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Abstract

When using optimization techniques based on mathematical models, we often need to make im-
portant simplifications. The solution thus provided, even if proven to be theoretically one of the
best, might not be so good in practice. Simulation can be usedto evaluate the actual performance
of the solution. We propose here a coupling between optimization and simulation that tries to
improve the solution provided by a mathematical model. Thisapproach, named "model enhance-
ment" here, still focuses on optimizing the theoretical objective function, contrary to the common
optimization-simulation coupling that focuses on improving the objective function evaluated from
simulation. We propose to illustrate this approach on a routing problem, and present numerical
results on the quality of the solution and the efficiency of both coupling approaches.

Keywords: optimization, discrete-event simulation, simulation optimization, routing problem.

Résumé

Lorsqu’on utilise des techniques d’optimisation qui reposent sur des modèles mathématiques, on
est souvent obligé de faire d’importantes simplifications.La solution ainsi produite, même s’il
est théoriquement prouvé qu’elle est l’une des meilleures,peut ne pas être si bonne que cela en
pratique. La simulation peut être employée pour évaluer la performance véritable de la solution.
Nous proposons ici un couplage entre optimisation et simulation qui tente d’améliorer la solution
produite par un modèle mathématique. Cette approche, nommée "enrichissement de modèle" ici,
se concentre toujours sur l’optimisation de la fonction objectif théorique, contrairement au cou-
plage optimisation-simulation classique qui se concentresur l’amélioration de la fonction objectif
évaluée par simulation. Nous proposons d’illustrer cette approche sur un problème de routage, et
présentons des résultats numériques sur la qualité de la solution et l’efficacité des deux approches
de couplage.

Mots clés : optimisation, simulation à événements discrets, couplageoptimisation-simulation,
problème de routage.
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Abstract

When using optimization techniques based on mathematical models, we often need to
make important simplifications. The solution thus provided, even if proven to be theoreti-
cally one of the best, might not be so good in practice. Simulation can be used to evaluate
the actual performance of the solution. We propose here a coupling between optimization
and simulation that tries to improve the solution provided by a mathematical model. This ap-
proach still focuses on optimizing the theoretical objective function, contrary to the common
optimization-simulation coupling that focuses on improving the objective function evaluated
from simulation. We propose to illustrate this approach on arouting problem, and present nu-
merical results on the quality of the solution and the efficiency of both coupling approaches.

Introduction

The goal of this paper is to discuss a way to improve the practical quality of a solution provided
by an optimization process. There are several advanced optimization techniques (mixed inte-
ger programming: branch-and-bound, branch-and-cut... [7], decomposition methods: Benders,
Dantzig-Wolfe... [5]) that can solve efficiently problems formalized with mathematical models.
Major results have been stated to prove the optimality or thequality of the solution (approxima-
tion algorithms can ensure the solution found to be close to the optimal solution according to a
given precision [4]), and to ensure the efficiency of the techniques (their complexity, their speed
to converge to a solution...).

However, these methods have significant drawbacks when looking for their practical imple-
mentation. First, they are not robust to changes in the structure of the problem: adding a new kind
of constraints might make the problem unsolvable with the previous optimization technique (e.g.
linear constraints, solved with the simplex method, that become non-linear). Secondly, and more
of concern in this paper, major simplifications on the modeling of the problem often have to be
considered. As a result, a solution that is optimal in theorymay not be so good in practice.

Therefore, we propose an optimization-simulation coupling calledmodel enhancement, that
attempts to reinforce the mathematical model in order to make the solution more adapted to prac-
tice than a straightforward optimization. Section 1 recalls the common optimization-simulation
coupling sketch, usually calledsimulation optimization, and formalizes the problem that we pro-
pose to discuss in this article. Section 2 explains what straightforward optimization implies on
the formulation and the solutions of the problem. Section 3 finally presents the idea of model
enhancement, its goal and sketch. This proposition is illustrated in Section 4 through a routing
problem. The approaches presented in the previous sectionsare implemented for this problem,
and the quality of their solution and their computational efficiency are compared.

1 Simulation Optimization

An optimization problem can be expressed as finding the best solution x to a real problem(Pr),
i.e. minimizing or maximizing a functionfr(x). A solutionx fits problem(Pr) if it satisfies a set
of constraints that defines the spaceCr of feasible solutions.

