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Abstract A new method based on manifold sampling is presented for formulating and solving the optimal well-
placement problem in an uncertain reservoir. The method addresses the compounded computational challenge
associated with statistical sampling at each iteration of the optimization process. An estimation of the joint proba-
bility density function between well locations and production levels is achieved using a small number of expensive
function calls to a reservoir simulator. Additional realizations of production levels, conditioned on well locations
and required for evaluating the probabilistic objective function, are then obtained by sampling this jpdf without
recourse to the reservoir simulator.

Notations

A lower case letterx is a real variable.
A boldface lower case letterx is a real vector.
An upper case letterX is a real random variable.
A boldface upper case letterX is a real random vector.
A lower case letter between brackets[x] is a real matrix.
A boldface upper case letter between brackets[X] is a real random matrix.
N = {0, 1, 2, . . .}: set of all the integers.
R: set of all the real numbers.
R
n: Euclidean vector space onR of dimensionn.
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‖x‖: usual Euclidean norm inRn.
Mn,N : set of all the(n×N) real matrices.
Cw: admissible set for optimization
Cw0

: set ofN0 initial design variables
Cwg : set ofNg design variables on search grid
1A(a) is the indicator function of setA: 1A(a) = 1 if a ∈ A and= 0 if a /∈ A.
E: Mathematical expectation.
α: production confidence level for optimal solution
wopt: optimal solution
wopt
r : reference optimal solution

wopt
d

: optimal solution using statistical surrogate
war, xar: additional realizations ofW andX
qopt
r : production level atwopt

r

qopt
d

: production level atwopt
d

Q(w): random cumulative production after 2,000 days
FQ(w)(q): probability distribution function forh(q,w):1− FQ(w)(q)

pQ(w)(q;w): probability density function forQ at givenw
Q at a givenw
xI , yI : coordinates of injection well
xP , yP : coordinates of production well
W: random well locations
Q: random production levels for givenW
X: (W,Q)

wg : optimization variable on search grid
w0: optimization variable on initial set of points
N0: number of initially available solutions
Ng : number of points for grid search by optimization algorithm
θ: element of sample spaceΘ
nrep: number of repetitions for each design variable
nMC: number of samples drawn from statistical surrogate

1 Introduction

Thewell-placement problemis paramount to efficient reservoir production and development. Its objective, of max-
imizing return on investment, is challenged by the fact thatthe subsurface is neither illuminated nor does it lend
itself to simple constitutive laws of flow and deformation. Thus a rational treatment of the problem must tackle sig-
nificant uncertainty about the medium and the governing equations as well as the resolution of relevant interacting
physical processes. Conceptually, the uncertainty challenge embeds the problem into an ensemble of statistically
similar problems, requiring a simultaneous considerationof the ensemble. Depending on the form of the objective
function, either an average or extreme values of this ensemble may be relevant for evaluating its optimal value. The
complexity of the physics, on the other hand, is typically approached from the perspective of computational model-
ing, leading to increasingly finer spatio-temporal resolutions in order to accurately capture the evolution of distinct
interacting physical processes. Even if a statistical model of the subsurface is already available, the well-placement
problem thus entails the repetitive numerical solution of potentially large computational models. The burden of this
repetitive evaluation is manifested both in statistical sampling and optimization. A number of simplifications have
been pursued to address these challenges, ranging from focusing the objective function on statistical averages in-
stead of extremes, to reducing the spatial or physics resolution of the computational model, and developing adapted
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optimization logic [1,20]. Clearly these assumptions haveconsequences both on the selected well placement and
on the credibility of the computed optimal solution.

For instance particle swarm optimization (PSO) [17] and thesimultaneous perturbation stochastic approxi-
mation (SPSA) [24,4] were introduced to accelerate the convergence of the iterative process towards an optimal
solution. The SPSA was also applied to an optimal well-placement problem under geologic uncertainty [18], where
the optimal solution was the maximum over an average of a statistical ensemble of size 100 reflecting uncertainty
in permeability. It was observed that accounting for geologic uncertainty in this manner had a noticeable effect on
the optimal well-placement. Similar observations were noted in other related studies [28]. Notwithstanding its im-
portance, the computational challenge is clearly exacerbated when accounting for uncertainty in the optimization
problem. This is due to the need to treat, simultaneously, several credible scenarios. The number of such scenarios
depends both on the level of scatter in observed data and on the risk attitude adopted by the relevant decision maker.
Thus, if tails of production are critical for decision making, a larger statistical ensemble is required, whereas as-
sessments based on mean and variance would be treated sufficiently well with a smaller ensemble. In this context,
both robust optimization [13,28], involving a combinationof mean and variance, risk-based optimization involving
probabilities of exceedance [2], conditional value-at-risk (CVaRO) [8] dealing with risks associated with low re-
turns, and utility functions [16] have been considered. Several recent studies dealing with optimal well-placement
have stressed the value of joint location/control optimization whereby both the location of the wells and production
strategy over some time horizon are simultaneously optimized [5,6,18,28,29]. Clearly, in such cases the com-
putational aspects of the optimization problem are significantly more challenging, specially when accounting for
uncertainties in geology, investment, and pricing.

Specialized optimization algorithms have been proposed totackle challenges stemming from the confluence of
optimization and uncertainty. Some of these include a retrospective framework [27] where the intrinsic structure of
genetic algorithms is leveraged to maximize the information gleaned from each expensive numerical calculation,
a polynomial chaos methodology [3,26] which develops adapted surrogates to expedite the optimization task,
specialized workflows to reuse expensive function evaluations in a sensible manner [19], and statistical proxies [2,
25]. The present paper extends these statistical proxies, adapting them to intrinsic structure hidden within the data,
thus allowing us to maximize the value of information being inferred form this data. In particular, we delineate
the intrinsic structure using the method of diffusion manifolds, construct a joint statistical model of parameters
(i.e. permeability), reservoir quantities of interest (i.e. production at producing well), and design variables (i.e. well
locations) from a handful of expensive model-based simulations. This joint probability density function (jpdf) is
then used, with no further recourse to the physics simulator, to estimate the full probability of production for a
given set of well locations. The concentration of the joint occurrences around the intrinsic manifold permits the
construction of accurate jpdf from fewer samples than wouldotherwise be possible.

