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Abstract A new method based on manifold sampling is presented fordtatimg and solving the optimal well-
placement problem in an uncertain reservoir. The methodeadds the compounded computational challenge
associated with statistical sampling at each iteratiomefdptimization process. An estimation of the joint proba-
bility density function between well locations and prodastlevels is achieved using a small number of expensive
function calls to a reservoir simulator. Additional realions of production levels, conditioned on well locations
and required for evaluating the probabilistic objectivadiion, are then obtained by sampling this jpdf without
recourse to the reservoir simulator.

Notations

A lower case letter is a real variable.

A boldface lower case letteris a real vector.

An upper case letteX is a real random variable.

A boldface upper case lett¥ris a real random vector.

A lower case letter between brackétsis a real matrix.

A boldface upper case letter between bracketss a real random matrix.
N ={0,1,2,...}: set of all the integers.

R: set of all the real numbers.

R™: Euclidean vector space @hof dimensionn.
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|Ix]]: usual Euclidean norm iR™.

M, ~: set of all the(n x N) real matrices.

Cw: admissible set for optimization

Cw,: Set of Ny initial design variables

Cw,: set of Ny design variables on search grid

1 4(a) is the indicator function of setl: 1 4(a) = 1if a € Aand=0if a ¢ A.
E: Mathematical expectation.

a: production confidence level for optimal solution

w°Pt: optimal solution

woP: reference optimal solution

wSP": optimal solution using statistical surrogate

War, Xar: @additional realizations ofV andX

¢ production level awS™

%" production level aw’

Q(w): random cumulative production after 2,000 days
Fgw)(q): probability distribution function for(q, w):1 — Fgw)(q)
Po(w)(g; W): probability density function foQ at givenw

Q at a giverw

z1,yr: coordinates of injection well

zp,yp: coordinates of production well

W: random well locations

Q: random production levels for givev

X: (W, Q)

W optimization variable on search grid

Wo: optimization variable on initial set of points

Nop: number of initially available solutions

N4: number of points for grid search by optimization algorithm
0: element of sample spaee

nrep: NUMber of repetitions for each design variable

nmc: number of samples drawn from statistical surrogate

1 Introduction

Thewell-placement probleris paramount to efficient reservoir production and develepimits objective, of max-
imizing return on investment, is challenged by the fact thatsubsurface is neither illuminated nor does it lend
itself to simple constitutive laws of flow and deformatiomu a rational treatment of the problem must tackle sig-
nificant uncertainty about the medium and the governing tiapusas well as the resolution of relevant interacting
physical processes. Conceptually, the uncertainty ahgdlembeds the problem into an ensemble of statistically
similar problems, requiring a simultaneous consideratioiihe ensemble. Depending on the form of the objective
function, either an average or extreme values of this eneemdy be relevant for evaluating its optimal value. The
complexity of the physics, on the other hand, is typicallpaached from the perspective of computational model-
ing, leading to increasingly finer spatio-temporal resohg in order to accurately capture the evolution of digtinc
interacting physical processes. Even if a statistical rofhe subsurface is already available, the well-placemen
problem thus entails the repetitive numerical solutionaieptially large computational models. The burden of this
repetitive evaluation is manifested both in statisticahpbng and optimization. A number of simplifications have
been pursued to address these challenges, ranging fromirigdine objective function on statistical averages in-
stead of extremes, to reducing the spatial or physics régolaf the computational model, and developing adapted



optimization logic [1,20]. Clearly these assumptions hewesequences both on the selected well placement and
on the credibility of the computed optimal solution.

For instance particle swarm optimization (PSO) [17] and glmeultaneous perturbation stochastic approxi-
mation (SPSA) [24,4] were introduced to accelerate the @gance of the iterative process towards an optimal
solution. The SPSA was also applied to an optimal well-ptaeat problem under geologic uncertainty [18], where
the optimal solution was the maximum over an average of &stal ensemble of size 100 reflecting uncertainty
in permeability. It was observed that accounting for gemlagcertainty in this manner had a noticeable effect on
the optimal well-placement. Similar observations wereedan other related studies [28]. Notwithstanding its im-
portance, the computational challenge is clearly exatedbahen accounting for uncertainty in the optimization
problem. This is due to the need to treat, simultaneoushgraécredible scenarios. The number of such scenarios
depends both on the level of scatter in observed data ancoiskattitude adopted by the relevant decision maker.
Thus, if tails of production are critical for decision magjra larger statistical ensemble is required, whereas as-
sessments based on mean and variance would be treatecesitiffieiell with a smaller ensemble. In this context,
both robust optimization [13, 28], involving a combinatioimean and variance, risk-based optimization involving
probabilities of exceedance [2], conditional value-akrfCVaRO) [8] dealing with risks associated with low re-
turns, and utility functions [16] have been considered.eB&wecent studies dealing with optimal well-placement
have stressed the value of joint location/control optimi@mawhereby both the location of the wells and production
strategy over some time horizon are simultaneously opéchib, 6,18,28,29]. Clearly, in such cases the com-
putational aspects of the optimization problem are siggnifily more challenging, specially when accounting for
uncertainties in geology, investment, and pricing.

Specialized optimization algorithms have been proposgaktde challenges stemming from the confluence of
optimization and uncertainty. Some of these include a speotive framework [27] where the intrinsic structure of
genetic algorithms is leveraged to maximize the informmagteaned from each expensive numerical calculation,
a polynomial chaos methodology [3,26] which develops asthisurrogates to expedite the optimization task,
specialized workflows to reuse expensive function evadaatin a sensible manner [19], and statistical proxies [2,
25]. The present paper extends these statistical proxdaptiag them to intrinsic structure hidden within the data,
thus allowing us to maximize the value of information beingeired form this data. In particular, we delineate
the intrinsic structure using the method of diffusion mahi§, construct a joint statistical model of parameters
(i.e. permeability), reservoir quantities of interest (production at producing well), and design variables @l
locations) from a handful of expensive model-based sirmariat This joint probability density function (jpdf) is
then used, with no further recourse to the physics simyl&toestimate the full probability of production for a
given set of well locations. The concentration of the jointarrences around the intrinsic manifold permits the
construction of accurate jpdf from fewer samples than wotihérwise be possible.

