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Abstract

When using optimization techniques based on mathematiodefs, we often need to make im-
portant simplifications. The solution thus provided, evieproven to be theoretically one of the
best, might not be so good in practice. Simulation can be tsedaluate the actual performance
of the solution. We propose here a coupling between opttinizaand simulation that tries to
improve the solution provided by a mathematical model. Epigroach, named "model enhance-
ment" here, still focuses on optimizing the theoreticakaliye function, contrary to the common
optimization-simulation coupling that focuses on impraythe objective function evaluated from
simulation. We propose to illustrate this approach on aimguproblem, and present numerical
results on the quality of the solution and the efficiency dhbmupling approaches.

Keywords: optimization, discrete-event simulation, simulationiytation, routing problem.

Résumé

Lorsqu’on utilise des techniques d’'optimisation qui reggdssur des modéles mathématiques, on
est souvent obligé de faire d'importantes simplifications.solution ainsi produite, méme s'il
est théoriquement prouvé qu’elle est 'une des meilleysest ne pas étre si bonne que cela en
pratique. La simulation peut étre employée pour évalueetfopmance véritable de la solution.
Nous proposons ici un couplage entre optimisation et sitiomaui tente d’améliorer la solution
produite par un modele mathématique. Cette approche, nerenéichissement de modele" ici,
se concentre toujours sur I'optimisation de la fonctioneobf théorique, contrairement au cou-
plage optimisation-simulation classique qui se concesrd’amélioration de la fonction objectif
évaluée par simulation. Nous proposons d'illustrer cgtfgr@che sur un probléme de routage, et
présentons des résultats numérigues sur la qualité deutgosoét I'efficacité des deux approches
de couplage.

Mots clés : optimisation, simulation a événements discrets, coupt@manisation-simulation,
probléme de routage.
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Abstract

When using optimization techniques based on mathematiodeis, we often need to
make important simplifications. The solution thus provideden if proven to be theoreti-
cally one of the best, might not be so good in practice. Sitiariecan be used to evaluate
the actual performance of the solution. We propose here pliogubetween optimization
and simulation that tries to improve the solution providgdbmathematical model. This ap-
proach still focuses on optimizing the theoretical objexfunction, contrary to the common
optimization-simulation coupling that focuses on impraythe objective function evaluated
from simulation. We propose to illustrate this approach omuing problem, and present nu-
merical results on the quality of the solution and the efficieof both coupling approaches.

Introduction

The goal of this paper is to discuss a way to improve the malctjuality of a solution provided

by an optimization process. There are several advancediaption techniques (mixed inte-
ger programming: branch-and-bound, branch-and-cut],. dgcomposition methods: Benders,
Dantzig-Wolfe... [5]) that can solve efficiently problen@rhalized with mathematical models.
Major results have been stated to prove the optimality owgtieity of the solution (approxima-

tion algorithms can ensure the solution found to be closééooptimal solution according to a
given precision [4]), and to ensure the efficiency of the téghes (their complexity, their speed
to converge to a solution...).

However, these methods have significant drawbacks whermnigd&r their practical imple-
mentation. First, they are not robust to changes in thetstreiof the problem: adding a new kind
of constraints might make the problem unsolvable with thevipus optimization technigue (e.g.
linear constraints, solved with the simplex method, thabb®e non-linear). Secondly, and more
of concern in this paper, major simplifications on the modglof the problem often have to be
considered. As a result, a solution that is optimal in theoay not be so good in practice.

Therefore, we propose an optimization-simulation couplialledmodel enhancement, that
attempts to reinforce the mathematical model in order toenth& solution more adapted to prac-
tice than a straightforward optimization. Section 1 recétle common optimization-simulation
coupling sketch, usually callesimulation optimization, and formalizes the problem that we pro-
pose to discuss in this article. Section 2 explains whatgsttirward optimization implies on
the formulation and the solutions of the problem. Sectiomalliy presents the idea of model
enhancement, its goal and sketch. This proposition istifitesd in Section 4 through a routing
problem. The approaches presented in the previous sectiensnplemented for this problem,
and the quality of their solution and their computationdicency are compared.