Once this jpdf is available, the optimization problem proceeds without the need for additional calls to any
physics-based analysis code such as reservoir simulator. Indeed conditional on a specific choice of the design
variables, the probability distribution of production canbe readily evaluated by integrating a scalar function (jpdf).
There are two challenges to this picture. First, constructing such a joint pdf requires itself a very large number of
joint observations of well locations and production levels. The number of such observations being a monotonic
function of the magnitude of the associated scatter. Second, except for simple convex sets in high-dimensional
space, sampling from arbitrary sets is not straightforward.

In this paper we tackle the above two challenges by introducing to the well-placement problem a recent proce-
dure [23] that permits the optimization iterator and the statistical sampler to share numerical samples, thus greatly
reducing the computational burden required to attain an accurate optimal solution with severe probabilistic objec-
tives or constraints. The essential idea is to recognize that while a collection of numerical samples may be observed
to have some particular scatter, the scatter in these same samples would be smaller if they are construed to fluctuate
around some implicit structure (when such a structure indeed exists). With smaller fluctuations, the same samples
can be described and smoothed more accurately using standard techniques of probability density estimation.

The mathematical underpinnings of the above observations were developed in a recent paper by the authors
[23], which proposes a new methodology for generating realizations of a random vector that are statistically con-
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sistent with a dataset of observations of this vector. The probability distribution of this random vector, while a-priori
not known, will be learned from the data and is presumed to be concentrated on an unknown manifold that will itself
also be learned as part of the formalism. A random matrix is introduced whose columns are independent copies of
the random vector and for which the number of columns is the number of data points in the dataset. The approach
is based on the use of (i) the multidimensional kernel-density estimation method for estimating the probability
distribution of the random matrix [7,21], (ii) a Markov Chain Monte Carlo method for generating realizations for
the random matrix [22], (iii) the diffusion-maps approach for discovering and characterizing the intrinsic geometry
and the structure of the dataset [11,10], and (iv) a reduced-order representation of the random matrix, which is
constructed using the diffusion-maps basis associated with the dominant eigenvalues of an underlying transition
matrix relative to the given dataset [23].

We rely on this manifold characterization and sampling capability to construct, with very few samples, an
accurate estimate of the joint density function of well locations and production levels. We then integrate this jpdf
into a standard constrained optimization procedure to improve its convergence. This extension is applied to the
well-placement problem with tail probabilities in the objective function. This problem has been addressed using
kriging and regression interpolation [1] of the objective function, resulting in the introduction of significant error
in the tail of the distributions. Our approach does not make such assumptions, permitting the accurate and efficient
evaluation of optimal solutions associated with statistics of extremes. A novel contribution of the present paper, in
addition to new approach for the well-placement problem, isin adapting the sampling on manifold procedure [23]
to the efficient evaluation of tail probabilities.

The next section of the paper introduces the physical and mathematical setups. This is followed by a presenta-
tion of the optimization algorithm for our well-placement objective function. We conclude with an assessment of
the method.

2 Problem set-up

2.1 Physical problem

A typical oil reservoir consists of one or more injection andproduction wells, respectively used to inject water into
and extract oil from the reservoir. Uncertainty in both micro-scale and large-scale features of the subsurface, such
as reflected in permeability, renders the oil production andwater production rates random. The objective of the
well-placement problem is to place the injection and production wells such that some probabilistic measure of the
cumulative oil production is maximized.

We consider a reservoir with one injection and one production well, and seek to optimally emplace them so as
to maximize some measure of production. In particular, we seek to maximize the cumulative production level, after
2000 days from start of production, that can be certified at some confidence level1− α. While we recognize that a
more realistic setting would entail several injection and several production wells, the efficacy and implementation
of our proposed methodology are demonstrated sufficiently well with our proposed layout. Furthermore, we only
aim to optimize well location and do not include production controls in the optimization task. As indicated in the
introduction section, such joint optimization has alreadybeen investigated in the literature and could readily be
coupled with our proposed framework.

We describe the physics of flow in the porous medium using a black-oil model with intrinsic permeability
characterized as a lognormal stochastic process. We use theSPE-10 permeability data set [9], discretized into a
60 × 220 × 85 regular Cartesian grid with real range of600 × 2200 × 170 (ft)3. The 85 layers along depth are
treated as statistically independent realizations of a two-dimensional permeability field, thus serving to construct
the sample mean and sample covariance matrix. This is clearly a gross assumption, but one that can be easily
relaxed in the presence of more extensive field data. The implementation, efficiency, and conclusions associated
with our proposed approach are not affected by this assumption. With the covariance of the permeability field
thus estimated, a twenty-term Karhunen-Loève expansion is constructed as a discretization of this random field
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Fig. 1 Mean (left) and variance (right) of the log-permeability field.

Fig. 2 Sample realizations of the log-permeability field.

using eigenvectors and eigenvalues of the sample covariance matrix. The mean and variance of the generated log-
permeability field are shown in Fig. 1 and two sample realizations drawn from the Karhunen-Loève expansion are
shown in Fig. 2. The permeability values shown in these figures have units of millidarcy.

Letting(x, y) be the coordinates in a cartesian system of the plane. Figure3 shows the top view of the reservoir
under consideration with arbitrarily placed injection andproduction wells. Here,(xP , yP ) are the coordinates of a
design production pointP , and(xI , yI) are the coordinates of a design injection pointI. In order to simplify the
presentation, without loss of generality, while simultaneously demonstrating features of the proposed methodology,
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Fig. 3 Top view of the reservoir with arbitrarily located injection and production wells

we consider that the initial choice for each of the two wells is restricted to 16 spatial locations indicated by the grid
in Fig. 3. This results in 256 (16 × 16) possible choices for the pair of (injection/production) well locations. Thus
the reservoir simulator needs to be called for only 256 configurations, each with different location of the injection
and the production well. As is subsequently explained, the constructed statistical proxy will then be able to identify
optimal locations over continuous space, most likely not falling on the initial grid. We emphasize that for each of
these 256 configurations, uncertainty in the subsurface is described through a Karhunen-Loève expansion of the
intrinsic permeability field, as described above. Normally, sufficient samples must be evaluated (through reservoir
simulations) for each configuration so as to accurately evaluate the averages of probabilities associated with the
objective functions and constraints. As explained below, our proposed methodology requires far fewer samples,
since these samples are shared between the optimizer and thestatistical estimation and also since the statistical
fluctuations are construed as variations around an intrinsic manifold in parameter space (and not within the whole
hypercube defined by the uncertain parameters).

