write w, = Qy Nw, and £ = {¢ € {1,...,p}, we # 0}. For
ke {1,...,p}, we define the following map

1 QNI #0

. (5.1)
0 otherwise.

Nk:Igl—>{

In other words, this map returns 1 if Z; is an interface shared by Q. Weset V* := {k € {1,...,p}, Nu(Zp) =
1}, that is, the set of manifolds that share the interface Z,. Conversely, we define Wy := {{ €
{1,..., L}, Nx(Z;) = 1}, that is, the set of indices of interfaces that are shared by the manifold Q.

We consider the following construction, with Qg := L,

Oj+1 = Oj @] (U£:1Vf> R Yt .=

V¢ if Card V! <1 .
¢ { J J and where Vi = Vi\ O;. (5.2)

(0  otherwise,
In other words, at each step, for all £ € {1,..., L}, we count the number of sides of Z, that belongs to
O;. If this number corresponds to an observation from at least (n —1)-sides, we add to O; the remaining

side. Observe that Card Vf < 1 at each step. Note also that if O; = 0,4, for some j, then O; = O, for
all j/ > 7. With this construction, we have the following definition.

Definition 5.1. We say that (Q,w) is observable, if there exists jo € N such that O, = {1,...,p} in the
iterated construction described in (5.2).

In the example given on the left-hand-side of Figure 3, assume £ = {2,4,5,6}. Then
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1. Og =L, Uk V5 =1{1,3,7,8}, UL V= {1,8}

2. Oy ={1,2,4,5,6,8}, Uk \V{ = {3,7}, ULV = {3}
3. Oy ={1,2,3,4,5,6,8}, UL Vi = {7}, Uk V5= {7}
4. O3 =1{1,2,3,4,5,6,7,8}.

As a result, according to Definition 5.1, we have that (Q,w) is observable. In the example given on the
right hand side of Figure 3, assume £ = {2,4,5,6}. Then

1. Og =L, Uk V§=1{1,3,7,8}, ULV = {8}
2. 01 = {2’4’5’678}’ Ul%zl]}f = {37477}7 Ué:lvf = @
3.0, =0, #1{1,...,8}.

Hence, (Q,w) is not observable in this particular case.

5.2 Setting

Consider Z := (0, Xp) x Q, where Xy > 0 (resp. Zy := (0, Xo) x Q). Let a € (0,X(/2), and define
Y = (o, Xo — a) x Q (resp. Y} := (a, Xo — a) x Q). For z = (29,2) € Z (resp. Y), we shall mean
zo € (0, Xo) (resp. zp € (a, Xo—o)) and z € Q. For £ € {1,..., L} (see the beginning of this section for
the notation), we also set Sy = (0, Xo) x Zy and S = (a, Xo — ) x Z,. For k € {1,..., K}, we consider
Ry = (0, Xo) x By, and R = (o, Xg — ) x By.. We finally set 20, = {i € {1,...,p},Q; N By # 0}, that is
the set of the indices of the manifold that has Bj, as a boundary. We consider the following transmission
problem for a general domain 2, with Dirichlet boundary condition:

—8§Ouk—Agkuk:fk inZg, k=1,...,p

Uils, = Uj[s, on Sy, Vle{l,...,L}, Vi jeV £ 3
2 keve Ovugls, =0 on Sy, Yle{l,...,L}, (5.3)
ui‘Bj =0 on Ry, VjE{l,...7K}, ieﬂﬂj,

where Ay, stands for the Laplace-Beltrami operator on ;. Other boundary conditions can also be

considered satisfying the Lopatinskii condition. For the sake of simplicity, we only consider Dirichlet
boundary conditions here. We define u(z) = u(x), and f(x) = fi(z) if € Zj. Similarlly, for v defined
on §) (resp. Z or YY), we set v on € (resp. Zy or Yy) as vi(x) = v(x) for € Q (resp. vi(s,z) = v(s,x)
for (s,x) € Zy, or Yi). We also define the Sobolev spaces, for m € N,

H™(Q) = {u, up, € H™(Q) },
and on Z (resp. Y), we define
H™(Z) =A{u(z) == ug(z), © € Zi, ux, € H™(Zy)}, H™(Y) = {u(z) == ux(z), z € Yy, ux, € H™(Yy)}.