(Pr)







optimize fr(x)

subject to x ∈ Cr
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During the modeling phase, the real problem(Pr) must be approximated. The common for-
mulation of simulation optimization is expressed by problem (Ps). The fact that a function (resp.
a space of solutions)a is approximated by another function (resp. another space ofsolutions)b is
denotedb ∼ a.

(Ps)















optimize fs(x) = g(x, λ), fs ∼ fr

subject to
x ∈ Cs

λ ∈ Λs(x)

}

∼ Cr

Cs represents constraints on a solutionx. It usually defines the basic structure of a feasible
solution (for instance, the solution must be a cycle in a graph). λ is a vector of measures that is
returned by the simulation for a solutionx (cf. Figure 1).

Optimization Method

Solution x

Simulation Evaluation

Estimation  λ
of performances

Figure 1:Simulation optimization sketch.

Λs(x) is the set of feasible solutions forλ, according to a given solutionx. It is defined
by implicit constraints of the simulation model (given a solution x, the simulation returns the
estimationλ), and by explicit constraints on some performance measures(e.g. estimated delay
must not exceed a given limit, or simply the solution is acceptable). That meansΛs(x) contains
either one solution (x is feasible based on the simulation evaluation), or no solution (x is not
feasible based on the simulation evaluation).

The objective functionfr of the real problem is approximated byfs. We propose to parame-
terize this function on vectorλ: fs(x) = g(x, λ). For instance,λ can represent estimated delays
for solutionx, andg(x, λ) an estimation of the quality of service of solutionx according to these
delays.

Simulation optimization explores the set of solutionsCs to optimizefs. For each solution
x, the simulation estimates vectorλ. If λ satisfies all the constraints inΛs(x), the solutionx is
accepted, and the objective functiong(x, λ) is evaluated.

Several methods are proposed to solve problem(Ps). A classification in four major approaches
can be found in [6] and [1]: gradient based search, stochastic approximation, response surface and
heuristic search. These methods are robust to changes in theobjective function or in the constraints
of the problem. However, they only represent a few optimization techniques and their efficiency
and convergence are not always ensured.

Research Report LIMOS/RR05-03
LIMOS, UMR 6158-CNRS, Université Blaise-Pascal, Clermont-Ferrand, France, 2005.



3

2 Straightforward Optimization

Optimization techniques, independent of simulation, usually need a mathematical model. This
representation is also an approximation of the real problem(Pr).

(Po)







optimize fo(x), fo ∼ fr

subject to x ∈ Co, Co ∼ Cr

However, we can reasonably assume that the simulation optimization problem(Ps) is closer
to the real problem than the straightforward optimization problem(Po). For the purpose of model
enhancement, we now make some assumptions on the structure of (Po).

(Po)















optimize fo(x) = g(x, λ)

subject to x ∈ Co ⊃ Cs

λ ∈ Λo(x), Λo ∼ Λs

• The constraintsCs describe the basic structure of a feasible solution. Hence,we can rea-
sonably assume that the constraints definingCo are approximations, and even relaxations,
of the constraints definingCs. It means thatCo ⊃ Cs.

• We consider that the objective functionsfo andfs are identical:fo(x) = g(x, λ). However,
we assume that the space of solutionsΛo is an approximation of the space of solutionsΛs,
which implicitly makesfo an approximation offs.

Depending on the structure of the problem, various optimization techniques can be considered
to solve(Po). However, once a particular methodm has been chosen to solve the problem, it is
difficult to deal with changes on the kind of constraints of the problem. For model enhancement
purpose, we consider changes only on the constraints that describeΛo. Let us denoteKm the set
of all the families of constraints that can be managed by method m. That means problem(Po) is
solvable by methodm only if Λo ∈ Km.

3 Model Enhancement

From the previous assumptions, ifΛo(x) is never empty, all solutionsx in Co are feasible solutions
of problem(Po). As Co ⊃ Cs, any solution of the simulation optimization problem(Ps) is a
feasible solution of(Po). In particular, any optimal solutionx∗

s of (Ps) is a feasible solution of
(Po). The idea of model enhancement is to find the family of constraints Λo ∈ Km such that the
optimal solutionx∗

o of (Po) is one of the optimal solutionsx∗

s of (Ps). We can state the model
enhancement problem(Pe) as follows.