We use ECLIPSE [12] as our reservoir simulator. Each ECLIPSErun is completed by first generating 20 Gaus-
sian variables, forming the Karhunen-Loève expansion, and taking the exponential of the sum to obtain one spatially
varying realization of intrinsic permeability. A polynomial chaos (PCE) surrogate [14] is also constructed using
several eclipse runs. A basis adaptation procedure is implemented to accelerate the convergence while addressing
the curse of dimensionality [26]. The purpose of the PCE surrogate is to enable a thorough convergence analysis
of the optimization procedure presented in the present paper. Convergence of this surrogate and its properties are
presented elsewhere [26].

We note that the introduction of additional uncertainties beyond the permeability field does not present any
challenge to the proposed methodology. The simultaneous observation of several parameters will serve to condition
the quantity of interest, which should then exhibit smallerstatistical fluctuations allowing it to be characterized with
fewer samples. We also note that the introduction of additional parameters does not affect the computational effort
in the proposed methodology, which is much more sensitive tothe number of available data points. The added
computational burden in these cases is typically dwarfed bythe cost of a single simulation from the phsyics-based
analysis code.
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2.2 Optimization problem

Our objective will be to determine the locations, in a reservoir, of an injection well and a production well so as to
maximize the production level,q, that is exceeded with some preset confidence (1 − α). In this section, we define
the mathematical constructs required to specify this problem as well as define required stochastic approximations.

Let w = (w1, . . . , wmw ) be a parameters vector that belongs to an admissible setCw. In the present case,
mw = 4, andw denotes coordinates of the two wells (2 coordinates per well). We consider the general probabilistic
non-convex optimization problem,

wopt = arg max
w∈Cw

f(w) , (1)

in which the scalar objective functionf(w), defined onCw with values inR, is specified as

f(w) = arg {q : Proba{Q(w) > q} = 1− α} , (2)

whereα is a given real number fixed in]0 , 1[. Equivalently, for eachw, we havef(w) = F−1
Q(w)(α), with FQ(w)(q)

the cumulative distribution function (CDF) of random variablesQ(w). Here,Q(w) is the cumulative production
after2,000 days when the well locations have specified coordinatesw. Clearly, the evaluation of the objectivef(w)

for every value ofw is tantamount to a probability integral requiring several evaluations ofQ, the predicted cumu-
lative production. The probability distribution onQ is assumed to be induced by uncertainty in model parameters
of the underlying reservoir simulator, and thus for everyw, Q(w) is a random variable. For well-posed reservoir
models (where production levels do not become infinite), this implies that{Q(w),w ∈ Cw} is a second-order scalar
stochastic process indexed byCw. For eachw fixed in Cw, the random variableQ(w) is a mapping from sample
space,Θ, into R, which is assumed to have a probability density functionpQ(w)(r;w). The first argument of this
jpdf reflects uncertainty in material permeability, while the second argument reflects uncertainty in well placement.
Consequently one has,

E{Q(w)2} =

∫ +∞

−∞

r2 pQ(w)(r;w) dr . (3)

It is also assumed that, for eachw fixed inCw, and eachθℓ in the sample spaceΘ the valueQ(w; θℓ) of production
level is calculated by using a computational model (e.g. ECLIPSE[12]) with uncertainties, and that the probabilistic
optimization problem defined by Eq. (1) has a unique solutionwopt in Cw. We will refer to the “stochastic compu-
tational model” when we mean that the computational model isbeing exercised a number of times as required by
the probabilistic objective function.

The objective of this paper is to propose a probabilistic approach that allows for solving this probabilistic non-
convex optimization problem by using a small numberN of evaluations of the computational model.

Remarks. (i) Given the form of the objective function as stated in equation (2), it will be useful to introduce, for

any given production levelq and well locationsw, the quantityh(q,w) with values in[0 , 1] defined as,

h(q,w) = Proba{Q(w) > q} =

∫ +∞

q

pQ(w)(r;w) dr . (4)

(ii) The integral in this last equation can be evaluated as anexpectation by rewriting it in the form,

h(q,w) = E{1[q ,+∞[(Q(w))} , (5)

in whichE denotes the mathematical expectation and where1[q ,+∞[(r) = 1 if r ∈ [q ,+∞[ and= 0 otherwise.
We could use the classical estimate of the mathematical expectation by using samples as follows. For everyw given
in Cw, the stochastic computational model would allow for calculating νs independent samples (or realizations),
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Q(w; θℓ′) of random variableQ(w), for θℓ′ in Θ with ℓ′ = 1, . . . , νs. Forνs sufficiently large, an accurate estimate
of h(q,w) defined by Eq. (5) could then be computed as

h(q,w) ≃
1

νs

νs∑

ℓ′=1

1[q ,+∞[(Q(w; θℓ′)) . (6)

Using standard formalisms, if the optimization algorithm requiresN0 evaluations off , then the stochastic compu-
tational model must be calledνs×N0 times, which could be prohibitive. The probabilistic approach that is proposed
allows for drastically limiting the number of calls of the stochastic computational model to a valueN ≪ νs×N0.
Let Cw0

be the set consisting of theN0 values of the design variablew for which the stochastic computational
model is called, and refer to these points aswi

0 for i = 1, . . . , N0. ThusCw0
is the initial design grid which, in our

case, consists ofN0 = 256 points.

2.3 Data-driven model for uncertain parameters and design variables

In this section, we first define the dataset of a fixed numberN0 of data points denoted byxℓ = (wℓ, qℓ) for ℓ =

1, . . . , N0 that are generated by the optimization algorithm and which requireN0 calls of the computational model.
We then construct the random variablesW, Q, andX = (W,Q) that admit theseN0 data points as independent
samples. The dependence of these random variables onN0 is omitted for notational convenience.We note that Q
denotes the random production level conditional on well location, whereasQ denotes the random production level
including uncertainty about well location. A distinction between the two random variables is important since this
formalism is being used in an optimization setting where well location is the design variable.