1 Simulation Optimization

An optimization problem can be expressed as finding the lodstien « to a real problen( 7, ),
i.e. minimizing or maximizing a functiorf,.(x). A solutionz fits problem(P,) if it satisfies a set
of constraints that defines the spaceof feasible solutions.

optimize  fr(x)
(Fr)
subject to x € C,
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During the modeling phase, the real probléf)) must be approximated. The common for-
mulation of simulation optimization is expressed by prablg’;). The fact that a function (resp.
a space of solutiong) is approximated by another function (resp. another spaselofions)b is
denoted ~ a.

optimize  fs(x) = g(z,\), fs~ fr
(Ps)

. x e Cy
subject to X e A(a) } ~ Cy

C; represents constraints on a solutionlt usually defines the basic structure of a feasible
solution (for instance, the solution must be a cycle in algyap is a vector of measures that is
returned by the simulation for a solutian(cf. Figure 1).

Optimization Method

. Estimation A
Solution x
i of performances

Simulation Evaluation

Figure 1:Simulation optimization sketch.

As(z) is the set of feasible solutions for, according to a given solution. It is defined
by implicit constraints of the simulation model (given aw@n z, the simulation returns the
estimation)), and by explicit constraints on some performance meadetgs estimated delay
must not exceed a given limit, or simply the solution is atable). That meand,(z) contains
either one solution is feasible based on the simulation evaluation), or no Ewlugz is not
feasible based on the simulation evaluation).

The objective functiory, of the real problem is approximated By. We propose to parame-
terize this function on vectox: fs(z) = g(z, A). For instance) can represent estimated delays
for solutionz, andg(z, A) an estimation of the quality of service of solutioraccording to these
delays.

Simulation optimization explores the set of solutiafis to optimize f;. For each solution
x, the simulation estimates vectar If \ satisfies all the constraints ik, (x), the solutionz is
accepted, and the objective functigfx, \) is evaluated.

Several methods are proposed to solve prolfl2m. A classification in four major approaches
can be found in [6] and [1]: gradient based search, stochagtiroximation, response surface and
heuristic search. These methods are robust to changesabjewive function or in the constraints
of the problem. However, they only represent a few optinzatechniques and their efficiency
and convergence are not always ensured.
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2 Straightforward Optimization

Optimization techniques, independent of simulation, Ugusgeed a mathematical model. This
representation is also an approximation of the real prolglem.

Optimize fo(x)’ fo ~ fr
(Fo)
subject to x € C,,C, ~ C,

However, we can reasonably assume that the simulation izptiion problem(P;) is closer
to the real problem than the straightforward optimizatioobem (P,). For the purpose of model
enhancement, we now make some assumptions on the strutiu?g) o

optimize  fo(x) = g(z, \)

(Fo) subjectto x € C, D Cs
e Ao(z), Ay~ A,

e The constraintg’; describe the basic structure of a feasible solution. Heweegan rea-
sonably assume that the constraints defirifjgare approximations, and even relaxations,
of the constraints defining. It means that, > C;.

¢ We consider that the objective functiofisand fs are identical:f,(x) = g(x, \). However,
we assume that the space of solutidnsis an approximation of the space of solutiokg
which implicitly makesf, an approximation off.

Depending on the structure of the problem, various optitiinaechniques can be considered
to solve(P,). However, once a particular methed has been chosen to solve the problem, it is
difficult to deal with changes on the kind of constraints @& tiroblem. For model enhancement
purpose, we consider changes only on the constraints teatideA,. Let us denotds,, the set
of all the families of constraints that can be managed by owketh. That means problertF,) is
solvable by methodh only if A, € K,,.

3 Model Enhancement

From the previous assumptionsAif(z) is never empty, all solutionsin C, are feasible solutions
of problem(P,). As C, D Cj, any solution of the simulation optimization problegiR;) is a
feasible solution of P,). In particular, any optimal solution? of (P;) is a feasible solution of
(P,). The idea of model enhancement is to find the family of comgsa, € K, such that the
optimal solutionz} of (P,) is one of the optimal solutions? of (Ps). We can state the model
enhancement proble®.) as follows.

optimize fs(wii) = 9(5'3§> )\s)

(P.){ subjectto A, € Ky, Ay ~ As
(xk; A¥) optimal solution of (P,)

As € Ag(x})
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(P.) is a very hard problem. However, one way to find a good solutiche problem may be
to approximateA; by A, as precisely as possible. Thus, and A} will have similar values and
the theoretical evaluatiog(x};, \) of the optimal solutionz}, of problem(F,) will be close to its
simulation evaluatiog(x}, A).

