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Abstract

Human action recognition has emerged as one of the
most challenging and active areas of research in the com-
puter vision domain. In addition to pose variation and
scale variability, high complexity of human motions and the
variability of object interactions represent additional sig-
nificant challenges. In this paper, we present an approach
for human-object interaction modeling and classification.
Towards that goal, we adopt relevant frame-level features;
the inter-joint distances and joints-object distances. These
proposed features are efficiently insensitive to position and
pose variation. The evolution of the these distances in time
is modeled by trajectories in a high dimension space and
a shape analysis framework is used to model and compare
the trajectories corresponding to human-object interaction
in a Riemannian manifold. The experiments conducted fol-
lowing state-of-the-art settings and results demonstrate the
strength of the proposed method. Using only the skeletal in-
formation, we achieve state-of-the-art classification results
on the benchmark dataset.

1. Introduction

Analysis of human activities and behavior through vi-
sual data has attracted a tremendous interest in the com-
puter vision community. Indeed, this represents a task of
interest for a wide spectrum of areas due to its huge po-
tential, like human-machine interaction, physical rehabilita-
tion, surveillance security, health care and social assistance,
video games, etc [13]. The recent development and wide-
spread use of portable, commodity, high-quality and accu-
rate depth cameras such as Microsoft Kinect[1] has changed

the picture by providing 3D depth data of video-based hu-
man action recognition. Thus several datasets have been
collected to serve as benchmark for researchers algorithms
like the MSR dataset [23].

In the literature of activity recognition, most of the previ-
ous works have focused on simple human action recognition
such as boxing, kicking, walking, etc. However, human ac-
tivity understanding is a more challenging problem due to
the diversity and complexity of human behaviors [2] and ac-
curate human action recognition is still a quite challenging
task and is gradually moving towards more structured in-
terpretation of complex human activities involving multiple
people and especially interaction with objects.

Actually, during a human object interaction scene, the
hands may hold objects and are hardly detected or recog-
nized due to heavy occlusions and appearance variations
[22]. A high level of information of the objects is needed to
recognize the human-object interaction.

To the best of our knowledge, the majority of ac-
tion recognition past approaches investigate simple action
recognition and less effort have been spent on human ob-
ject interaction. In this paper, we propose to apply spatio-
temporal modeling (STM) and shape analysis framework to
perform human-object interaction. The main contributions
of this work are the following:

• The use of STM of skeletons and objects in time as
trajectories.

• A rate-invariant comparison of these trajectories and
compute rate-invariant means of them.

• The proposed method is performed on and gets com-
petitive results with respect to state-of-the-art work on
one representative benchmark dataset.
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The remainder of the paper is organized as follows. Sec-
tion 2 briefly describes the related works. In Section 3,
we introduce the overview of our method. The spatio-
temporal modeling and the shape analysis framework and
presented in Section 4 and Section 5 respectively. In Section
6, the classification algorithm is described. The recogni-
tion results of the proposed approach on MSRDaily activity
dataset which represents the benchmark of human activities
and comparison with the state-of-the-art algorithms are pre-
sented in Section 7. Finally Section 8 summarizes the work,
addresses several aspects of the model that can be improved
and future research directions.

2. Related Work
The approaches on action recognition can be roughly

divided into the following two main categories. The first
category includes methods based on static and 2D video.
There is emerging interest in exploiting human pose for ac-
tion recognition. The release of the low-cost RGBD sen-
sor Kinect has brought excitement to the research in com-
puter vision, gaming, gesture-based control, and virtual re-
ality. [7] adopted grouplet encode detailed and structured
information from the images to estimate the 2D poses. In
[8], it treated object and human pose as the context of each
other in human-object interaction activities. [4] [25] devel-
oped spatio-temporal AND-OR graph to model the spatio-
temporal structure of the poses in an actions. [9] [10]
learns a discriminative deformable part model(DPM) that
estimates both human poses and object location.