Definition of the dataset. For anyw fixed in Cw and for anyθℓ fixed inΘ, letQ(w; θℓ) be a sample of the random
variableQ(w) computed by using the stochastic computational model. Let us now consider a fixed numberN0 of
valuesw1, . . . ,wN0 in Cw of vectorw. These values can correspond either to a training procedureapplied tow or
are some values ofw generated by the optimization algorithm. Letq1, . . . , qN0 be the real numbers inR that are
associated withw1, . . . ,wN0 in Cw and that are defined by

qℓ = Q(wℓ; θℓ) , ℓ = 1, . . . , N0 . (7)

We then introduce theN0 data pointsx1, . . . , xN0 in R
n obtained by pairingwℓ with qℓ,

xℓ = (wℓ, qℓ), ℓ = 1, . . . , N0 , (8)

wheren = mw + 1.

Definition of the random variables associated with the dataset. We now define the random variablesW, Q, andX.
Let W = (W1, . . . ,Wmw) and Q be the statistically dependent second-order random variables with values inRmw

andR, respectively, for which the joint probability distribution onCw × R is unknown but for which a set ofN0

independent samples is given bywℓ, qℓ, ℓ = 1, . . . , N0, wℓ = (wℓ
1, . . . , w

ℓ
mw

) andqℓ areN0. LetX = (X1, . . . , Xn)

be the second-order random variable with values inR
n defined by pairingW and Q,

X = (W,Q) . (9)

While the probability density functionpX(x) of X is unknown,N0 independent samplesx1, . . . , xN0 are specified
by Eq. (8).

Increasing the size of the dataset for large fluctuations. In some instances, such as the present case involving
large variations in subsurface permeability, a single permeability realization for each design point may not be
sufficient to capture the variability in the objective function, even when an intrinsic manifold has been discovered.
To systematically address this issue, we introducenrep repetitions of the construction introduced in the previous
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paragraph, resulting inN = N0 × nrep total number of calls to the expensive physics-based simulator. In section
3 below, we will investigate the convergence of the optimization algorithm as a function ofnrep. We will then
observe that the required value ofnrep is significantly smaller than the number of repetitions typically required for
optimization under uncertainty. As explained previously,this can be attributed both to sharing samples between
optimization and expectation, and to the detection of the underlying manifold. Remarks.

(i) As the stochastic computational model defines a random mapping between parameterw and the random variable
Q(w), the unknown probability density function (pdf)pX is concentrated in a neighborhood of an unknown subset
Sn of R

n (this neighborhood of subsetSn will be discovered by using the method that is briefly summarized in
Appendix B).

(iii) For everyw fixed inCw, the probability distribution of the real-valued random variableQ(w) is not explicitly
known.

Rewritingh(q,w) in terms of a conditional probability density function. Taking into account the construction of
the random variablesW and Q, for allq fixed inR and for any givenwg fixed inCw, the quantityh(q,wg) defined
by Eq. (4) can be rewritten as

h(q,wg) =

∫ +∞

q

pQ|W(r|wg) dr , (10)

in which pQ|W(r|wg) is the conditional probability density function of the real-valued random variable Q given
W = wg .

2.4 Algorithm used for solving the optimization problem

The algorithm for evaluatingh(q,wg) by using a dataset is detailed in Appendix A, and the algorithm for solving
the probabilistic optimization problem with a fixed number of function evaluations is detailed in Appendix B. The
flow chart of the algorithm is summarized in Figs. 4 to 6 and briefly described next. In a first step shown in Figure
4, the physics-based computational model is exercisedN times in order to construct an initial data set from which
a statistical surrogate, relating well-placement to production level, will be learned. This set is denoted byxℓ. A
joint probability density function (jpdf) for production,well location, and permeability, is constructed from these
N samples. Clearly, the value ofN must be sufficiently high to account for both dependence of production level
on uncertain permeability and on well location. In a second step, depicted in Figure 5, an intrinsic structure of the
dataset, in the form of a diffusion manifold, is delineated using diffusion maps algorithms. The step produces a
set of basis functions that characterizes the manifold. Fluctuations in theN data points will henceforth be viewed
as fluctuations around this intrinsic manifold. Also in thissecond step, a particular stochastic differential equation
is constructed. The solution of this equation, at each step,is guaranteed to be a multivariate sample drawn from
the jpdf in step 1 and also to lie on the manifold. We then drawnMC suchN-sized samples, resulting in a total of
νsim = N ×nMC samples. The stochastic differential equation is low dimensional and can be solved very efficiently,
requiring typically a few minutes, independently of how expensive the solution of the physics code is. In a third
step, shown in Figure 6, the new realizations are used in a stochastic optimization code, where statistical averages
are carried out on samples synthesized from the statisticalsurrogate constructed in step 2, without any additional
recourse to the phsyics-based code. Details of the underlying theory are presented elsewhere [23,15].
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Samples of W : Samples of :Q
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Computational model

ECLIPSEW Q

Well placement

Random permeability field

Random production rate

, = , ...1 , N

ECLIPSE

Fig. 4 Using the computational model, computeN samples{qℓ, ℓ = 1, . . . , N} of random variable Q fromN realizations{wℓ, ℓ =
1, . . . , N} of random variableW; construct the set{xℓ, ℓ = 1, . . . , N} of N data pointsxℓ = (wℓ, qℓ)

sim

x w q= ,( ) , = , ...1 , N

Learn data struture using

diffusion maps on manifold

w q

Statistical generator using a projected ISDE

    on a manifold for computing additional samples

=,( ) xar ar ar
, = , ...1 , ν

Fig. 5 From the set{xℓ, ℓ = 1, . . . , N} of N data pointsxℓ = (wℓ, qℓ), using a probabilistic learning of the data structure and
then using a statistical generator, computeνsim ≫ N additional samples{xℓar, ℓ = 1, . . . , νsim};construct the additional realizations
xℓar = (wℓ

ar, q
ℓ
ar)