(Pe)























optimize fs(x
∗

o) = g(x∗

o, λs)

subject to Λo ∈ Km,Λo ∼ Λs

(x∗

o;λ
∗

o) optimal solution of (Po)
λs ∈ Λs(x

∗

o)
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(Pe) is a very hard problem. However, one way to find a good solutionto the problem may be
to approximateΛs by Λo as precisely as possible. Thus,λs andλ∗

o will have similar values and
the theoretical evaluationg(x∗

o, λ
∗

o) of the optimal solutionx∗

o of problem(Po) will be close to its
simulation evaluationg(x∗

o, λs).

Constraints Λ
o

Solution x
o

Solution (x
o
,λ

o
)

Optimization Method

Solution (x*,λ*)

Simulation Evaluation

Constraints Λk

Model Enhancement

Solution x*
Estimation  λ

s

of performances

Figure 2:Model enhancement heuristic.

Algorithm 1 and Figure 2 describe a heuristic approach for model enhancement that iteratively
modifiesΛo, based on the simulation evaluationλs of an optimal solution of(Po).

Algorithm 1 Model enhancement heuristic.
k ← 0;
let n be the maximal number of iterations;
let Λk

o be an approximation of Λs;

repeat
let (x∗

o, λ∗

o) be an optimal solution of (Po) with Λo = Λk

o;
let λs be the simulation evaluation of x∗

o;
Λk+1

o ← h(Λk

o , λs);
k ← k + 1;

until |g(x∗

o, λ
∗

o)− g(x∗

o, λs)| < ε or k ≥ n;

Functionh represents the way to modifyΛo at each iteration. It needs to be defined more
precisely for any specific problem. In the next section, we propose to illustrate this heuristic on a
bus routing problem.

4 Study of a Routing Problem

We propose now to study a bus routing problem in order to illustrate the discussion of the previous
sections. We detail the simulation optimization method, a straightforward optimization approach
and the model enhancement heuristic for this problem. We also present a practical comparison of
these three approaches.
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4.1 Problem Presentation

We focus on the following problem: let us consider a public transportation company in an urban
network, such as a bus company. Basically, this company needs to design low cost bus routes
while satisfying potential customers.

Let us consider a directed graphG = (V,E) whereV is the set of vertexes andE the set of
edges. Each vertex represents a potential bus stop or a crossroad in the real-life network. Each
edge represents a road between two stops or crossroads.

We assume the customer demands are known, i.e. there is a description of the moves the
customers need to perform in the urban network. A customer demandd ∈ D is defined by a tuple
(od; sd;Qd; t

min

d
; tmax

d
), whereod ∈ V is the origin of the move,sd ∈ V the destination,Qd the

throughput of customers for this demand.tmin

d
andtmax

d
are reference times for the demand:tmin

d

is the time it takes to a vehicle (such as a bus) to move fromod to sd; andtmax

d
is the time of travel

of a pedestrian fromod to sd.

In this article, we limit the problem to find a transportationsystemΓ that meets the following
requirements:

• Γ is a set of directed cycles in graphG (for clarity reasons, we consider further only one bus
cycle);

• the length of the bus route, i.e. the time it takes to the bus tomove along the route, must be
less than a given thresholdT ;

• Γ should maximize the satisfaction of the customers.

Let us denotetd the time it takes to a customer with demandd to travel through the network.
His satisfaction can be represented by a functionφd(td) defined as follows: iftd ≤ 2tmin

d
then the

customer is fully satisfied andφd(td) = 1; if td ≥ 2tmax

d
then the customer is not satisfied at all

andφd(td) = 0 ; and between these two limits, the closer to the minimum, thebetter the customer
is satisfied. Figure 3 illustrates the satisfaction function.

1

t
d

2t
d

min
2t

d

max
0

φ
d

Figure 3:Satisfaction function for demandd.

Finally, we definewi the time customers are waiting at a bus stopi. Back to our notations of
the previous sections,λ is the vector of all thetd and thewi values.λo will be their theoretical
estimation (from optimization) andλs their practical estimation (from simulation).