Optimization Method

Solution (x,A)) Constraints A\'

Model Enhancement

Solut . Estimation A
olution x s
i ’ of performances

Simulation Evaluation

Figure 2:Model enhancement heuristic.

Algorithm 1 and Figure 2 describe a heuristic approach fodehenhancement that iteratively
modifiesA,, based on the simulation evaluatian of an optimal solution of P,).

Algorithm 1 Model enhancement heuristic.

k< 0;
let n be the maxi mal nunber of iterations;
| et A* be an approxi mation of A,;

r epeat

let (z3,A\;) be an optimal solution of (P,) with A, =A%
l et \s be the sinulation evaluation of z;

Agt! — h(Ag, As);

k—k+1;

until |g(zs, A5) — g(xh, As)| <e or k>mn;

Functionh represents the way to modify, at each iteration. It needs to be defined more
precisely for any specific problem. In the next section, wappse to illustrate this heuristic on a
bus routing problem.

4  Study of a Routing Problem

We propose now to study a bus routing problem in order totithtis the discussion of the previous
sections. We detail the simulation optimization methodraightforward optimization approach
and the model enhancement heuristic for this problem. Wemaissent a practical comparison of
these three approaches.
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4.1 Problem Presentation

We focus on the following problem: let us consider a publamsportation company in an urban
network, such as a bus company. Basically, this companysneedesign low cost bus routes
while satisfying potential customers.

Let us consider a directed gragh= (V, E') whereV is the set of vertexes anfl the set of
edges. Each vertex represents a potential bus stop or acaddss the real-life network. Each
edge represents a road between two stops or crossroads.

We assume the customer demands are known, i.e. there is @ptleacof the moves the
customers need to perform in the urban network. A custommaddd € D is defined by a tuple
(04; Sd; Qa; tg”"; t*), whereog € V' is the origin of the moves,; € V' the destinationg), the
throughput of customers for this demanf#™ and¢7"** are reference times for the demangi"
is the time it takes to a vehicle (such as a bus) to move figto s,4; andt’** is the time of travel
of a pedestrian from, to sg.

In this article, we limit the problem to find a transportatigysteml” that meets the following
requirements:

e ['is a set of directed cycles in graph(for clarity reasons, we consider further only one bus
cycle);

¢ the length of the bus route, i.e. the time it takes to the bumsdee along the route, must be
less than a given threshold

e I' should maximize the satisfaction of the customers.

Let us denote, the time it takes to a customer with demanhtb travel through the network.
His satisfaction can be represented by a functig(t,) defined as follows: if; < 2¢7" then the
customer is fully satisfied ang,(t;) = 1; if t; > 2t7'* then the customer is not satisfied at all
and¢,(tq) = 0 ; and between these two limits, the closer to the minimumb#tter the customer
is satisfied. Figure 3 illustrates the satisfaction furrctio

@
A

0 - 1 > 1,
2t£r[un ZIZWX

Figure 3:Satisfaction function for demanti

Finally, we definew; the time customers are waiting at a bus stopack to our notations of
the previous sections, is the vector of all the,; and thew; values. A, will be their theoretical
estimation (from optimization) andl; their practical estimation (from simulation).

Let us denoter a solution to the problem, i.ez. = 1 if edgee is part of the bus route, and
z. = 0 otherwise. The objective is to maximize the satisfactionhef customers, i.e. function

g(x, A) =3 gep QaPalta).
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4.2 Simulation Optimization

We propose to solve the problem using the tabu search metstiein the simulation optimization
sketch(P;). The tabu search was first introduced by [2, 3]. It searchea fgpod solutione in
the space of solutionS;. C; represents bus routes with their length belbwMoreover, we force
the structure of the bus routesdnh to be ageodesic (the search is thus facilitated). A geodesic is
a directed cycle defined by a given number of points cattadrol points. Each control point is
connected to its successor in the cycle by a shortest patRifaire 4).