3 Application

The well-placement problem is solved by relying on the machinery described in section 2. Implementation details
and results are discussed in this section.To facilitate the interpretation of the results that follow, we reiterate some
key concepts.First , we identifyN0 critical values of design variables. In our case these are 16locations scattered
over a coarse grid resulting in 256 possible permutations ofwell locations.Second,for each of theseN0 design
variables, we draw one independent sample of permeability and solve one “expensive” ECLIPSE problem.Third,
in order to enrich theseN0 function evaluations, we may have to draw a total ofnrep samples for each of theN0

design points. With theseN = N0 × nrep “expensive” function evaluations, we construct a statistical surrogate
model which we then exercise (almost in real time and very inexpensively) to draw additional samples, as required
by the optimization algorithm. We thus drawnMC additional sets for a total ofN0×nrep×nMC samples available to
the optimization code. OnlyN of these require calls to the “expensive” evaluator, with savings of the order ofnMC.
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sim
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f( w )computation of cost function using

mathematical expectation of Q given W = w
a nonparametric statistical estimate  of the
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ar ar
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Fig. 6 Optimal solution sought using a random search algorithm, such as a grid search or a genetic algorithm, without new calls to the
computational model, using only the additional samples(wℓ

ar, q
ℓ
ar) for ℓ = 1, . . . , νsim.

3.1 Description of the database and construction of the reference solution

We then havemw = 4 and the vectorw = (w1, w2, w3, w4) is such thatw1 = xP , w2 = yP , w3 = xI , and
w4 = yI . We also considerN0 = 256 pairs{P, I} of design points on the grid shown in Figure 3. Therefore,
vectorw with units in feet, belongs to the discrete subsetCw0

= {10, 200, 400, 600} × {10, 730, 1470, 2200} ×

{10, 200, 400, 600} × {10, 730, 1470, 2200} of R
4 for which theN0 elements are denoted by{wℓ

0, ℓ = 1, . . . , N0}.
For every given design pointwℓ

0, νs = 100,000 independent samplesQ(wℓ
0; θℓ′) ≥ 0 of the random production

rateQ(wℓ
0) are generated through the polynomial chaos surrogate and are denoted byqℓ,ℓ

′

0 = Q(wℓ
0; θℓ′) for

ℓ′ = 1, . . . , νs. This represents the reference database which will be used to obtain the reference optimal solution.
The objective of the proposed method is to achieve comparable optimal performance with only a fraction of these
samples.

Generation of the database. Carrying out standard UQ analysis in 20-dimensional parameter space requires thou-
sands of statistical samples to accurately characterize the distributions for each proposed pair of injection-production
wells. In the present paper, it is assumed that such points are available at will, and are synthesized from the poly-
nomial chaos decomposition that has been constructed. We will carry out a convergence study to explore the sig-
nificance of the initial number of samples on the accuracy of optimization. Specifically, we will assume an upper
bound ofνs = 100,000 samplesQ(wℓ

0; θℓ′) for every design point represented bywℓ
0. Therefore, the database is

made up of256 × 100,000 values forqℓ,ℓ
′

0 (ℓ = 1, . . . , 256 andℓ′ = 1, . . . , 100,000) and256 × 4 values forwℓ
0

(ℓ = 1, . . . , 256).

Quantification of levels of statistical fluctuations. In order to clarify the level of the statistical fluctuations of
{Q(wℓ

0), ℓ = 1, . . . , N0}, for each of the 256 design options, we compute the cumulative production level for
100,000 samples.We then compute the mean and standard deviations by averaging over these 100,000 samples.
The coefficient of variation for each of these 256 designs is then estimated by dividing the sample standard devia-
tion by the sample mean. Figure 7 displays the empirical estimate of the coefficient of variation (COV) for each of
these 256 designs.The observed scatter in the COV is indicative of significant statistical fluctuations of production
level across the design space, in addition to fluctuations induced by uncertainty in permeability. Such fluctuations
would present significant computational challenges to standard optimization algorithms.

Construction of the reference solution and convergence analysis. In order to limit the length of the paper, the results
are presented for only one value of the probability levelα equal to0.1. It should be noted that the objective of this
paper is not to present a stochastic analysis of the physicalproblem under consideration (such an analysis can be
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Fig. 8 Graph of the optimal solutionqopt
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found in [26]), but to use the generated database for demonstrating that the novel method presented is efficient for
solving the probabilistic optimization problem by significantly reducing the number of calls to the computational
physical model. The reference solution,wopt

r is obtained by solving the optimization problem under uncertainty

wopt
r = arg max

w0∈Cw0

f(w0) , qopt
r = f(wopt

0 ) , (11)

where the objective functionf(w0) is defined by Eq. (2) withh(q,w0) (defined by Eq. (4)) is estimated by using
Eq. (6) withνs = 100,000. The optimal solution, which is simply calculated by takingthe maximum on the discrete
subsetCw0

defined in the first paragraph of Section 3.1, is

wopt
r = (10, 1470, 600, 1470)(ft) , qopt

r = 369.4 bbl . (12)

The convergence analysis ofqopt
r with respect to the number of samples is given by plotting in Figure 8,qopt

r (ν′s)

for 10 ≤ ν′s ≤ 100,000. This figure shows that about1,000 samples per design point would suffice to converge
the optimization algorithm to its optimal solution. We point out again that with our proposed statistical surrogate,
the optimal solution is not restricted toCw0

and could be achieved anywhere within the spatial domain, asallowed
by the optimization algorithm. Thus, if for instance a grid search algorithm is utilized, then the optimal solution
is constrained to the underlying grid being searched. We thus further underscore a distinction between the grid
associated with a grid search (which we label below asCwg and the grid we define above (Cw0

), and which is
associated with the construction of the probabilistic model (and which is associated with the initial data set obtained
from the expensive computational model).
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3.2 Construction of the dataset from the database and validation of the algorithm for evaluatingh(q,wg)

The objective of this section is to use the algorithm proposed in Appendix A for validating the nonparametric
statistical estimation ofh(q,wg) given by Eqs. (27) to (29) and to analyze the convergence towards the reference
solution with respect toN . As we have explained in Section 3.1, the level of statistical fluctuations are too big and
N0 = 256 may not be sufficient for constructing the dataset. Consequently, nrep >= 1 repetitions are introduced
such thatN = nrep × N0, and the convergence analysis with respect tonrep is carried out in order to validate the
formulation. Thus at each of theN0 design points,nrep random values of production levels are calculated using
ECLIPSE. We recall that we have at our disposal (νs=100,000) samples already drawn from the polynomial chaos
surrogate, which we are saving for such a convergence study.