Once this jpdf is available, the optimization problem pexte without the need for additional calls to any
physics-based analysis code such as reservoir simulattgetl conditional on a specific choice of the design
variables, the probability distribution of production daereadily evaluated by integrating a scalar function {jpdf
There are two challenges to this picture. First, constngcsiuch a joint pdf requires itself a very large number of
joint observations of well locations and production levdlee number of such observations being a monotonic
function of the magnitude of the associated scatter. Seca@ept for simple convex sets in high-dimensional
space, sampling from arbitrary sets is not straightforward

In this paper we tackle the above two challenges by intradut the well-placement problem a recent proce-
dure [23] that permits the optimization iterator and theisti@al sampler to share numerical samples, thus greatly
reducing the computational burden required to attain anrate optimal solution with severe probabilistic objec-
tives or constraints. The essential idea is to recognizenthie a collection of numerical samples may be observed
to have some particular scatter, the scatter in these san@esawould be smaller if they are construed to fluctuate
around some implicit structure (when such a structure idaegsts). With smaller fluctuations, the same samples
can be described and smoothed more accurately using stiaiegniques of probability density estimation.

The mathematical underpinnings of the above observati@re developed in a recent paper by the authors
[23], which proposes a new methodology for generating zatibns of a random vector that are statistically con-



sistent with a dataset of observations of this vector. Theaility distribution of this random vector, while a-priio

not known, will be learned from the data and is presumed t@heentrated on an unknown manifold that will itself
also be learned as part of the formalism. A random matrixtr®ituced whose columns are independent copies of
the random vector and for which the number of columns is thebar of data points in the dataset. The approach
is based on the use of (i) the multidimensional kernel-dgrestimation method for estimating the probability
distribution of the random matrix [7,21], (ii) a Markov ChaWlonte Carlo method for generating realizations for
the random matrix [22], (iii) the diffusion-maps approaoch discovering and characterizing the intrinsic geometry
and the structure of the dataset [11,10], and (iv) a redecddr representation of the random matrix, which is
constructed using the diffusion-maps basis associatddthé dominant eigenvalues of an underlying transition
matrix relative to the given dataset [23].

We rely on this manifold characterization and sampling bdjpp to construct, with very few samples, an
accurate estimate of the joint density function of well imas and production levels. We then integrate this jpdf
into a standard constrained optimization procedure to dwgits convergence. This extension is applied to the
well-placement problem with tail probabilities in the otfjge function. This problem has been addressed using
kriging and regression interpolation [1] of the objectivmdtion, resulting in the introduction of significant error
in the tail of the distributions. Our approach does not maldhsassumptions, permitting the accurate and efficient
evaluation of optimal solutions associated with statistitextremes. A novel contribution of the present paper, in
addition to new approach for the well-placement problenm mdapting the sampling on manifold procedure [23]
to the efficient evaluation of tail probabilities.

The next section of the paper introduces the physical andenaitical setups. This is followed by a presenta-
tion of the optimization algorithm for our well-placemerijective function. We conclude with an assessment of
the method.

2 Problem set-up
2.1 Physical problem

A typical oil reservoir consists of one or more injection gmdduction wells, respectively used to inject water into
and extract oil from the reservoir. Uncertainty in both roiscale and large-scale features of the subsurface, such
as reflected in permeability, renders the oil production water production rates random. The objective of the
well-placement problem is to place the injection and préidacwells such that some probabilistic measure of the
cumulative oil production is maximized.

We consider a reservoir with one injection and one prodaatiell, and seek to optimally emplace them so as
to maximize some measure of production. In particular, ve& $8 maximize the cumulative production level, after
2000 days from start of production, that can be certified mtesoonfidence level — «. While we recognize that a
more realistic setting would entail several injection aadesal production wells, the efficacy and implementation
of our proposed methodology are demonstrated sufficienglly with our proposed layout. Furthermore, we only
aim to optimize well location and do not include producti@mtrols in the optimization task. As indicated in the
introduction section, such joint optimization has alre&egn investigated in the literature and could readily be
coupled with our proposed framework.

We describe the physics of flow in the porous medium using ekbtél model with intrinsic permeability
characterized as a lognormal stochastic process. We usePBel0 permeability data set [9], discretized into a
60 x 220 x 85 regular Cartesian grid with real range @f0 x 2200 x 170 (ft)3. The 85 layers along depth are
treated as statistically independent realizations of adimgensional permeability field, thus serving to construct
the sample mean and sample covariance matrix. This is glaagross assumption, but one that can be easily
relaxed in the presence of more extensive field data. Theeiiguhtation, efficiency, and conclusions associated
with our proposed approach are not affected by this assompiVith the covariance of the permeability field
thus estimated, a twenty-term Karhunen-Loeve expansi@omstructed as a discretization of this random field
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Fig. 2 Sample realizations of the log-permeability field.

using eigenvectors and eigenvalues of the sample covariaatrix. The mean and variance of the generated log-
permeability field are shown in Fig. 1 and two sample reabretdrawn from the Karhunen-Loéve expansion are
shown in Fig. 2. The permeability values shown in these figihave units of millidarcy.