5.3 An interpolation inequality

By standard arguments, [28], [25],[26], local Carleman estimates are used to prove interpolation inequal-
ities.

Theorem 5.2. Let w be a subset of Q such that (Q,w) is observable, in the sense of Definition 5.1. There
exist C >0 and § > 0 such that

5
l[ul| vy < C||U|\L_1‘zz)(||f|\m(z> + )0l () + |3on\IOZO|L2(w)> : (5.4)

for allu € HY(Y) solution of (5.3), with f € L*(Z).
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It is classical that the proof of Theorem 5.2 can be reduced to proving the following lemma, which is
a local version of Theorem 5.2, in a neighborhood of an interface. For £ € {1,...,L} and k € V*, define
V! ={z €Yy, d(z, Ul S UK | R®) >n}. Here, d denotes the Riemannian distance.

Lemma 5.3. Let £ € {1,...,L}. Let y € S, and let n > 0. For all ko € V*, there exist a neighborhood
Voofyin Z,, C >0 and é € (0,1) such that

0
lullzs vy < Cllullii (32 Wllzaczy + - Mullmor ) s

keve kevt
k£kq

for all uw € HY(Z) solution of (5.3), with f € L*(Z).

This result corresponds to an observation from (n — 1)-sides of the interface S&, where n = Card V¥,
and quantifies the unique continuation property.

The following lemmas are classical. The first one allows one to propagate interpolation inequalities
away from boundaries and interfaces.

Lemma 5.4. Let U be an open subset compactly embedded in (0, Xo) x Qi and n' > 0. There exist
C >0 and 6§ > 0 such that

S
ull gy < Cllll22 7, (102, + Agullz2z0) + 220 ) (5.5)

for allw € H'(Zy) such that (97, + Ay, Ju € L*(Zy).

The second one allows one to propagate interpolation inequalities uo to the boundaries. We also have
the following estimate, in a neighborhood of the boundary {z¢y = 0} x w, where no boundary conditions
are known. We refer to [27] for a proof.

Lemma 5.5. Let g € wy, k € L. There exist V a neighborhood of the point (0,x¢) in R x R%, § € (0,1)
and C' > 0 such that

0
lullirsvez < Cllullid ) (1002, + Agullza(z + 1ol 2 + Oty oliz@n) - (5:6)

for all w e H'(Zy) such that (97, + Ag,)u € L*(Zy).

Proof of Lemma 5.3. This lemma is a consequence of the Carleman estimate. We shall place
ourselves in a system of coordinates as given in Section 2, in a neighborhood U of a point 2° = (20,2°) €
S¢, with 24 = 0. We shall write U+ = U NR{™. We define two anisotropic distances in R, for all
21, 2% € R4+

%) =z, (1)) = (25, (22))? + |za — =2, (5.7)

A5 (=", 2%)? =1z, (1)) = (25, (2*))? + Blzg — 231

For k € V!\ {ko}, we deﬁne with z! € R4, the weight function ¢y (2!, 2) = 212 and for k = ky

we define @, (21, 2) = 527 with 21 = (28, (1), —z}), that is, the symmetric of z! with respect to
the axis {xq = 0}. Note first that for A > 0 sufficiently large, this famlly of weight functions satisfies the
sub-ellipticity property (see Lemma 2.2) in U+. For 2! € Rflﬁl, it satisfies also conditions (3.15). Indeed,
we have

d, (2%, 2

(‘3“90;6‘”:0 = 2)\x(11<p;€(z1, z)‘gsd:0 >0, for k # kg and , 8wd<pk0|zd:0 = —2/\30(11<pk(21, 2) <0,

L y=0
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and moreover, by choosing v > 0 and 8 > 0 sufficiently small, we can ensure that the covering condition
is fulfilled. It is now classical that, using the Carleman estimate of Theorem 2.6, we can obtain the
interpolation inequality of Lemma 5.3. We choose rg > 0 such that z! = (0,79) € Rﬁf’l. We define the
following cut-off functions xo, x1 € C§°(R4T1):