Construction of a family of datasets from the database. Let us assume thatnrep is specified and fixed. Letℓ′1, . . . , ℓ
′
nrep

benrep ≤ νs pseudorandom integers drawn from the discrete uniform distribution on the interval[1, νs] (without
repetition). The dataset{(wℓ, qℓ), ℓ = 1, . . . , N} (that depends onnrep) is generated, fori = 1, . . . nrep and for
j = 1, . . . , N0, by

wℓ = wj
0 , qℓ = Q(wj

0; θℓ′i) , ℓ=j+(i−1)×N0 . (13)

Solution of the optimization problem on a finite subsetCwg of Cw. In this paragraph, we construct the solution of the
following probabilistic non-convex optimization problemon the finite subsetCwg of Cw (introduced in Appendix A),

wopt
d

= arg max
wg∈Cwg

f(wg) , qopt
d

= f(wopt
g ) , (14)

where the objective functionf(wg) is defined by Eq. (2), in whichh(q,wg) is estimated using the algorithm detailed
in Appendix A. The calculated optimal solutionwopt

d
andqopt

d
depends onnrep. The finite setCwg is made up ofNg

elements that correspond to the nodeswi
g = (wj1 , wj2 , wj3 , wj4) ∈ R

4 of a grid inR
4 such that(j1, j2, j3, j4) ∈

{1, . . . , 12}4 and where, fork = 1, 2, 3, 4, wjk = 1+(jk − 1)×∆k with ∆1 = ∆3 = 5.36 and∆2 = ∆4 = 19.91.
Consequently, we havei = 1, . . . , Ng with Ng = 124 = 20,736. Note that this grid ofR4 is such that there is no
nodewi

g that exactly coincides with the reference solutionwopt
r .

Validation of the algorithm for evaluatingh(q,wg). A validation of the proposed algorithm is obtained by solving
Eq. (14) with the algorithm detailed in Appendix A and by comparing the obtained optimal solution(wopt

d
, qopt

d
)

with the reference solution(wopt
r , qopt

r ) defined by Eq. (12). The convergence analysis of(wopt
d
, qopt

d
) with respect to

the numbernrep of repetitions is shown in Figure 9, and the four components of function wopt
d
(nrep), are displayed

in Figure 10. It can be seen that the convergence of the four coordinates (the four components ofwopt
d

shown in
Figure 10) is reached fornrep = 250,

wopt
d

= (10, 1404, 600, 1404) (ft) , qopt
r = 253.2 bbl , (15)
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which has to be compared to Eq. (12). As we have explained, thereference solution is obtained at the nodewopt
r

belonging to the coarse grid{wℓ
0, ℓ = 1, . . . , N0} that does not coincide with a node of the finest grid{wi

g , i =

1, . . . , Ng}. Fornrep = 1 000 and4 000, we haveqopt
r = 352.4 and356.2 respectively.

3.3 Solving the probabilistic optimization problem with a fixed number of function evaluations

Solution of the optimization problem on the finite setCwg . For the reason given in Section 3.1, the results are
presented forα = 0.1. The algorithm detailed in Appendix B is used for solving theprobabilistic non-convex
optimization problem on the finite setCwg that is defined in Section 3.2,

wopt
ar = arg max

wg∈Cwg

f(wg) , qopt
ar = f(wopt

0 ) , (16)

where the objective functionf(wg) is defined as before and whereh(q,wg) is estimated using Eq. (27) in which
N is replaced byνsim = nMC × N with N = nrep × N0 andN0 = 256, and wherenrep belongs to the interval
[1 , 100]. As we have explained in Sections 3.1 and 3.2, the level of statistical fluctuations is too large and requires
more samples than provided by the dataset{(wℓ

0, q
ℓ
0), ℓ = 1, . . . , N0} with N0 = 256. It has indeed been verified

that the reference solutionwopt
r cannot be reached bywopt

ar with nrep = 1 and for any value ofnMC. Consequently,
nrep > 1 repetitions have been introduced (as in Section 3.2) and a convergence analysis with respect tonrep

has been carried out in the range1 ≤ nrep ≤ 100 in order to validate the algorithm proposed in Appendix B.
In such an analysis, for every fixed value ofnrep belonging to[1 , 100], the convergence analysis with respect to
nMC > 1 could be presented. Such analysis was performed, but in order to limit the presentation, the results
presented herein are limited to those computed withnMC = 10. For every value ofnrep, it was observed thatwopt

ar

was improved for values ofnMC greater than10 (justifying the choicenMC = 10). Consequently, fornMC fixed
to 10, the optimal solution(wopt

ar , q
opt
ar ) obtained by solving Eq. (16) depends only onnrep and is thus rewritten

as (wopt
ar (nrep), q

opt
ar (nrep)). The convergence analysis then consists in studying the dependence ofqopt

ar (nrep)) and
wopt

ar (nrep) = (wopt
ar,1(nrep), w

opt
ar,2(nrep), w

opt
ar,3(nrep), w

opt
ar,4(nrep) onnrep.

Generation of thenMC additional samples. In this paragraph, we give the values of the parameters thatare used for
generating thenMC additional samples using the algorithm summarized in Appendix B and for which the notations
are those used in [23]. We have:mw = 4, n = mw + 1 = 5, N0 = 256, andnMC = 10.

For everynrep fixed in [1 , 100]:

1. N = N0 × nrep.
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2. The matrix[xd] in Mn,N for which the columns are theN data pointsx1 . . . xN with xℓ = (wℓ, qℓ) ∈ R
n is

generated by using Eq. (13).
3. A normalization of matrix[xd] is performed by using the principal component analysis for which all the eigen-

vectors are kept (no statistical reduction is done).
4. Concerning the transition matrix for the construction ofthe diffusion-maps basis, the smoothing parameter is

ε = 10 andκ = 1. The eigenvalues of the transition matrix are displayed in Figure 11 with a clear delineation
of a six dimensional eigen-space which we adopt for defining the diffusion manifold.

5. For the numerical integration of the reduced Itô stochastic differential equation for generating the additional
samples, the parameters aref0 = 1.5, M0 = 100, and∆r = 0.142 (for nrep = 1) to 0.0914 (for nrep = 100).