Letting (z, y) be the coordinates in a cartesian system of the plane. Fgshliews the top view of the reservoir
under consideration with arbitrarily placed injection gmwdduction wells. Here(x p, y p) are the coordinates of a
design production poinP, and(z;, y;) are the coordinates of a design injection pdinin order to simplify the
presentation, without loss of generality, while simultaurgly demonstrating features of the proposed methodology,
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Fig. 3 Top view of the reservoir with arbitrarily located injeati@nd production wells

we consider that the initial choice for each of the two wedlsaistricted to 16 spatial locations indicated by the grid
in Fig. 3. This results in 2561¢ x 16) possible choices for the pair of (injection/production)lv@cations. Thus

the reservoir simulator needs to be called for only 256 candiions, each with different location of the injection
and the production well. As is subsequently explained, tmstucted statistical proxy will then be able to identify
optimal locations over continuous space, most likely nbing on the initial grid. We emphasize that for each of
these 256 configurations, uncertainty in the subsurfacessribed through a Karhunen-Loeve expansion of the
intrinsic permeability field, as described above. Normallyfficient samples must be evaluated (through reservoir
simulations) for each configuration so as to accuratelyuatalthe averages of probabilities associated with the
objective functions and constraints. As explained belaw, groposed methodology requires far fewer samples,
since these samples are shared between the optimizer asthtistical estimation and also since the statistical
fluctuations are construed as variations around an intrmsinifold in parameter space (and not within the whole
hypercube defined by the uncertain parameters).

We use ECLIPSE [12] as our reservoir simulator. Each ECLIR®Hs completed by first generating 20 Gaus-
sian variables, forming the Karhunen-Loéve expansiod taking the exponential of the sum to obtain one spatially
varying realization of intrinsic permeability. A polynoatichaos (PCE) surrogate [14] is also constructed using
several eclipse runs. A basis adaptation procedure is imgiéed to accelerate the convergence while addressing
the curse of dimensionality [26]. The purpose of the PCEogate is to enable a thorough convergence analysis
of the optimization procedure presented in the presentrp@gavergence of this surrogate and its properties are
presented elsewhere [26].

We note that the introduction of additional uncertaintieydnd the permeability field does not present any
challenge to the proposed methodology. The simultaneaseredtion of several parameters will serve to condition
the quantity of interest, which should then exhibit smadkatistical fluctuations allowing it to be characterizethwi
fewer samples. We also note that the introduction of aduifiparameters does not affect the computational effort
in the proposed methodology, which is much more sensitiihéonumber of available data points. The added
computational burden in these cases is typically dwarfethbyost of a single simulation from the phsyics-based
analysis code.



2.2 Optimization problem

Our objective will be to determine the locations, in a resenof an injection well and a production well so as to
maximize the production levey, that is exceeded with some preset confidence §). In this section, we define
the mathematical constructs required to specify this pmlhs well as define required stochastic approximations.

Letw = (wy,...,wm, ) be a parameters vector that belongs to an admissiblé.séh the present case,
myw = 4, andw denotes coordinates of the two wells (2 coordinates pel) vi## consider the general probabilistic
non-convex optimization problem,

W = arg max f(W), 1)

weCy

in which the scalar objective functiof(w), defined orCy with values inR, is specified as
f(w) =arg{q: ProbdQ(w) >q} =1-a}, )

wherea is a given real number fixed i0, 1[. Equivalently, for eaclv, we havef(w) = Fé(lw)(a), with Fig ) (q)

the cumulative distribution function (CDF) of random vélies Q(w). Here, Q(w) is the cumulative production
after2,000 days when the well locations have specified coordinateSlearly, the evaluation of the objectiyéw)

for every value ofv is tantamount to a probability integral requiring severalleations ofQ, the predicted cumu-
lative production. The probability distribution @@ is assumed to be induced by uncertainty in model parameters
of the underlying reservoir simulator, and thus for everyQ(w) is a random variable. For well-posed reservoir
models (where production levels do not become infinitey, ithplies tha O(w),w € Cw} is a second-order scalar
stochastic process indexed By. For eachw fixed in Cw, the random variabl@(w) is a mapping from sample
spacep, into R, which is assumed to have a probability density functien,, (r; w). The first argument of this
jpdf reflects uncertainty in material permeability, whitetsecond argument reflects uncertainty in well placement.

Consequently one has,
+oo

B{oW)’) = / 2 oo (s W) dr- ®

—0o0
It is also assumed that, for eaatfixed inCw, and eacltd, in the sample spaa@ the valueQ(w; 6,) of production
level is calculated by using a computational model (e.g. BSIE[12]) with uncertainties, and that the probabilistic
optimization problem defined by Eq. (1) has a unique solutigtiin Cy. We will refer to the “stochastic compu-
tational model” when we mean that the computational modekiag exercised a number of times as required by
the probabilistic objective function.

The objective of this paper is to propose a probabilisticrapph that allows for solving this probabilistic non-
convex optimization problem by using a small numbeof evaluations of the computational model.

Remarks (i) Given the form of the objective function as stated in epra(2), it will be useful to introduce, for

any given production level and well locationsv, the quantityk(q, w) with values in[0, 1] defined as,
+oo
hla. w) = Probd QW) >4} = | pog (riw)dr. @)
q

(ii) The integral in this last equation can be evaluated asgectation by rewriting it in the form,

h(q,w) = E{ﬂ[q,-l—oo[(g(w))}v (5)

in which £ denotes the mathematical expectation and whigre_.((r) = 1if r € [g, +-oo[ and= 0 otherwise.
We could use the classical estimate of the mathematicatéqien by using samples as follows. For evergiven
in Cw, the stochastic computational model would allow for cadting vs independent samples (or realizations),



Q(w; 6,) of random variabled(w), for §,, in © with ¢/ = 1, ..., vs. Forv, sufficiently large, an accurate estimate
of h(q, w) defined by Eq. (5) could then be computed as

1 &
P(a,W) 2 o= > g ool (QW; 011)) (6)
=1

Using standard formalisms, if the optimization algorithequiresN, evaluations off, then the stochastic compu-
tational model must be calledx Ny times, which could be prohibitive. The probabilistic apgeh that is proposed
allows for drastically limiting the number of calls of thedshastic computational model to a valie< vs x Np.
Let Cw, be the set consisting of th¥, values of the design variable for which the stochastic computational
model is called, and refer to these pointsagsfor i = 1, ..., Ny. ThusCu, is the initial design grid which, in our
case, consists a¥y = 256 points.