Figure 4: An example of 3-
points geodesic.

Figure 5. Graph modeling Clermont-Ferrand (France)
downtown.

Neighborhood structures for the heuristic rely on movirdgiag or deleting a control point.
The tabu list contains the control points that have been fieodin the last few iterations. We have
implemented a two-level heuristic using aspiration cidtéaccepting a tabu move under some
conditions) and diversification strategy (exploring amothrea of the space of solutions).

For a given solution: of the simulation optimization problertPs), simulation estimates the
time of travelt, of the customers with demanfhnd their waiting timev; at bus stop (reminder:
all these values are stored in veci)r Besides the implicit constraints of simulation, we cdesi
no additional constraints i, that can discard a solutiom based on its estimatioh. That
means any solution € C is a feasible solution ofP;) (it is a necessary condition for model
enhancement to work).

We consider now a graph wittD9 vertexes an@d92 edges that represents Clermont-Ferrand
downtown (cf. Figure 5), witH2 customer demands. Table 1 presents numerical resultsdor th
simulation optimization on this instance. In order to temtious problem structures, the number
of control points in a geodesic varies. We also considerraéveaximal lengthl” for the bus
route. The tabu search has been implemented with C++ andnttudation model with the B++
Simulator framework. The tests have been performed on a Pentium Centrino 1.7 GHB~+
3.2 compiler.

3Information available atitt p: // f r og. i si ma. f r/ bruno/ 2doc=bpp_I i br ar y+ch=si ul at or .
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Control | Length Bound| Best Evaluation, Number of | CPU Time

Points T fs(x®) Evaluations| (hours)
5 700000 10.33 3793 5h04
5 800000 10.30 5203 7ho4
5 900000 10.32 4807 6h08
5 1000000 10.32 7573 9h44
7 700000 10.32 8201 10h44
7 800000 10.34 6092 8h16
7 900000 10.32 6749 8h56
7 1000000 10.31 7883 10h28
10 700000 10.32 8843 11h20
10 800000 10.33 9706 10h12
10 900000 10.31 10732 13h52
10 1000000 10.34 8812 11h04
15 700000 10.31 6074 8h20
15 800000 10.32 8759 10h08
15 900000 10.33 10699 11h16
15 1000000 10.33 10302 11h08

Table 1:Simulation optimization numerical results.

Execution times can be more than a day. As our purpose herdyisaoknow good practical
solutions to compare with model enhancement’s ones, wesehtmlimit the number of diversi-
fications. Notice that the number of simulation evaluatitmsolve(P;) is high, and without our
restriction, it can reach more than0000 evaluations. Hence, the solutions provided here are not
always the best ones that simulation optimization can pievi

4.3 Straightforward Optimization

Our bus routing problem is strongly related to the well-knovehicle Routing Problem (VRP)
class. Several straightforward optimization techniqueshze considered to solve the problem [8].
Especially, [9] propose a mixed integer programming fomatiah. They show that the tabu search
(as defined in the previous section) can provide solutiong alese to the optimal solution (when
known) or to the best known solution (when it takes to muchetion memory to get an optimal
solution using mixed integer programming).

Thus, we prefer to choose the tabu search as our methiadsolve the optimization problem
(P,). It still searches a good solutian but this time in the space of solutiod$,. With mixed
integer programming(, would be larger tharC (C, D C), because instead of forcing the
solution to be a geodesic, it would look for any directed eydWith tabu search, it is easier to
keep the geodesic structure,Sp = Cs.

A, is an approximation ol ;. The implicit constraints of simulation that defing are replaced
by constraints to estimate the time of travgbf the customers with demantl Other constraints
fix the waiting timesw; to zero for any bus stof due to the assumption that there will be enough
buses on the bus route for the waiting times to be insignificaa sum up,A, approximates the
way to estimate the travel times and sets the waiting timestto.