Results and convergence analysis. The convergence analysis of(wopt
ar , q

opt
ar ) with respect to the numbernrep of repeti-

tion is demonstrated in Figure 12 showingqopt
ar (nrep) as function ofnrep and Figure 13 showing the four components

of wopt
ar (nrep). It can be seen that the convergence of the four coordinates (the four components ofwopt

ar shown in Fig-
ure 13) is reached fornrep = 55, yielding the following optimal solution,

wopt
ar = (10, 1404, 600, 1404)(ft) , qopt

r = 381.5 bbl , (17)

which has to be compared to Eq. (12). As we have explained the reference solution is attained at nodewopt
r belonging

to the coarse grid{wℓ
0, ℓ = 1, . . . , N0} that does not coincide with a node of the finest grid{wi

g , i = 1, . . . , Ng}.

Gain obtained by using the algorithm proposed in Appendix B. As described in the introduction to this section, the
gain is of the order ofnMC, which in the present case represents one order of magnitude.
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4 Conclusions

A new method is presented for the solution of the optimal well-placement problem. The method tackles success-
fully the computational challenge where the number of iterations in an optimization setting is compounded by the
number of samples required for evaluating the objective function. This is achieved through a very efficient con-
struction of the joint density function between objective function and design variables, together with an associated
sampling algorithm. The density function is constructed through a significantly smaller ensemble than is required
using other methods. A convergence study is also performed to assess the influence of the number of initial points
on the statistical accuracy of the method. The present work builds on recent developments by the authors character-
izing the construction and stability of these manifolds. With these new perspectives, optimization problems under
uncertainty can be accurately evaluated without recourse to probabilistic simplifications.The performance of the
method relies on the existence of an underlying manifold that acts like an attractor to the statistical fluctuations. The
shape of the manifold delineates the statistical dependence between inputs and outputs. Thus such a manifold is
expected to underlie many physical phenomena where first principles induce such a dependence. It is also expected
that the stronger the statistical fluctuations in the observed data (theN0 original samples), the more valuable the
proposed method will be since traditional methods would require many more samples to capture these fluctuations,
whereas the proposed method tackles by securing additionalrealizations of production level from the statistical
surrogate and not from the numerical simulator.

A Algorithm for evaluating h(q,wg) by using a dataset

The available information is only constituted of the fixed numberN of data pointsxℓ = (wℓ, qℓ) for ℓ = 1, . . . , N , which areN
independent samples of the constructed random variableX = (W,Q) defined by Eq. (9) (see Section 2.3). The problem consists in
calculating, for anyq fixed in R and for any pointwg fixed in Cw, an estimate ofh(q,wg) defined by Eq. (10). Such an estimate
is computed by using the nonparametric statistics. As explained in Section 2.3, Eq. (6) cannot be used because, for givenwℓ, only
one sampleqℓ is assumed to be known, and for using the classical statistical approach defined by Eq. (6), a large number of samples
qℓ,1, . . . , qℓ,νs of Q for W = wℓ would be necessary. In order to overcome this difficulty, a data smoothing technique based on the use
of the Gaussian kernel-density estimation method is used for estimatingh(q,wg) defined by Eq. (10).

A.1 Nonparametric statistical estimation ofh(q,wg)

In order to apply the nonparametric statistics for estimating h(q,wg) on the basis of the dataset that is made up of theN independent
realizations{(wℓ, qℓ), ℓ = 1, . . . , N}, it is necessary to normalize the dataset in order to obtain well conditioned numerical calculations.
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Normalizing the dataset. Forj = 1, . . . ,mw, letwj andσj be the empirical estimates of the mean value and of the standard deviation

of random componentWj of random vectorW, computed by using theN independent samples{wℓ
j , ℓ = 1, . . . , N} of Wj . Similarly,

let q andσ be the empirical estimates of the mean value and of the standard deviation of random variableQ constructed with theN

independent samples{qℓ, ℓ = 1, . . . , N} of Q. We then introduce the normalized random variableQ̂ and, forj = 1, . . . ,mw , the
normalized random variablêWj , such that

Q̂ = (Q − q)/σ , Ŵj = (Wj − wj)/σj , (18)

for which theN independent samples are given, forℓ = 1, . . . , N , by

q̂ℓ = (qℓ − q)/σ , ŵℓ
j = (wℓ

j − wj)/σj . (19)

The corresponding normalized valueq̂ of q and the corresponding normalized valueŵg = (ŵg,1, . . . , ŵg,mw ) of anywg = (wg,1, . . . , wg,mw )
fixed inCw, are written as

q̂ = (q − q)/σ , ŵg,j = (wg,j − wj)/σj . (20)

It can easily be verified that

h(q,wg) ≃ h(q̂, ŵg) , (21)

h(q̂, ŵg) =

∫ +∞

q̂
pQ̂|Ŵ(r̂|ŵg) dr̂ , (22)

in whichp
Q̂|Ŵ(r̂|ŵg) is the probability density function of the real-valued random variableQ̂ givenŴ = ŵg . Introducing the joint pdf

pŴ,Q̂(ŵ, r̂) of random variableŝW andQ̂ and the pdfpŴ(ŵ) =
∫
R
pŴ,Q̂(ŵ, r̂) dr̂ of random variablêW, Eq. (22) can be written as

h(q̂, ŵg) =
1

pŴ(ŵg)

∫ +∞

q̂
pŴ,Q̂(ŵg , r̂) dr̂ . (23)

Nonparametric statistical estimate ofh(q̂, ŵg). Each one of the dependent random variablesŴ1, . . . , Ŵmw andQ̂, has a zero em-
pirical mean value and a unit empirical standard deviation (calculated by using theN samples(ŵℓ, q̂ℓ)). The nonparametric statistical
estimation of the joint pdfpŴ,Q̂(ŵg, q̂) at point(ŵg, q̂), constructed by using the Gaussian kernel-density estimation method [7,21]

and by using theN independent realizations{(ŵℓ, q̂ℓ), ℓ = 1, . . . , N}, is written, forN sufficiently large, as

pŴ,Q̂(ŵg , q̂) ≃
1

N

N∑

ℓ=1

1

(
√
2π s)mw+1

exp

{
− 1

2s2
{‖ŵℓ − ŵg‖2 + (q̂ℓ − q̂)2}

}
, (24)

in which s is the bandwidth parameter that can be chosen as the usual multidimensional optimal Silverman bandwidth [22] (in taking
into account that the empirical estimation of the standard deviation of each component is unity),

s =

{
4

N(2 +mw + 1)