2.3 Data-driven model for uncertain parameters and desigahles

In this section, we first define the dataset of a fixed nuniaeof data points denoted by = (W', ¢¢) for ¢ =
1,..., Ng that are generated by the optimization algorithm and wtecjuire Ny calls of the computational model.
We then construct the random variabls Q, andX = (W, Q) that admit theseV, data points as independent
samples. The dependence of these random variabl@g @ omitted for notational conveniencéle note that Q
denotes the random production level conditional on wektmn, wherea® denotes the random production level
including uncertainty about well location. A distinctioetiveen the two random variables is important since this
formalism is being used in an optimization setting wherel Veehtion is the design variable.

Definition of the datasetor anyw fixed in Cw and for anyd, fixed in ©, let Q(w; 0,) be a sample of the random
variable Q(w) computed by using the stochastic computational model. £&iow consider a fixed numbe, of
valuesw', ..., w™° in Cy of vectorw. These values can correspond either to a training proceghpied tow or
are some values aff generated by the optimization algorithm. Lt . .., ¢™° be the real numbers iR that are
associated withv', . .., w™o in Cy and that are defined by

qezg(we;eé) ) £:17"'7N0- (7)
We then introduce tha/, data points<’, . .., xN° in R™ obtained by pairingv’ with ¢,
X/:(M7q/)7 £:17“‘7N07 (8)

wheren = mqy + 1.

Definition of the random variables associated with the detaad/e now define the random variabMs Q, andX.
LetW = (Wq,...,Wn, ) and Q be the statistically dependent second-order randdables with values iR
andR, respectively, for which the joint probability distribati onCw x R is unknown but for which a set af
independent samples is givenwy, ¢, £ = 1,..., No,w* = (w!, ..., wh,, ) and¢’ areNy. LetX = (X1,..., Xn)

be the second-order random variable with valueB'irdefined by pairingV and Q,
X=(W,Q). )

While the probability density functiopy (x) of X is unknown,Nj, independent sampleg, . .., x™¥° are specified

by Eq. (8).

Increasing the size of the dataset for large fluctuatidmssome instances, such as the present case involving
large variations in subsurface permeability, a single petoility realization for each design point may not be
sufficient to capture the variability in the objective fuioct, even when an intrinsic manifold has been discovered.
To systematically address this issue, we introdugg repetitions of the construction introduced in the previous



paragraph, resulting itV = Ny x nrep total number of calls to the expensive physics-based shoulin section

3 below, we will investigate the convergence of the optimiaraalgorithm as a function ofiep. We will then
observe that the required valueraf, is significantly smaller than the number of repetitions ¢yl required for
optimization under uncertainty. As explained previousitys can be attributed both to sharing samples between
optimization and expectation, and to the detection of thdedging manifold. Remarks

(i) As the stochastic computational model defines a randopping between parameterand the random variable
Q(w), the unknown probability density function (pgfy is concentrated in a neighborhood of an unknown subset
Sn of R™ (this neighborhood of subset, will be discovered by using the method that is briefly sumaeatiin
Appendix B).

(i) For everyw fixed in Cw, the probability distribution of the real-valued randonmiahle Q(w) is not explicitly
known.

Rewritingh(q, w) in terms of a conditional probability density functiohaking into account the construction of
the random variable®/ and Q, for allg fixed in R and for any giverw, fixed in Cw, the quantityh (g, wy) defined
by Eq. (4) can be rewritten as

00
hg.wy) = / pow (rWg) dr (10)
q

in which pgw (r|wyg) is the conditional probability density function of the re@lued random variable Q given
W = wy.

2.4 Algorithm used for solving the optimization problem

The algorithm for evaluating(q, wy) by using a dataset is detailed in Appendix A, and the algaritbr solving

the probabilistic optimization problem with a fixed numbéfunction evaluations is detailed in Appendix B. The
flow chart of the algorithm is summarized in Figs. 4 to 6 anéffyidescribed next. In a first step shown in Figure
4, the physics-based computational model is exerciédines in order to construct an initial data set from which
a statistical surrogate, relating well-placement to potidm level, will be learned. This set is denoted Xy A
joint probability density function (jpdf) for productionyell location, and permeability, is constructed from these
N samples. Clearly, the value of must be sufficiently high to account for both dependence oadyction level

on uncertain permeability and on well location. In a secde@,sepicted in Figure 5, an intrinsic structure of the
dataset, in the form of a diffusion manifold, is delineatesihg diffusion maps algorithms. The step produces a
set of basis functions that characterizes the manifold:t&tions in theV data points will henceforth be viewed
as fluctuations around this intrinsic manifold. Also in teecond step, a particular stochastic differential eqnatio
is constructed. The solution of this equation, at each ssegyaranteed to be a multivariate sample drawn from
the jpdf in step 1 and also to lie on the manifold. We then dnaw suchN-sized samples, resulting in a total of
vsm = N X nuc samples. The stochastic differential equation is low disi@mal and can be solved very efficiently,
requiring typically a few minutes, independently of how erpive the solution of the physics code is. In a third
step, shown in Figure 6, the new realizations are used inchastic optimization code, where statistical averages
are carried out on samples synthesized from the statisticebgate constructed in step 2, without any additional
recourse to the phsyics-based code. Details of the undgrtiieory are presented elsewhere [23, 15].
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Well placemen Random production rate