In the second category, there are still two sub-categories
because of feature types. Some works adopted all of or two
of skeleton, RGB and depth information and others only
used skeleton-based algorithms. Recently, the development
of depth cameras offers a cost-effective method to track 3D
human poses [18]. In [24], an approach for human action
recognition with histograms of 3D joint locations (HOJ3D)
as a compact representation of postures is proposed. The
HOJ3D computed from the action depth sequences are re-
projected using LDA and then clustered into several posture
visual words, which represent the prototypical poses of ac-
tions. The temporal evolutions of those visual words are
modeled by discrete hidden Markov models (HMMs). [20]
represented a human skeleton as a point in the Lie group
which is curved manifold, by explicitly modeling the 3D
geometric relationships between various body parts using
rotations and translations. Using the proposed skeletal rep-
resentation, it modeled human actions as curves in this Lie
group then mapped all the curves to its Lie algebra, which is
a vector space, and performed temporal modeling and clas-
sification in the Lie algebra. [14] used a spatio-temporal
modeling of skeleton joint position in a Riemannian man-
ifold. There are several works [11] [12] [15] [17] [23] re-
lyed on skeleton information and developed features based

on depth images for human object interaction recognition.
To the best of our knowledge, there are a few works on

recognizing human-object interactions only based on skele-
ton joints. [22] presented a 4D human-object interaction
model for joint event recognition through joint inference
from RGBD videos. The 4DHOI model represents the ge-
ometric, temporal and semantic relations in daily events in-
volving human object interactions. [26] proposed a novel
middle level representation called orderlet [21] for recog-
nizing human object interactions. It presented an orderlet
mining algorithm to discover the discriminative orderlets
from a large pool of candidates.

3. Overview of our method
An overview of the proposed approach is given in Figure

1. The human-object interaction videos are modeled as tra-
jectories in R210∗n via a Spatio-Temporal Modeling (STM),
then a rate invariant shape analysis of these trajectories is
performed and this make the comparison of the videos in-
variant to the rate.

First, STM is applied on each video of training and test-
ing data to get trajectories of dimension R210∗n (where n is
the number of frames for each video).

Then, the rate-invariant mean shape µi of each action
ai, i = 1..k is calculated. The feature vector for a given tra-
jectory is then built by concatenating the distances dS be-
tween this trajectory and all of the mean trajectories. Lastly,
Random Forest-based classification is performed.

4. Spatio-temporal modeling
The 3-D humanoid skeleton can be extracted from depth

images (via RGB-D cameras, such the Microsoft Kinect) in
real-time thanks to the work of [18]. This skeleton contains
the 3-D position of a certain number of joints representing
different parts of the human body and provides strong cues
to recognize human-object interaction.

Similarly to [16] we propose to use the inter-joints and
the object-joints distances. The object position is detected
by the LOP algorithm [21] unlike [16] where the authors
manually detect the position of the object by associating it
to the hand holding it. For each frame, all pairwise distances
of 20 skeleton joints and object one are calculated. When
the action does not have object, the corresponding entries
in the distance matrix are blank and we fill them using an
imputation technique [5]. In our experiments we employed
the mean imputation method, which consists of replacing
the missing values by the means of values already calculated
in presence of the object from the training set. The skeleton
information is donated as S which contains 20 joints from
the original data and object joint represented by jo.

S = {j1, j2, ..., j20, jo} (1)



Figure 1. Overview of our method. Four main steps are shown: low-feature extraction from each frame; Buiding feature vector by spatio-
temporal modeling; Mean calculation of feature vector; Random Forest-based classification. Note that the both training and testing data
are built by spatio-temporal modeling and the red point is the object position we assumed.

D refers to the set of the pairwise distances between the
joint a and joint b from S.

D = {d(a, b)} , a ∈ S b ∈ S (2)

Thus the low-level feature vector is composed by the all
pairwise distances between the joints and the distances be-
tween the object and the joints. The size of this vector is
equal tom× (m−1)/2, withm = 21: the 20 joints and the
object joint. The concatenation of this feature vector along
frames gives rise to a trajectory in R210. The shape of the
resulting trajectories will be investigated in next section for
human object classification.

5. Shape analysis of distance vector
5.1. SRVF calculation

Let β : I → R210, where I = [0, 1], represents a param-
eterized curve encoding the trajectory of pairwise distances
along a video. For each frame t, β(t) = Dt encodes the
pairwise distances at this frame.

To analyze the shape of β, we shall represent it math-
ematically using the square-root velocity function (SRVF)
[19], denoted by q(t), according to: q(t) = β̇(t)√

‖β̇(t)‖
; q(t)

is a special function of β that simplifies computations under
elastic metric.