Under the same conditions than problém ), tests have been performed fdr,). The prob-
lem is solved with tabu search. Table 2 shows the theoretiauationf,(z}) of the best so-
lutions ¥ found for (P,), and their simulation evaluatiofi;(z*). The resolution is quite fast
(around10 seconds) compared to simulation optimization (severatd)pbut the solutions do not
always have good simulation evaluations. Inside pareighgsndicated the relative difference

(fs(@g) = fs(ag))/ fs(5)-
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Length Straightforward Optimization Simulation Optimization|

Control | Bound | Theoretical Eval.| Simulation Eval. Best Evaluation CPU Time
Points | T fola?) fola?) fola?) (seconds)

5 700000 11.99 10.29 (-0.4%) 10.33 5.0

5 800000 11.99 10.25 (-0.5%) 10.30 5.0

5 900000 11.99 9.62 (-6.8%) 10.32 5.1

5 1000000 11.99 10.08 (-2.4%) 10.32 5.3

7 700000 11.99 10.31 (-0.1%) 10.32 6.8

7 800000 11.99 9.92 (-4.1%) 10.34 7.1

7 900000 11.98 9.79 (-5.1%) 10.32 7.5

7 1000000 12.00 9.43 (-8.5%) 10.31 7.6

10 700000 11.97 10.18 (-1.4%) 10.32 7.7

10 800000 11.99 9.92 (-4.0%) 10.33 8.9

10 900000 11.99 10.05 (-2.5%) 10.31 9.4

10 1000000 12.00 9.33 (-9.8%) 10.34 10.3

15 700000 11.99 10.29 (-0.2%) 10.31 8.0

15 800000 11.99 10.01 (-3.0%) 10.32 9.0

15 900000 11.99 9.85 (-4.6%) 10.33 9.8

15 1000000 12.00 9.56 (-7.5%) 10.33 10.8

Table 2:Straightforward optimization numerical results.

4.4 Model Enhancement

Simulation optimization provides good practical solugphut needs a very long time to execute.
At the opposite, straightforward optimization is very faait provides poor practical solutions.
We describe now the model enhancement heuristic (as proposgection 4) applied to our bus
routing problem, in order to improve the constraints definl so problem(P,) provides good
practical solutions.

In problem(F,), we assumed that the waiting times are set to zero at any bus stoprhese
constraints may maké&, a poor approximation af,. As the method used to soly&,) can deal
with any constant waiting times; # 0, we propose to modify these theoretical waiting times at
each iteration of model enhancement (in order to make better approximation of,).

Let us denotev! the waiting times for probleriP, ) at iterationk, and\, = (w t), composed
of vectorsw = (w;);ey (the estimated waiting times) and= (t4)4cp (the estimated travel
times), the simulation evaluation of the current theoegt8olutionz}. If w; # 0, that means
was effectively used as a bus stop during the simulations;T\we propose to temziﬁ“rl to w; as
follows: wf™! « wF + A(w; — wk). If w; = 0, that means is a vertex where customers never
stop. However, we propose to temjgle to the meanV/ of the waiting times (estimated since the
start of the algorithm) as followsv* ™ «— w} + A(M — wF).

A < 1 is a progression step that needs to be tuned. One can choe#ber constant, or
variable according to the number of iterations (in orderrieuge some convergence). For this
routing problem, we chose a constakt= 0.1 and decide to stop the model enhancement after
n = 100 iterations, or when there is some convergence, i.e. therdiite between the theoretical
evaluation f,(z}) = g(x}, A\¥) and the simulation evaluatiofi (z}) = g(x}, \s) is less than
¢ = 0.01. Algorithm 2 summarizes the model enhancement heuristiodobus routing problem.
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Under the same conditions than problef®s) and(P,), tests have been performed for model
enhancement. Table 3 indicates the theoretical evaluafitre best solutions} found. It shows
that it is very close to the simulation evaluation of the sawleition. In parenthesis, it indicates
the relative improvement of the practical quality of theusioin compared to straightforward opti-
mization: (fs(z}) — fo(x}))/ fs(z}). The number of iterations of the model enhancement process
is also provided.