Random permeability field
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Fig. 4 Using the computational model, computésamples{q‘, ¢=1,...,N} of random variable Q froniv realizations{w‘,é =
1,..., N} of random variabl&V; construct the sefx?, ¢ = 1, ..., N} of N data pointst = (w¥, ¢%)

xtoowt gty ion

l

Learn data struture using

diffusion maps on manifold

l

Statistical generator using a projected ISDE
on a manifold for computing additional samples

l

L4l b
W = H )Pl = 17 MR | V i
( ar ’ qar) X ar sim
Fig. 5 From the set{x!,¢ = 1,..., N} of N data pointsx! = (w¢, ¢%), using a probabilistic learning of the data structure and
then using a statistical generator, compuig, > N additional samplegx4,,¢ = 1,.. ., vsim};construct the additional realizations

Xgr = (Wgrv qigr)

3 Application

The well-placement problem is solved by relying on the maehyi described in section 2. Implementation details
and results are discussed in this sectiimfacilitate the interpretation of the results that follave reiterate some
key conceptsFirst, we identify Ny critical values of design variables. In our case these alecdions scattered
over a coarse grid resulting in 256 possible permutationsedif locations.Second,for each of theseV, design
variables, we draw one independent sample of permeabilidysalve one “expensive” ECLIPSE probleithird,

in order to enrich thes@&/, function evaluations, we may have to draw a totah@f samples for each of th&)
design points. With thes® = Ny X nrep “expensive” function evaluations, we construct a statitsurrogate
model which we then exercise (almost in real time and verypeasively) to draw additional samples, as required
by the optimization algorithm. We thus drawic additional sets for a total a¥y x nrep x nuc Samples available to
the optimization code. Only of these require calls to the “expensive” evaluator, withirggs of the order ofiuc.
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Fig. 6 Optimal solution sought using a random search algorithroh s1s a grid search or a genetic algorithm, without new calthé
computational model, using only the additional sampwﬁ, qg,) fore =1,..., vsim.

3.1 Description of the database and construction of theeeée solution

We then haven,, = 4 and the vectow = (wy, ws, w3, wy) IS such thatw; = zp, we = yp, ws = z, and

wy = yy. We also consideNy = 256 pairs{P, I} of design points on the grid shown in Figure 3. Therefore,
vectorw with units in feet, belongs to the discrete subGgt = {10, 200, 400, 600} x {10, 730, 1470, 2200} x
{10, 200, 400, 600} x {10, 730, 1470, 2200} of R* for which theN, elements are denoted h@wé,é =1,...,No}.

For every given design point§, vs = 100,000 independent sampleg(w; 6,/) > 0 of the random production
rate Q(wj) are generated through the polynomial chaos surrogate andesmoted by;f;?el = Q(W;0,) for

¢ =1,...,vs. This represents the reference database which will be esebltain the reference optimal solution.
The objective of the proposed method is to achieve compagiiimal performance with only a fraction of these
samples.

Generation of the databas€arrying out standard UQ analysis in 20-dimensional patanspace requires thou-
sands of statistical samples to accurately charactergzdistributions for each proposed pair of injection-prdéhuc
wells. In the present paper, it is assumed that such poiataailable at will, and are synthesized from the poly-
nomial chaos decomposition that has been constructed. Weaniy out a convergence study to explore the sig-
nificance of the initial number of samples on the accuracyptiwzation. Specifically, we will assume an upper
bound ofvs = 100,000 samplesQ(w}; 6,/) for every design point represented . Therefore, the database is
made up o256 x 100,000 values forq(’;// (¢ =1,...,256 and?’ = 1,...,100,000) and256 x 4 values forwﬁ
(t=1,...,256).

Quantification of levels of statistical fluctuationis order to clarify the level of the statistical fluctuatfiof
{Qw§),t = 1,..., Ny}, for each of the 256 design options, we compute the cumelgtieduction level for
100,000 sampledNe then compute the mean and standard deviations by avgragan these 100,000 samples.
The coefficient of variation for each of these 256 designkes testimated by dividing the sample standard devia-
tion by the sample mean. Figure 7 displays the empiricatedé of the coefficient of variation (COV) for each of
these 256 designdlhe observed scatter in the COV is indicative of significaatistical fluctuations of production
level across the design space, in addition to fluctuatiothlsded by uncertainty in permeability. Such fluctuations
would present significant computational challenges todsteshoptimization algorithms.

Construction of the reference solution and convergencéyaisaln order to limit the length of the paper, the results
are presented for only one value of the probability levelqual to0.1. It should be noted that the objective of this
paper is not to present a stochastic analysis of the physioalem under consideration (such an analysis can be
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Fig. 7 Graph of the empirical estimate of the coefficient of vaciatof discrete stochastic proce@(wf), £ =1,..., No}.
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Fig. 8 Graph of the optimal solutiop®() for 10 < +, < 100,000 in log scale.

found in [26]), but to use the generated database for dematimgf that the novel method presented is efficient for
solving the probabilistic optimization problem by sign#itly reducing the number of calls to the computational
physical model. The reference solutiovi™ is obtained by solving the optimization problem under utaiaty

W' = arg max f(Wo) , ¢ = fW), 11)

WUGCWO

where the objective functiofi(w) is defined by Eq. (2) wittk(q,wq) (defined by Eq. (4)) is estimated by using
Eq. (6) withvs = 100,000. The optimal solution, which is simply calculated by takthg maximum on the discrete
subsety, defined in the first paragraph of Section 3.1, is

WP = (10,1470, 600, 1470)(ft) , ¢ = 369.4 bbl . (12)

The convergence analysis gf* with respect to the number of samples is given by plottingigufe 8,¢y"(v7)

for 10 < v, < 100,000. This figure shows that abouto00 samples per design point would suffice to converge
the optimization algorithm to its optimal solution. We pogut again that with our proposed statistical surrogate,
the optimal solution is not restricted @, and could be achieved anywhere within the spatial domaiallased

by the optimization algorithm. Thus, if for instance a grehsch algorithm is utilized, then the optimal solution
is constrained to the underlying grid being searched. We flrther underscore a distinction between the grid
associated with a grid search (which we label below’gs and the grid we define abové.(,), and which is
associated with the construction of the probabilistic ni¢aed which is associated with the initial data set obtained
from the expensive computational model).
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Fig. 9 Optimal productiong®, as function of number of repetitiongep, o = 0.1; 1 < nrep < 4000 in log scale; units fog°P in
bbl.