}1/(4+mw+1)

. (25)

From equation (24), it can be deduced thatpŴ(ŵg) =
∫
R
pŴ,Q̂(ŵg, r̂) dr̂ can be estimated, forN sufficiently large, by

pŴ(ŵg) ≃
1

N

N∑

ℓ=1

1

(
√
2π s)mw

exp

{
− 1

2s2
‖ŵℓ − ŵg‖2

}
. (26)

By using equations (23), (24), and (26), it can be deduced that, for N sufficiently large, an estimate ofh(q̂, ŵg) is given by

h(q̂, ŵg) ≃
∑N

ℓ=1 r̂
ℓ(q̂) v̂ℓ(ŵg)

∑N
ℓ=1 v̂ℓ(ŵg)

, (27)

in which, forℓ = 1, . . . , N , the real numberŝvℓ(ŵg) andr̂ℓ(q̂) are written as

v̂ℓ(ŵg) = exp

{
− 1

2s2
‖ŵℓ − ŵg‖2

}
(28)

r̂ℓ(q̂) =
1

2

(
1− erf{(q̂ − q̂ℓ)/(s

√
2)}

)
, (29)

where erf{y} = 2√
π

∫ y
0 e−t2 dt is the erf function.
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A.2 For givenq andw, algorithm for estimatingh(q̂, ŵg) by using only the givenN data points

The proposed algorithm can be used for estimatingh(q̂, ŵi
g) in Ng given pointswi

g in Cw belonging to the subsetCwg = {wi
g =

(wi
g,1, . . . , w

i
g,mw

), i = 1, . . . , Ng} ⊂ Cw by using only theN data pointsx1, . . . , xN in Rn.

Data for the algorithm.

1. Givenmw andN .

2. setn = mw + 1.

3. Givenx1, . . . , xN in Rn such thatxℓ = (wℓ, qℓ) is in Rn with wℓ in Rmw andqℓ in R.

4. Given scalarq andwg in Cwg .

Steps of the algorithm for estimatingh(q̂, ŵi
g) by using only the givenN data points.

1. Computeq = 1
N

∑N
ℓ=1 q

ℓ andσ2
q = 1

N

∑N
ℓ=1(q

ℓ − q)2.

2. Forj = 1, . . . ,mw, computewj = 1
N

∑N
ℓ=1 w

ℓ
j andσ2

j = 1
N

∑N
ℓ=1(w

ℓ
j − wj)

2.

3. Forℓ = 1, . . . , N , compute(ŵℓ, q̂ℓ) ∈ Rmw ×R by using Eq. (19).

4. Computêwg andq̂ by using Eq. (20).

5. Computes by using Eq. (25).

6. Forℓ = 1, . . . , N ,
(a) computêvℓ(ŵg) by using Eq. (28).

(b) computêrℓ(q̂) by using Eq. (29).

7. Computeh(q̂, ŵg) by using Eq. (27).

End of the algorithm.

B Proposed algorithm for solving the probabilistic optimization problem with a fixed number of function
evaluations

The proposed algorithm used for solving the probabilistic optimization problem defined by equations (1) to (2), is basedon a procedure
that evaluatesh(q,wg) as described above while necessitating only a small number (N ) of calls to the stochastic computational model.
The proposed method consists of enriching theN samples that are represented by the columns of matrix[xd] = [x1 . . . xN ] in Mn,N ,
with nMC additional realizations[x1

ar], . . . , [x
nMC
ar ] in Mn,N , which are computed without calling the stochastic computational model

but that are computed by using the generator of samples that is summarized in Section 2.4. By using theseνsim = nMC ×N additional
samples, a good estimate ofh(q,wg) can be obtained by using Eqs. (27) to (29). The algorithm is the following.

Data allowing the algorithm to be initialized.

1. Givenmw, N , andnMC.

2. Setn = mw + 1.

3. Given matrix[xd] in Mn,N for which the columns are theN data pointsx1 . . . xN and wherexℓ = (wℓ, qℓ) ∈ Rn with
wℓ ∈ Rmw andqℓ ∈ R.

4. If necessary, scale the data set represented by matrix[xd] in Mn,N .

5. Introduce the random matrix[X] whose columns areN independent copies of random vectorX and for which one given sample of
random matrix[X] is matrix [xd].

6. Givenq in R andwg in Cwg .

Steps of the algorithm.

1. GeneratenMC additional samples[x1
ar], . . . , [x

nMC
ar ] of random matrix[X] by using the algorithm detailed in [23].

2. From theνsim = nMC × N columns of thenMC matrices[x1
ar], . . . , [x

nMC
ar ], extractνsim samples(wℓ

ar, q
ℓ
ar) ∈ Rmw × R for

ℓ = 1, . . . , νsim.

3. Computeq
ar
= 1

νsim

∑νsim
ℓ=1 qℓar andσ2

qar =
1

νsim

∑νsim
ℓ=1 (q

ℓ
ar − q

ar
)2.

4. Forj = 1, . . . ,mw, computewar,j = 1
νsim

∑νsim
ℓ=1 wℓ

ar,j andσ2
ar,j = 1

νsim

∑νsim
ℓ=1(w

ℓ
ar,j −war,j)

2.
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5. Forℓ = 1, . . . , νsim, compute(ŵℓ
ar, q̂

ℓ
ar) ∈ Rmw × R by using Eq. (19) in whichN is replaced byνsim.

6. Computêwg andq̂ by using Eq. (20).

7. Computes by using Eq. (25) in whichN is replaced byνsim.

8. Forℓ = 1, . . . , νsim,
(a) computêvℓ(ŵg) by using Eq. (28) in whichN is replaced byνsim.

(b) computêrℓ(q̂) by using Eq. (29) in whichN is replaced byνsim.

9. Computeh(q̂, ŵg) by using Eq. (27) in whichN is replaced byνsim.

End of the algorithm.
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