[0 in xmg>m ) |0 if dq,(z,zl)STz or dy(y,y0) > 75
Xo@) =91 1 4 e 0,r/2] ° i@ =11 i g z,2') € [r3, 4],
Y

and
Y. (z) = 0 if dP(z,2') <ryord?(z,2') > s
Xt =1 1 i dP(z,2%) € [rs, 4],

with 0 <71 <rp and 0 < ry < rg3 < rg < r5 such that

e r3 is small enough to have B, (z!,73) N Ut = 0, where B., denotes the open ball associated with
the distance d.;

e 71 small enough and o < r4 < 75 are such that {z = (20,2) € RS | zg <} N {ry < dy(z,2') <
7“5} cur.

We can apply the Carleman estimate of Theorem 2.6 on U™ to wy, = xoXx1uk, for k # ko, and wg, = XUk,
there exist 79 > 0 such that

2

1 /2,7)’

Z T—1||e7'$0kwk||§’,r < C’( Z HeT%(B;O + Agk)wkH%?(Zk) + ’efwmydzo Z Dyat0kl (o)
kevt kevt kevt

for all 7 > 19. For k # kg, the right hand side can be estimated as follows
[[e™#* (85(, + Agwllr2(z,) S H@w(aio + Agullz2(z) + Hew[((?;o + Ay, ), xoxilullL2(z,)
S eT(02 + Ag)ullr2z,) + €l @t niyaeim 2y + €l a2,

with C5 > e *r0=") and C; = e *"4. Note that we have C; < C3. Here, we use that the weight
function ¢ is radial with respect to the distance d,, to 2! and decreasing as z moves away from z', and
the commutator [(9; + Ay, ), Xox1] is a differential operator of order 1 supported in the region were xox1
varies. For k = kg, we have

€770 (95, + Dg )0l 2(2,0) S €790y, + Age JullLz(z,) + l€721(95, + Ay, ), Xoxa]ull L2 (z4,)
S e N(0y, + Ay, ullLa(ziy) + €7 Hlull i (z4,)s
In the same spirit,

TPkly, =0
e Yq Z 6ydwk‘{yd:0}
keve

SEELY D Byauny,, oy l1/2r + €M lunllm 2,

1/2,
/2r keVe

Finally, we can restrict the left hand side of the Carleman estimate to W := B(0,76) N {yq > 0} with
r¢ > 0 taken sufficiently small to have xox1 = 1 on B(0,7¢) and this yields, for 7 > 1,

S Ul wnl o 2 € lull ey,
keVvt

where Cy > infy, infyr ¢, and 7 > 79, with 79 taken sufficiently large. Note that we have 0 < C; < Cy <
C53. We finally obtain, coming back to the original coordinates, for some 1 > 0,

ullirs vy S €= (ST102, + Agunllzzy + D Mullmogyy + 11D Otz )
kevt keVt k+£ko kept

+ e—T(CQ_Cl) | |u| |H1(Z)’
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where V is an open neighborhood of vy in Z. It remains to optimize this inequality with respect to 7 to
obtain the result. O

5.4 A spectral inequality

Define L2 := @} _, L*(Q), and more generally H* := @F_, H*(;,). We consider the operator defined
on {2 by
Aug, . .yup) = (Ag ur, ..., —Ag up), (5.9)

with domain

D(A) = {u = (u1,...,u,) € H', A(u) € L? V0 e {1,...,L}, Uy, = = Upl;, =0, Z Oy |z, =0
eyt
and Uils, =0, Vie{l,...,K}, Vie20;} (5.10)

where vy is the outward unit vector on Z; in the sense of the metric gx. This operator admits an
orthonormal basis of eigenfunctions.

Proposition 5.6. There exists a Hilbert basis of L2 composed by eigenfunctions ¢* = (¢%, ..., gb];) clL?
of the operator A, associated with eigenvalues 0 < o < v1 < ... with limj_,o v; = +00.

The following spectral inequality that measures the loss of orthogonality of the eigenfunctions ¢;,
j € N, when they are restricted to an open subset w C €2 such that @ # Q. It also quantifies how linear
combinations of these eigenfunctions can be observed from a subdomain. It is a natural consequence of
the interpolation inequality if Theorem 5.2 (see [21]).