3.2 Construction of the dataset from the database and tialidef the algorithm for evaluating(q, wy)

The objective of this section is to use the algorithm prodoseAppendix A for validating the nonparametric
statistical estimation of(q,wy) given by Egs. (27) to (29) and to analyze the convergencertsathe reference
solution with respect t&v. As we have explained in Section 3.1, the level of statiktioatuations are too big and
Ny = 256 may not be sufficient for constructing the dataset. Consgtyens, >= 1 repetitions are introduced
such thatV = nwep x Np, and the convergence analysis with respeat.¢pis carried out in order to validate the
formulation. Thus at each of th&, design pointsnrep random values of production levels are calculated using
ECLIPSE. We recall that we have at our disposak(00,000) samples already drawn from the polynomial chaos
surrogate, which we are saving for such a convergence study.

Construction of a family of datasets from the datab&st us assume that., is specified and fixed. L&, . . ., Z%rep

benwp < vs pseudorandom integers drawn from the discrete uniformmildiigion on the intervall, vs] (without
repetition). The datasgi(w’,¢’),¢ = 1,..., N} (that depends on.y) is generated, fof = 1,...nwep, and for
j:L...,N(),by , ) . )

Wo=wy, ¢ = QWys0p) , {=j+(i—1)xNy. (13)
Solution of the optimization problem on a finite suligtof Cw. In this paragraph, we construct the solution of the

following probabilistic non-convex optimization problesn the finite subsety, of Cw (introduced in Appendix A),
= arg max fwg) = Fwe, (14)

g Wg

w

where the objective functiofi(wy ) is defined by Eq. (2), in which(q, wy) is estimated using the algorithm detailed
in Appendix A. The calculated optimal solutiov” andq” depends om.ep. The finite sety, is made up ofV,
elements that correspond to the now@s: (W, Wjy, Wyy, wj, ) € R* of a grid in R* such that(j1, 72, j3,J4) €
{1,...,12}* and where, fok = 1,2, 3,4, w;, = 1+ (ji — 1) x Ay with Ay = A3 = 5.36 and Ay = A4 = 19.91.
Consequently, we havie= 1,..., N, with N, = 12% = 20,736. Note that this grid oR* is such that there is no
nodew}, that exactly coincides with the reference solutigf'.

Validation of the algorithm for evaluating(q, wy). A validation of the proposed algorithm is obtained by sodvi
Eq. (14) with the algorithm detailed in Appendix A and by caripg the obtained optimal solutiow?™, ¢5")

with the reference solutiow;™, ¢;") defined by Eq. (12). The convergence analysisif*, ;") with respect to
the numbermep Of repetitions is shown in Figure 9, and the four componehfsimction ngt(nrep), are displayed
in Figure 10. It can be seen that the convergence of the foandomates (the four components wfl”‘ shown in

Figure 10) is reached fotep, = 250,
Wi = (10,1404, 600, 1404) (ft) , ¢ = 253.2 bbl, (15)



14

o= Opt _ (0Pt 0Pt |\ Opt
1-a=0.9, graphufwd (Wd,l'wd‘z'wd,S'

w°PY as a function of n
a4 rep

250

200

rep)

150

100

50

components of wg(n

01

50 . . .
10° 10* 102 10°

n__inlog scale
rep

Fig. 10 Optimal well coordinatesyS"; (nrep), as function of number of repetitiongep; @ = 0.1: w3’} (nrep) (green circle)w s (nrep)

(black square)w’’s (nrep) (red pentagramyw ™, (nrep) (black cross)il < nrep < 4000 in log scale; vertical axis/™/10 in ft.

which has to be compared to Eq. (12). As we have explainedefieeence solution is obtained at the n(m‘,’@t
belonging to the coarse gri{ilvf;,é = 1,...,Np} that does not coincide with a node of the finest dnid;,: =
1,...,Ng}. FOrneep = 1000 and4 000, we haveg™ = 352.4 and356.2 respectively.

3.3 Solving the probabilistic optimization problem with xefil number of function evaluations

Solution of the optimization problem on the finite €g}. For the reason given in Section 3.1, the results are
presented forx = 0.1. The algorithm detailed in Appendix B is used for solving firebabilistic non-convex
optimization problem on the finite séy,, that is defined in Section 3.2,

Wg?t = arg max f(Wg) ) qglpt = f(ngl) ) (16)

Wy ECu,
where the objective functioi(wy) is defined as before and wheliéy, wy) is estimated using Eq. (27) in which
N is replaced bysim = nuc x N with N = nwep x Ng and Ny = 256, and wherenp, belongs to the interval
[1,100]. As we have explained in Sections 3.1 and 3.2, the level tisttal fluctuations is too large and requires
more samples than provided by the datgget], ¢5),¢ = 1,..., No} with Ny = 256. It has indeed been verified
that the reference solutiom;™ cannot be reached byaf" with nep = 1 and for any value ofiuc. Consequently,
nep > 1 repetitions have been introduced (as in Section 3.2) andheeocgence analysis with respect i@y
has been carried out in the range< nwp < 100 in order to validate the algorithm proposed in Appendix B.
In such an analysis, for every fixed valuef, belonging to[1,100], the convergence analysis with respect to
nuc > 1 could be presented. Such analysis was performed, but ir todémit the presentation, the results
presented herein are limited to those computed with = 10. For every value Ofep, it was observed thatg
was improved for values ofvc greater thani0 (justifying the choicenyc = 10). Consequently, forvc fixed
to 10, the optimal solution(waf', ¢=¢') obtained by solving Eq. (16) depends only @@, and is thus rewritten
as (W' (nrep), g (nrep) ). The convergence analysis then consists in studying thendigmce off(nrep)) and

WaF (1rep) = (wqpy (irep), Wop (irep)  wap s (Mrep), War 4 (Mrep) ON Turep.