Let us denotex a solution to the problem, i.e.xe = 1 if edgee is part of the bus route, and
xe = 0 otherwise. The objective is to maximize the satisfaction ofthe customers, i.e. function
g(x, λ) =

∑

d∈D
QdΦd(td).
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4.2 Simulation Optimization

We propose to solve the problem using the tabu search metaheuristic in the simulation optimization
sketch(Ps). The tabu search was first introduced by [2, 3]. It searches for a good solutionx in
the space of solutionsCs. Cs represents bus routes with their length belowT . Moreover, we force
the structure of the bus routes inCs to be ageodesic (the search is thus facilitated). A geodesic is
a directed cycle defined by a given number of points calledcontrol points. Each control point is
connected to its successor in the cycle by a shortest path (cf. Figure 4).

1

2

3

Figure 4: An example of 3-
points geodesic.
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Figure 5: Graph modeling Clermont-Ferrand (France)
downtown.

Neighborhood structures for the heuristic rely on moving, adding or deleting a control point.
The tabu list contains the control points that have been modified in the last few iterations. We have
implemented a two-level heuristic using aspiration criteria (accepting a tabu move under some
conditions) and diversification strategy (exploring another area of the space of solutions).

For a given solutionx of the simulation optimization problem(Ps), simulation estimates the
time of traveltd of the customers with demandd and their waiting timewi at bus stopi (reminder:
all these values are stored in vectorλ). Besides the implicit constraints of simulation, we consider
no additional constraints inΛs that can discard a solutionx based on its estimationλ. That
means any solutionx ∈ Cs is a feasible solution of(Ps) (it is a necessary condition for model
enhancement to work).

We consider now a graph with109 vertexes and392 edges that represents Clermont-Ferrand
downtown (cf. Figure 5), with12 customer demands. Table 1 presents numerical results for the
simulation optimization on this instance. In order to test various problem structures, the number
of control points in a geodesic varies. We also consider several maximal lengthT for the bus
route. The tabu search has been implemented with C++ and the simulation model with the B++
Simulator framework3. The tests have been performed on a Pentium Centrino 1.7 GHz with G++
3.2 compiler.

3Information available athttp://frog.isima.fr/bruno/?doc=bpp_library+ch=simulator.
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Control Length Bound Best Evaluation Number of CPU Time
Points T fs(x

∗

s
) Evaluations (hours)

5 700000 10.33 3793 5h04
5 800000 10.30 5203 7h04
5 900000 10.32 4807 6h08
5 1000000 10.32 7573 9h44
7 700000 10.32 8201 10h44
7 800000 10.34 6092 8h16
7 900000 10.32 6749 8h56
7 1000000 10.31 7883 10h28
10 700000 10.32 8843 11h20
10 800000 10.33 9706 10h12
10 900000 10.31 10732 13h52
10 1000000 10.34 8812 11h04
15 700000 10.31 6074 8h20
15 800000 10.32 8759 10h08
15 900000 10.33 10699 11h16
15 1000000 10.33 10302 11h08

Table 1:Simulation optimization numerical results.

Execution times can be more than a day. As our purpose here is only to know good practical
solutions to compare with model enhancement’s ones, we choose to limit the number of diversi-
fications. Notice that the number of simulation evaluationsto solve(Ps) is high, and without our
restriction, it can reach more than100000 evaluations. Hence, the solutions provided here are not
always the best ones that simulation optimization can provide.

4.3 Straightforward Optimization

Our bus routing problem is strongly related to the well-known Vehicle Routing Problem (VRP)
class. Several straightforward optimization techniques can be considered to solve the problem [8].
Especially, [9] propose a mixed integer programming formulation. They show that the tabu search
(as defined in the previous section) can provide solutions very close to the optimal solution (when
known) or to the best known solution (when it takes to much time or memory to get an optimal
solution using mixed integer programming).

Thus, we prefer to choose the tabu search as our methodm to solve the optimization problem
(Po). It still searches a good solutionx, but this time in the space of solutionsCo. With mixed
integer programming,Co would be larger thanCs (Co ⊃ Cs), because instead of forcing the
solution to be a geodesic, it would look for any directed cycle. With tabu search, it is easier to
keep the geodesic structure, soCo = Cs.

Λo is an approximation ofΛs. The implicit constraints of simulation that defineΛs are replaced
by constraints to estimate the time of traveltd of the customers with demandd. Other constraints
fix the waiting timeswi to zero for any bus stopi, due to the assumption that there will be enough
buses on the bus route for the waiting times to be insignificant. To sum up,Λo approximates the
way to estimate the travel times and sets the waiting times tozero.