Theorem 5.7 (Spectral inequality). Let w C Q be an open subset such that (w,€Y) is observable in the
sense of Definition 5.1. There exists C > 0 such that for all v > 0 we have

lwl|r2(0) < eV [Jw]| 2wy, w € span(d;; v; < 7). (5.11)

By the Lebeau-Robbiano method (see for instance the survey [21] for an exposition of the method, and
the references therein), from the above spectral inequality, we can construct a control for the following
heat equation. Let w be an open subset of ().

Opur, — Agyup = X fr in (0,7) x Qx, k€ {1,...,p}

U“IZ :’u’j|zz at (O,T) XIg,ge {1,...,[/}, Z,] EVE

Y heve O g, =0 at (0,T) x Iy, 0 € {1,...,L} (5.12)
ui|sj:0 at (O,T)XBj,jG{].,‘..,K},Z.EQﬁj
(u1|t=0,...,up‘t=o):(u?,...,ug) in {0} x Q,

where xy is a cut-off function such that supp xi € w. We state the null-controllability result of the heat
equation 5.12.

Theorem 5.8. Let w C Q such that (w, Q) is observable in the sense of Definition 5.1. For any T > 0,

there exists a constant C > 0 such that, for all initial data (ul,... ,ug) € 12, there exists a control

= (f1,---, fp) € L*((0,T),L?), such that the solution u = (u1,...,u,) of (5.12) satisfies u(T) = 0.
Moreover the controls satisfy the bound

p
Ifllz2 oLz < C D llugllLaca,)-
k=1

34



5.5 Stabilization of the wave equation

Let w C € be an open subset. We consider the following damped wave equation.

quk — Ay up + ap(x)Oug =0 in (0,7) x Q, ke{l,...,p}
Uily, = Uiz, at (0,7) x Zp, L € {1,..., L}, i,5 € V*

peve O i)z, =0 at (0,T) x Zp, 0 € {1,..., L} (5.13)
ui|5j:O at (0,7) x B;,je{l,...,K},ie 2 ’
(Upegr - - o Up)yy) = (U, ..., ud) in {0} x Q,

(8tu1‘t=0, ceey 8tup‘t=0) = (1}?, “e 7’02) in {O} X Q,

where ay, is a non-negative compactly supported function satisfying ax > C > 0 on w, a non-empty subset
of 2. Observe that in the above wave equation, the damping terms are only directly effective on parts
of Q that intersect w. We shall see that it is sufficient to ensure stabilization properties. We define the
energy of the waves, solution to System (5.13) by

p
EW,1) = (lulfi o) + 100uellZ2qy))-
k=1

We can recast System (5.13) into a semi-group formalism

U+ BU =0, (5.14)
B, 0
where B = - , with By, = 0 -1 . We define the norm
' 7Agk CLk(I)
0 B,
(o1, -y vp) [y = [ICuny - up) i+ (01 vp) [

We have the following result, that states that the energy of the strong solutions of (5.13) decays with
a logarithmic speed.

Theorem 5.9. Assume that (2, w) is observable in the sense of Definition 5.1. There exists C > 0 such
that
E(U, )2 <log(2 + t)~*||B*Up||w,

for all solutions U = (uq, Oyus, ..., up, Opuy) of (5.14), with initial data Uy = (uf, v, ... ,ug, Up).

It is well known |11, 3] that Theorem 5.9 follows from the following resolvent estimate. We define H
the space of functions of H' that satisfies at the boundary

Ui| 5, =0at Bj,je{l,...,K},i € Wy,.

Proposition 5.10. Let w be a nonempty open subset of Q0 and a be such that « > 0 on w. Then, the
unbounded operator io Id — B is invertible on H = H} x L2 for all 0 € R and there exist K > 0 and og > 0
such that

|(ic1d=B) | s < Ke"l°l, o eR, |o| > 0.

As in [26]), this is a consequence of the interpolation inequality of Theorem 5.2, using a propagation
of interpolation inequalities arguments trought the whole domain up to boundaries and trough interfaces.

Acknowledgements. The author would like to thanks Jérome Le Rousseau and Luc Robbiano for
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