Actually, under L2-metric, the re-parametrization group
acts by isometries on the manifold of q functions, which is
not the case for the original curve β. To elaborate on the last
point, let q be the SRVF of a curve β. Then, the SRVF of a
re-parameterized curve β ◦ γ is given by

√
γ̇(q ◦ γ). Here

γ : I → I is a re-parameterization function and let Γ be the
set of all such functions.

Define the preshape space of such curves: C = {q : I →
R210|‖q‖ = 1} ⊂ L2(I,R210), where ‖ · ‖ implies the
L2 norm. With the L2 metric on its tangent spaces, C be-
comes a Riemannian manifold. Also, since the elements of
C have a unit L2 norm, C is a hypersphere in the Hilbert
space L2(I,R210). The geodesic path between any two
points q1, q2 ∈ C is given by the great circle, ψ : [0, 1]→ C,



where

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) , (3)

and the geodesic length is θ = dc(q1, q2) =
cos−1(〈q1, q2〉).

In order to study shapes of curves, one identifies all re-
parameterizations of a curve as an equivalence class.

Note that the parameterization of a trajectory during an
action corresponds to the rate of the action. Thus compari-
son of equivalent classes rather than trajectories themselves
is rate invariant differentiation which reduces the difference
in rate between actions and facilitates the action recogni-
tion.

Let’s define the equivalent class of q as: [q] =
{
√
γ̇(t)q(γ(t)), γ ∈ Γ}. The set of such equivalence

classes, denoted by S .
= {[q]|q ∈ C} is called the shape

space of open curves in R210. As described in [19], S in-
herits a Riemannian metric from the larger space C due to
the quotient structure. To obtain geodesics and geodesic
distances between elements of S, one needs to solve the op-
timization problem:

γ∗ = argminγ∈Γdc(q1,
√
γ̇(q2 ◦ γ)). (4)

The optimization over Γ is done using the dynamic pro-

gramming algorithm. Let q∗2(t) =

√
˙γ∗(t)q2(γ∗(t)))

be the optimal element of [q2], associated with the opti-
mal re-parameterization γ∗ of the second trajectory, then
the geodesic distance between [q1] and [q2] in S is
ds([q1], [q2])

.
= dc(q1, q

∗
2) and the geodesic is given by Eqn.

3, with q2 replaced by q∗2 .

5.2. Mean calculation

One advantage of a shape analysis framework of the tra-
jectories is that one has the actual deformations in addition
to distances. In particular, we have a geodesic path in S be-
tween the two trajectories β1 and β2 in R210. This geodesic
corresponds to the optimal elastic deformations of two tra-
jectories. The Riemannian structure defined on the mani-
fold of shape of the trajectories in S enables us to perform
such statistical analysis for computing curves (trajectories)
mean and variance. The Karcher mean utilizes the intrin-
sic geometry of the manifold to define and compute a mean
on that manifold. It is defined as follows: Let ds(βi, βj)
denote the length of the geodesic from βi to βj in S.

To calculate the Karcher mean of trajectories
{β1, ..., βn} in S, define the variance function:

V : S → R,V(N) =

n∑
i=1

ds(SRV F (βi), SRV F (βj))2

(5)

The Karcher mean is then defined by:

β = arg min
µ∈S
V(µ) (6)

The intrinsic mean may not be unique, i.e. there may be a
set of points in S for which the minimizer of V is obtained.
To interpret geometrically, β is an element of S, that has the
smallest total deformation from all given trajectories.

Algorithm 1 Karcher mean algorithm

Set k = 0. Choose some time increment ε ≤ 1
n

. Choose a point µ0 ∈ S
as an initial guess of the mean. (For example, one could just take µ0 =
β1.)

1- For each i = 1, ..., n choose the tangent vector ti ∈ Tµk (S) which
is tangent to the geodesic from µk to βi. The vector g =

∑i=n
i=1 ti is

proportional to the gradient at µk of the function V .
2- Flow for time ε along the geodesic which starts at µk and has velocity
vector g. Call the point where you end up µk+1.
3- Set k = k + 1 and go to step 1.