Generation of thewc additional samplesn this paragraph, we give the values of the parametersatbaised for
generating thewc additional samples using the algorithm summarized in AgpeB and for which the notations
are those used in [23]. We have:, = 4, n = mw + 1 = 5, Ny = 256, andnuc = 10.

For everynep fixed in {1, 100]:

1. N= NO X Nrep:
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Fig. 12 Optimal productionqgft(nrep) for 1 < nrep < 100 in log scale; units for°Ptin bbl; o = 0.1.

2. The matrix[z,4] in M,, x for which the columns are th& data pointsc' .. XNV with xf = (w,¢) € R is
generated by using Eq. (13).

3. Anormalization of matriXz,] is performed by using the principal component analysis floictvall the eigen-
vectors are kept (no statistical reduction is done).

4. Concerning the transition matrix for the constructionttaf diffusion-maps basis, the smoothing parameter is
e = 10 andx = 1. The eigenvalues of the transition matrix are displayedguie 11 with a clear delineation
of a six dimensional eigen-space which we adopt for defirtiegdiffusion manifold.

5. For the numerical integration of the reduced It stotbakfferential equation for generating the additional
samples, the parameters gge= 1.5, My = 100, andAr = 0.142 (for nrep = 1) 10 0.0914 (for nrep = 100).

Results and convergence analydike convergence analysis @3, ¢of') with respect to the number., of repeti-
tion is demonstrated in Figure 12 showigf'(nep) as function ofuep and Figure 13 showing the four components
of waP(nrep). It can be seen that the convergence of the four coordintite$aqur components aff' shown in Fig-
ure 13) is reached fotep = 55, yielding the following optimal solution,

woP' = (10, 1404, 600, 1404)(ft) , ¢'=381.5 bbl, (17

which has to be compared to Eqg. (12). As we have explaineethaeance solution is attained at nod®' belonging
to the coarse grieﬁwﬁ,é =1,..., No} that does not coincide with a node of the finestdudg,,: = 1,..., Ny}.

Gain obtained by using the algorithm proposed in AppendiA®8described in the introduction to this section, the
gain is of the order ofiuc, which in the present case represents one order of magnitude
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4 Conclusions

A new method is presented for the solution of the optimal ypklcement problem. The method tackles success-
fully the computational challenge where the number of tters in an optimization setting is compounded by the
number of samples required for evaluating the objectivetion. This is achieved through a very efficient con-
struction of the joint density function between objectivadtion and design variables, together with an associated
sampling algorithm. The density function is constructetigh a significantly smaller ensemble than is required
using other methods. A convergence study is also performaddess the influence of the number of initial points
on the statistical accuracy of the method. The present watéd$on recent developments by the authors character-
izing the construction and stability of these manifoldstiWhese new perspectives, optimization problems under
uncertainty can be accurately evaluated without recowrgedbabilistic simplificationsThe performance of the
method relies on the existence of an underlying manifoltidhts like an attractor to the statistical fluctuations. The
shape of the manifold delineates the statistical depermdbatween inputs and outputs. Thus such a manifold is
expected to underlie many physical phenomena where firgtiptes induce such a dependence. It is also expected
that the stronger the statistical fluctuations in the otesglata (theVy original samples), the more valuable the
proposed method will be since traditional methods wouldiiregmany more samples to capture these fluctuations,
whereas the proposed method tackles by securing additieafitations of production level from the statistical
surrogate and not from the numerical simulator.

A Algorithm for evaluating h(q,Wg) by using a dataset

The available information is only constituted of the fixednher N of data pointsx! = (w¢, ¢%) for ¢ = 1,..., N, which areN
independent samples of the constructed random varibte (W, Q) defined by Eq. (9) (see Section 2.3). The problem consists in
calculating, for anyg fixed in R and for any pointw, fixed in Cw, an estimate oh(g,w,) defined by Eq. (10). Such an estimate
is computed by using the nonparametric statistics. As égain Section 2.3, Eq. (6) cannot be used because, for giferonly

one sample;? is assumed to be known, and for using the classical staiistigpproach defined by Eq. (6), a large number of samples
>, ..., q¢%vs of Q for W = w’ would be necessary. In order to overcome this difficulty, ta daoothing technique based on the use
of the Gaussian kernel-density estimation method is useestimatingh (g, wy) defined by Eq. (10).

A.1 Nonparametric statistical estimation/efy, wg)

In order to apply the nonparametric statistics for estintpti(¢, wy) on the basis of the dataset that is made up ofthimdependent
realizations{(w¢, ¢*),£ = 1, ..., N}, itis necessary to normalize the dataset in order to obtalhoenditioned numerical calculations.



17

Normalizing the dataseForj = 1, ..., my, Ietgj ando; be the empirical estimates of the mean value and of the sthugaiation
of random componerit/; of random vectoW, computed by using th& independent sample{auf, £=1,...,N} of W;. Similarly,
let ¢ ando be the empirical estimates of the mean value and of the stmtdsviation of random variabl constructed with theéV
independent sample;’, ¢ = 1,..., N} of Q. We then introduce the normalized random varid@land, forj = 1,...,mu, the
normalized random variablé’;, such that
Q=Q-a/o , W;=W;-w,)/o;, (18)
for which the N independent samples are given, foe 1,..., N, by
@=0@-q/c , @=@wi-w,)/o;. (19)
The corresponding normalized valgief ¢ and the corresponding normalized valug = (g, 1, . . ., Wg,m,, ) Of aNyWy = (wg 1, ..., Wq,m, )
fixed in Cw, are written as
7=(q— 2)/‘7 ;g = (wg,; — Mj)/aj : (20)
It can easily be verified that
h(q,wg) ~ h(q,Wy), (1)
—~ +OO —~
h@ W) = [ b ) dr, (22)
q

in whichp@‘w(ﬂ\Tvg) is the probability density function of the real-valued ram:ivariable@ given\7V = Wy. Introducing the joint pdf