Under the same conditions than problem(Ps), tests have been performed for(Po). The prob-
lem is solved with tabu search. Table 2 shows the theoreticalevaluationfo(x

∗

o) of the best so-
lutions x∗

o found for (Po), and their simulation evaluationfs(x
∗

o). The resolution is quite fast
(around10 seconds) compared to simulation optimization (several hours), but the solutions do not
always have good simulation evaluations. Inside parenthesis is indicated the relative difference
(fs(x

∗

o)− fs(x
∗

s))/fs(x
∗

s).
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Length Straightforward Optimization Simulation Optimization
Control Bound Theoretical Eval. Simulation Eval. Best Evaluation CPU Time
Points T fo(x

∗

o
) fs(x

∗

o
) fs(x

∗

s
) (seconds)

5 700000 11.99 10.29 (-0.4%) 10.33 5.0
5 800000 11.99 10.25 (-0.5%) 10.30 5.0
5 900000 11.99 9.62 (-6.8%) 10.32 5.1
5 1000000 11.99 10.08 (-2.4%) 10.32 5.3
7 700000 11.99 10.31 (-0.1%) 10.32 6.8
7 800000 11.99 9.92 (-4.1%) 10.34 7.1
7 900000 11.98 9.79 (-5.1%) 10.32 7.5
7 1000000 12.00 9.43 (-8.5%) 10.31 7.6
10 700000 11.97 10.18 (-1.4%) 10.32 7.7
10 800000 11.99 9.92 (-4.0%) 10.33 8.9
10 900000 11.99 10.05 (-2.5%) 10.31 9.4
10 1000000 12.00 9.33 (-9.8%) 10.34 10.3
15 700000 11.99 10.29 (-0.2%) 10.31 8.0
15 800000 11.99 10.01 (-3.0%) 10.32 9.0
15 900000 11.99 9.85 (-4.6%) 10.33 9.8
15 1000000 12.00 9.56 (-7.5%) 10.33 10.8

Table 2:Straightforward optimization numerical results.

4.4 Model Enhancement

Simulation optimization provides good practical solutions, but needs a very long time to execute.
At the opposite, straightforward optimization is very fast, but provides poor practical solutions.
We describe now the model enhancement heuristic (as proposed in Section 4) applied to our bus
routing problem, in order to improve the constraints defining Λo so problem(Po) provides good
practical solutions.

In problem(Po), we assumed that the waiting timeswi are set to zero at any bus stopi. These
constraints may makeΛo a poor approximation ofΛs. As the method used to solve(Po) can deal
with any constant waiting timeswi 6= 0, we propose to modify these theoretical waiting times at
each iteration of model enhancement (in order to makeΛo a better approximation ofΛs).

Let us denotewk
i

the waiting times for problem(Po) at iterationk, andλs = (w t), composed
of vectorsw = (wi)i∈V (the estimated waiting times) andt = (td)d∈D (the estimated travel
times), the simulation evaluation of the current theoretical solutionx∗

o. If wi 6= 0, that meansi
was effectively used as a bus stop during the simulation. Thus, we propose to tendwk+1

i
to wi as

follows: wk+1

i
← wk

i
+ ∆(wi − wk

i
). If wi = 0, that meansi is a vertex where customers never

stop. However, we propose to tendwk+1

i
to the meanM of the waiting times (estimated since the

start of the algorithm) as follows:wk+1

i
← wk

i
+ ∆(M − wk

i
).

∆ < 1 is a progression step that needs to be tuned. One can choose∆ either constant, or
variable according to the number of iterations (in order to ensure some convergence). For this
routing problem, we chose a constant∆ = 0.1 and decide to stop the model enhancement after
n = 100 iterations, or when there is some convergence, i.e. the difference between the theoretical
evaluationfo(x

∗

o) = g(x∗

o, λ
∗

o) and the simulation evaluationfs(x
∗

o) = g(x∗

o, λs) is less than
ε = 0.01. Algorithm 2 summarizes the model enhancement heuristic for our bus routing problem.
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Under the same conditions than problems(Ps) and(Po), tests have been performed for model
enhancement. Table 3 indicates the theoretical evaluationof the best solutionsx∗

e found. It shows
that it is very close to the simulation evaluation of the samesolution. In parenthesis, it indicates
the relative improvement of the practical quality of the solution compared to straightforward opti-
mization:(fs(x

∗

e)− fo(x
∗

o))/fs(x
∗

o). The number of iterations of the model enhancement process
is also provided.