The mean are calculated on trajectories belonging to the
same action in order to get mean of the trajectory for each
action. These means will be used in the classification of the
actions. Moreover, the mean trajectory is invariant to the
rate of execution of given videos due to the elastic metric
used in the calculation of the mean.

6. Classification
6.1. Feature vector

The feature vector is built by using the distances to the
means of the actions calculated on train data. Given train set
T = {β1, ..., βn} ∈ R210∗n, each trajectory corresponds to
an action class labeli ∈ {a1, ..., ak}. We first calculate,
using algorithm 1, the mean µi for each class. Next, we cal-
culate the geodesic distance dS between a given curve β and
the mean curves. Thus a vector of distance of size k is pro-
vided as feature vector to classify the curve β. For example,
this is a feature vector size k of one video sequence:

dS =
{
d(β1, µ1), d(β1, µ2), ..., d(β1, µk)

}
6.2. Random Forest

For the classification task we used the Multi-class ver-
sion of Random Forest algorithm. The Random Forest al-
gorithm was proposed by Leo Breiman in [6] and defined as
a meta-learner comprised of many individual trees. It was
designed to operate quickly over large datasets and more
importantly to be diverse by using random samples to build
each tree in the forest. Diversity is obtained by randomly
choosing attributes at each node of the tree and then us-
ing the attribute that provides the highest level of learning.
Once trained, Random Forest classify a new action from an
input feature vector by putting it down each of the trees in



Method Accuracy
Skeleton in [21] 68.0%
4DHOI model [22] 70.0%
Skeletal shape trajectories [3] 70.0%
Discriminative Orderlet Mining [26] 73.8%
Proposed approach 77.05%

Table 1. Reported results comparison to state of the art

the forest. Each tree gives a classification decision by vot-
ing for that class. Then, the forest chooses the classification
having the most votes (over all the trees in the forest). In
our experiments we used Weka Multi-class implementation
of Random Forest algorithm by considering 150 trees. A
study of the effect of the number of the trees is reported
later in the experimental part.

7. Experiments
7.1. Dataset

MSRDailyActivity3D dataset [21] is a daily activity
dataset captured by Kinect [1] device, to cover human daily
activities in the living room. There are 16 action classes:
drink, eat, read book, call cellphone, write on a paper, use
lap- top, use vacuum cleaner, cheer up, sit still, toss paper,
play game, lay down on sofa, walk, play guitar, stand up,
sit down each of which was performed twice by 10 sub-
jects. For each video, it provides 3 kinds of data: RGB,
depth image and joint and 320 samples in total. Addition-
ally, the activities includes human-object interactions and
human motion that is the most important reason we choose
this dataset.

7.2. Results

As our feature vectors built only based on skeleton joint
information, this dataset is very challenging if the depth in-
formation is not used. To make it fair for comparison, we
mainly compared with the algorithms on skeleton feature
[21], [22] and [26]. [3] only used skeleton information that
is the same as our work. We used the same experimental
setting as [26] and performed on the 2-fold cross-validation
which is using the samples of half of the subjects as train-
ing data, and the samples of the rest half as testing data. The
comparison of the performance is shown in Table 1. We can
notice in Table 1 that we obtained better accuracy than other
works. The accuracy of our approach is 77.05%.

To fully evaluate our method, we performed the experi-
ments with different numbers of trees. So we can see clearly
that the performance of Random Forest classifier varies with
the number of trees from Figure 2. As illustrated in this
figure, the recognition rate raises with the increasing num-
ber of trees until 150; the recognition rate reaches the peak
77.05% and then becomes quite stable.

Figure 2. Human-Object interaction recognition results using a
Random Forest classifier when varying the number of trees.

8. Conclusion and future work
This paper proposed an human-object interaction ap-

proach that use STM to model the pairwise distances of
skeleton joints and object joints in each video as a trajec-
tory. Then we compute the mean shape of trajectories cor-
responding to each action in a rate-invariant way. Human-
object interaction classification is solved using Random
Forest algorithm applied the feature vector calculated based
on the distances to the means of actions. Experiments per-
formed on MSRDaily Activity dataset testing on human
motion and human-object interaction have demonstrated
that our proposed approach gives comparative results with
respect to state-of-the-art work. As the object assumed as
one of skeleton joints in this paper, we will focus on object
itself such as its shape in future.
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