(W, 7) of random variable§V andQ and the pdbg (W) = [g (W, 7) dF of random variabléV, Eq. (22) can be written as

e PG
h@ W) = — [ pe (@ P (23)
q,W. = —Z / p’* =~ WA ,7" T .
g py(Wg) Jg W

Nonparametric statistical estimate @f(g, Wy). Each one of the dependent random variab/lég ceey me and Q has a zero em-
pirical mean value and a unit empirical standard deviatgaic(lated by using thé/ samples(\TvZ, @%)). The nonparametric statistical
estimation of the joint pdpy, Q(Wg,a) at point (W, g), constructed by using the Gaussian kernel-density estmatethod [7,21]

and by using theéV independent realization@(\Tv[, G%),£=1,...,N},is written, for N sufficiently large, as
1 Y 1 1
A A ~ - - = AZ_A 2 ~ N2
Py,5(Wg, @) ~ N ;:1 (Vors)mo 1 exp{ 292 {Iw" —Wgll* + (@ —79) }} ) (24)

in which s is the bandwidth parameter that can be chosen as the usu#dimahsional optimal Silverman bandwidth [22] (in taking
into account that the empirical estimation of the standasdadion of each component is unity),

4 1/ (4+ma+1)
s = 7} . (25)
N2+ muw + 1)

From equation (24), it can be deduced that(W,) = Jr g Q(Wg, 7) dr can be estimated, fa¥ sufficiently large, by

N
by 1 1 1 0 5
~(Wg) ~ — _ —— W — W . 26
atin) = 3 e {19 ) 8)
By using equations (23), (24), and (26), it can be deducedfitraV' sufficiently large, an estimate &f(g, Wy ) is given by

Sl T (@ P (Wy)

h(g, Wg) =~ —— ; (27)
Sl 04(Wg)
in which, for¢ = 1,..., N, the real numberg®(Wy) and7*(q) are written as
PUIN |
9(@y) = exp { — 51 1" — g1} 8)
1 .
H@ =5 (1-ef@-a/(sv2)}) | (29)

where er{y} = % ik e~ dt is the erf function.
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A.2 For giveng andw, algorithm for estimating:(g, W) by using only the giverv data points

The proposed algorithm can be used for estimatifg, ”) in Ng given ponntswZ in Cw belonging to the subsély, {Wg =
(wq 1o wh oY i=1,...,Ng} C Cw by using only theV data pointsc*, . xN in R,
Data for the algorithm

1. Givenm,, andN.

2. setn = mq + 1.

3. Givenx',...,x™ in R such thax = (w¥, ¢*) is in R™ with w* in R™« andq’ in R.

4. Given scalag andwg in Cw,, .

Steps of the algorithm for estimatirkdq, W' ) by using only the giveV data points

1. Computeg = N 22:1 q* andaq = N zlil(q —g) .

Forj =1,...,mu, computew; = & S0, wt ando? = & Zé\’zl(wf —w,)?.
For¢ =1,...,N, compute(®’, 5°) € Rmv x R by using Eq. (19).

Computen, andg by using Eq. (20).

. Computes by using Eq. (25).

. Fore=1,... N,
(a) computer?(W,) by using Eq. (28).

(b) computert(q) by using Eq. (29).
7. Computeh(g, Wy) by using Eq. (27).
End of the algorithm

SRS SIN

B Proposed algorithm for solving the probabilistic optimization problem with a fixed number of function
evaluations

The proposed algorithm used for solving the probabilisgitmization problem defined by equations (1) to (2), is based procedure
that evaluates (g, wy) as described above while necessitating only a small nuni¥of calls to the stochastic computational model.
The proposed method consists of enriching Mieamples that are represented by the columns of miatgik= [x*...xN]in M. N,
with nyc additional realizationgz}], . . ., [za"] in I, », which are computed without calling the stochastic comtjmral model
but that are computed by using the generator of samplesstlsanimarized in Section 2.4. By using thesg = nuc x N additional
samples, a good estimate/ofg, wy) can be obtained by using Egs. (27) to (29). The algorithmeddlowing.
Data allowing the algorithm to be initialized

1. Givenm.,, N, andnyc.

2. Setn = my, + 1.

3. Given matrix[z4] in M, x for which the columns are th&/ data pointsx! ...xN and wherex! = (wf, ¢%) € R™ with

w! € Rmw andg? € R.
4. If necessary, scale the data set represented by nagisn M,, n.

5. Introduce the random matr{X] whose columns ar& independent copies of random veckornd for which one given sample of
random matrixX] is matrix [z 4].

6. Giveng in R andwy in Cu, .

Steps of the algorithm

1. Generatewyc additional samplegel], .. ., [zaMC] of random matriXX] by using the algorithm detailed in [23].
2. From thevsim = nmc x N columns of theayc matrices[zl], .. ., [xaMC], extractvsim samples(w,, ¢) € R™w x R for
£=1,...,Vsim
V. v,
3. Computey, = ”5|m Mg ando?, = ”5|m S gk — 4,0
. v, Ve
4. Forj =1,...,mqy, computew,, ; = V5|m YEmw andod = V5|m S M (why ;= war )%
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Foré =1,...,vsm, compute(Ws, g&) € R™w x R by using Eq. (19) in whichV is replaced bysim.
Computeiy, andg by using Eq. (20).

Computes by using Eq. (25) in whichV is replaced bysim.

For¢ =1,...,vsim,

(@) computes® (W) by using Eq. (28) in whichV is replaced bysim.

(b) computert () by using Eq. (29) in whichV is replaced bysim.

9. Computeh (g, Wy) by using Eq. (27) in whichV is replaced bysim.

© N o o

End of the algorithm
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