Algorithm 2 Model enhancement heuristic for bus routing problem.

kE—0; for each vertex i€V do wf«0;

r epeat

k—k+1;

solve (P,) with waiting times wf, icV;

let (z5,A;) be an optimal solution of (FP,);

let \s =(w t) be the sinulation evaluation of zj;
update nean M of the estimated waiting tines;

for each vertex i€V do
if wi#0 then wi™ — wk 4+ A(w; —wk);
el se wi™h — wk + A(M —wh);
end for;
until |g(xs, A5) —g(z5, As)| <e or k>mn;

* * .
Te < To,

The resolution is slower than straightforward optimizafibut is really faster that simulation
optimization. In fact, few calls to simulation evaluatiore aequired, contrary to simulation opti-
mization that needs a large amount of evaluations. Thetgualthe solution provided by model
enhancement is usually close to the one provided by simualattimization, and always improves
the solution provided by straightforward optimization.

Length Model Enhancement Straight.| Simulation CPU

Control | Bound | Theoretical| Simulation Nb Opti. Opti. Time
Points T folz?) fs(z?) lter. | fs(a}) fs(x¥) | (minutes)

5 700000 10.48 10.48(+1.8%) | 51 10.29 10.33 746

5 800000 10.38 10.38(+1.3%) | 51 10.25 10.30 747

5 900000 10.20 10.20 (+6.0%)| 45 9.62 10.32 6'53

5 1000000 10.23 10.23 (+1.5%)| 49 10.08 10.32 7'20

7 700000 10.49 10.49(+1.7%) | 46 10.31 10.32 8'24

7 800000 10.40 10.41(+4.9%) | 46 9.92 10.34 8'33

7 900000 10.21 10.22 (+4.4%)| 52 9.79 10.32 9'28

7 1000000 10.21 10.21 (+8.3%)| 33 9.43 10.31 6'09

10 700000 10.47 10.47(+2.8%) | 50 10.18 10.32 9'08

10 800000 10.41 10.41(+4.9%) | 33 9.92 10.33 701

10 900000 10.12 10.12 (+0.7%)| 56 10.05 10.31 12'18

10 1000000 10.05 10.05 (+7.7%)| 64 9.33 10.34 1500

15 700000 10.48 10.49(+1.9%) | 51 10.29 10.31 1002

15 800000 10.42 10.42(+4.0%) | 44 10.01 10.32 9'17

15 900000 10.22 10.22 (+4.0%)| 56 9.85 10.33 12'35

15 1000000 10.06 10.06 (+5.2%)| 61 9.56 10.33 14'41

Table 3:Model enhancement numerical results.

Figure 6 shows the evolution and the convergence of bothretieal and simulation evalu-
ations of solutionz} at each iteratiork of the model enhancement process, for the search of a
10-points geodesic witlh" = 1000000.
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Figure 6:Solution estimation evolution with model enhancementedas

The convergence seems to be achieved quite easily in thes Elsvever, Figure 7 shows the
same kind of evolution for the search of a 7-points geodegtt W= 1000000. As shown in this
figure, the heuristic sometimes oscillates between sege solutions, thus the convergence is
more difficult to achieve.

12 T T T T T T T
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105
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\
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Figure 7:Solution estimation evolution with model enhancementeas
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Conclusion

Simulation optimization provides good practical soluionHowever, it may take a long time
to execute, with lots of simulation evaluations. At the ogipmy for some problems, like the
routing problem presented here, efficient theoretical @pgites can efficiently solve simplified
formulations. But, usually, they find solutions that are smgood in practice.

We propose in this article an approach calteddel enhancement that still focuses on the
theoretical problem, and tries to improve its formulationorder to take into account practical
aspects (estimated by simulation). The final goal is for lemtetical approach to provide good
practical solutions.

We formalize model enhancement as problgfn) which, in some conditions, should provide
the best practical solution (according to simulation extitin). This problem seems actually very
hard to solve. It proposes nevertheless a different wayitd thf optimization and simulation
coupling. Therefore, we present a quite simple heuristiaiodel enhancement, illustrated on
a routing problem. Experimental results show the potewnfiahodel enhancement, which needs
further investigation.
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