Algorithm 2 Model enhancement heuristic for bus routing problem.
k ← 0; for each vertex i ∈ V do wk

i ← 0;

repeat
k ← k + 1;
solve (Po) with waiting times wk

i , i ∈ V ;
let (x∗

o, λ∗

o) be an optimal solution of (Po);
let λs = (w t) be the simulation evaluation of x∗

o;
update mean M of the estimated waiting times;

for each vertex i ∈ V do
if wi 6= 0 then wk+1

i
← wk

i + ∆(wi −wk

i );
else wk+1

i
← wk

i + ∆(M − wk

i );
end for;

until |g(x∗

o, λ
∗

o)− g(x∗

o, λs)| < ε or k ≥ n;

x∗

e ← x∗

o;

The resolution is slower than straightforward optimization, but is really faster that simulation
optimization. In fact, few calls to simulation evaluation are required, contrary to simulation opti-
mization that needs a large amount of evaluations. The quality of the solution provided by model
enhancement is usually close to the one provided by simulation optimization, and always improves
the solution provided by straightforward optimization.

Length Model Enhancement Straight. Simulation CPU
Control Bound Theoretical Simulation Nb Opti. Opti. Time
Points T fo(x

∗

e
) fs(x

∗

e
) Iter. fs(x

∗

o
) fs(x

∗

s
) (minutes)

5 700000 10.48 10.48(+1.8%) 51 10.29 10.33 7’46
5 800000 10.38 10.38(+1.3%) 51 10.25 10.30 7’47
5 900000 10.20 10.20 (+6.0%) 45 9.62 10.32 6’53
5 1000000 10.23 10.23 (+1.5%) 49 10.08 10.32 7’20
7 700000 10.49 10.49(+1.7%) 46 10.31 10.32 8’24
7 800000 10.40 10.41(+4.9%) 46 9.92 10.34 8’33
7 900000 10.21 10.22 (+4.4%) 52 9.79 10.32 9’28
7 1000000 10.21 10.21 (+8.3%) 33 9.43 10.31 6’09
10 700000 10.47 10.47(+2.8%) 50 10.18 10.32 9’08
10 800000 10.41 10.41(+4.9%) 33 9.92 10.33 7’01
10 900000 10.12 10.12 (+0.7%) 56 10.05 10.31 12’18
10 1000000 10.05 10.05 (+7.7%) 64 9.33 10.34 15’00
15 700000 10.48 10.49(+1.9%) 51 10.29 10.31 10’02
15 800000 10.42 10.42(+4.0%) 44 10.01 10.32 9’17
15 900000 10.22 10.22 (+4.0%) 56 9.85 10.33 12’35
15 1000000 10.06 10.06 (+5.2%) 61 9.56 10.33 14’41

Table 3:Model enhancement numerical results.

Figure 6 shows the evolution and the convergence of both theoretical and simulation evalu-
ations of solutionx∗

o at each iterationk of the model enhancement process, for the search of a
10-points geodesic withT = 1000000.
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Figure 6:Solution estimation evolution with model enhancement, case1.

The convergence seems to be achieved quite easily in this case. However, Figure 7 shows the
same kind of evolution for the search of a 7-points geodesic with T = 1000000. As shown in this
figure, the heuristic sometimes oscillates between severalgood solutions, thus the convergence is
more difficult to achieve.
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Figure 7:Solution estimation evolution with model enhancement, case2.
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Conclusion

Simulation optimization provides good practical solutions. However, it may take a long time
to execute, with lots of simulation evaluations. At the opposite, for some problems, like the
routing problem presented here, efficient theoretical approaches can efficiently solve simplified
formulations. But, usually, they find solutions that are notso good in practice.

We propose in this article an approach calledmodel enhancement that still focuses on the
theoretical problem, and tries to improve its formulation in order to take into account practical
aspects (estimated by simulation). The final goal is for the theoretical approach to provide good
practical solutions.

We formalize model enhancement as problem(Pe) which, in some conditions, should provide
the best practical solution (according to simulation evaluation). This problem seems actually very
hard to solve. It proposes nevertheless a different way to think of optimization and simulation
coupling. Therefore, we present a quite simple heuristic for model enhancement, illustrated on
a routing problem. Experimental results show the potentialof model enhancement, which needs
further investigation.
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