New objective functions based on jobs positions for single machine scheduling with deadlines

Thanh Thuy Tien Ta, Kivin Ringard, Jean-Charles Billaut

To cite this version:

Thanh Thuy Tien Ta, Kivin Ringard, Jean-Charles Billaut. New objective functions based on jobs positions for single machine scheduling with deadlines. 7th International Conference on Industrial Engineering and Systems Management (IESM 2017), Oct 2017, Saarbrucken, Germany. hal-01703205

HAL Id: hal-01703205

https://hal.science/hal-01703205

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

New objective functions based on jobs positions for single machine scheduling with deadlines

(presented at the $7^{\text {th }}$ IESM Conference, October 11-13, 2017, Saarbrücken, Germany)

Thanh Thuy Tien TA, Kivin RINGARD, Jean-Charles BILLAUT
Laboratoire d'Informatique, ERL CNRS 6305,
64 avenue Jean Portalis
F-37200, Tours
Email: thanhthuytien.ta@etu.univ-tours.fr, jean-charles.billaut@univ-tours.fr

Abstract

In this paper, we study new single machine scheduling problems where the objective functions are based on jobs positions. The original idea is to characterize easily a huge set of optimal solutions, without enumerating them. The (polynomially solvable) scheduling problems that can be addressed by this approach are such that a simple rule exists, giving a priority between two consecutive jobs. Assuming that the solution obtained by applying the rule is sequence $I d=\left(J_{1}, J_{2}, \ldots, J_{n}\right)$ (correct after a renumbering of jobs), we search for a feasible solution (i.e. also optimal), at a maximum distance from sequence $I d$. Such considerations are also usefull for some robustness considerations. We identify some new objective functions and present first theoretical results and first computational experiments. Some new problems remain open.

Key words: Scheduling, Single machine, Complexity, MILP, branch-and-bound

I. Introduction

Many scheduling problems can be solved in polynomial time by applying a simple sequencing rule, also called "priority rule" [10]. The application of such a rule indicates whether it is preferable to place a job J_{i} before a job J_{j}, or the contrary. For example, it is well known that problem $1 \| \sum C_{j}$ is solved optimally by sorting the jobs according to their nondecreasing processing time order (SPT rule [10]), the problem $1\left|\mid L_{\text {max }}\right.$ is solved optimally by sorting the jobs according to their non decreasing due dates order (EDD rule, [7]), the problem $F 2 \| C_{\max }$ is solved by the Johnson's rule ([8]), etc. (see [5] for a generalization to other scheduling problems). It is also well known that each scheduling problem generally has a lot of optimal solutions (potentially an exponential number).

The original goal is to characterize a set of optimal solutions without enumerating them. Such an approach is useful in a dynamic environment, to react in real time to unexpected events, or to data uncertainty. Some preliminary studies concerning the search of the characteristics of the optimal solutions (characteristics but not the list) have been conducted in this direction, using the lattice of permutations as support, for problems $1 \| L_{\max }$ and $F 2 \| C_{\max }$ in [2] and for problem $F 2 \| C_{\max }$ only in [3].

In this paper, we only consider problem $1 \| L_{\max }$. For any instance, we apply the following pre-treatment in polynomial time: (1) we apply EDD rule and we obtain $L_{\text {max }}^{*}$, the optimal maximum lateness value. Then, (2) we modify the due dates in order to obtain deadlines: $\tilde{d}_{j}=d_{j}+L_{\text {max }}^{*}$,
for any $j \in\{1,2, \ldots, n\}$, limiting the deadlines to $\sum p_{j}$. Finally, (3) we renumber the jobs in EDD order. At the end we know that sequence $I d=\left(J_{1}, J_{2}, \ldots, J_{n}\right)$ is feasible and that jobs are numbered in EDD order. Suppose for example that we have $n=4$ jobs and that - after the pre-treatment - it is found a sequence $\sigma=\left(J_{3}, J_{1}, J_{4}, J_{2}\right)$ which is also a feasible sequence. Then, because of the EDD rule, it is possible by simple pairwise exchanges, to modify this sequence iteratively and to reach sequence $I d$. All the sequences obtained during these changes are also feasible sequences: sequence $\left(J_{1}, J_{3}, J_{4}, J_{2}\right)$ is feasible, sequence $\left(J_{3}, J_{1}, J_{2}, J_{4}\right)$ is feasible, etc. So, all the "predecessors" of sequence σ are feasible. These sequences are exactly those such that $J_{1} \prec J_{4}$ and $J_{1} \prec J_{2}$ and $J_{3} \prec J_{4}$, i.e. are characterized by the conjunction of three simple precedence relations. Therefore, finding a feasible sequence, as far as possible from sequence $I d$, allows immediately to characterize a big set of feasible solutions.

Such an approach - described in details in [3] is valid for any scheduling problem for which such a rule exists such as problems $1\left|r_{j}\right| C_{\text {max }}, F 2\left|s_{n s d}\right| C_{\text {max }}$, etc.

The paper is organized as follows. We describe the problem more formally in Section II, where we define some new objective functions and we give first results. In Section III we focuse on the minimization of the sum of weighted positions. We show that this problem is strongly NP-hard and we propose some exact and approximated resolution methods. These methods are evaluated by randomly generated instances in Section IV. Finally, in the section V, we present some ideas for the future research directions.

II. Problems definitions

We consider a set of n jobs $\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}$ to schedule on a single machine. Preemption is not allowed and the machine can perform only one job at a time. To each job J_{j} is associated a processing time p_{j} and a deadline \tilde{d}_{j}. It is assumed that the sequence is feasible (maximum lateness equal to 0) and that the jobs are numbered in EDD order (notice that it can be done in $O(n \log n)$ time for any instance).

Let consider a sequence σ. We denote by N_{j} the number of jobs after J_{j} in σ with an index greater than j. For example, consider $\sigma=\left(J_{3}, J_{1}, J_{4}, J_{2}\right)$, we have $N_{1}=2, N_{2}=0$, $N_{3}=1$ and $N_{4}=0$. The sum of $N_{j}, \sum_{j=1}^{n} N_{j}$ is exactly equal to the number of simple precedence constraints in the
conjunction (here $\sum_{j=1}^{n} N_{j}=3$). It also corresponds to the level of sequence σ in the lattice of permutations (see [3]).

Finding a sequence as deep as possible in this lattice, or finding a sequence as far as possible from sequence $I d$ is the same, and is equivalent to minimise the objective function $\sum N_{j}$. The problem can be denoted by $1 \| \operatorname{Lex}\left(L_{\max }, \sum N_{j}\right)$ with a notation of a bi-objective problem [11], which is equivalent to $1\left|\tilde{d}_{j}, \tilde{d}_{1} \leq \ldots \leq \tilde{d}_{n}, \tilde{d}_{n}=\sum p_{j}\right| \sum N_{j}$ for the instance after pre-treatment.

A. Expression of N_{j}

Let us define the boolean variables $x_{j, k}=1$ if job J_{j} is in position k and 0 otherwise. The expression of $\sum N_{j}$ is the following:

$$
\sum N_{j}=\sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=j+1}^{n} \sum_{h=k+1}^{n} x_{i, h} x_{j, k}
$$

This expression is quadratic, it can be linearized for a linear programming formulation [1], [3].

Let us define by $y_{j, k}=\sum_{i=j+1}^{n} \sum_{h=k+1}^{n} x_{i, h}$. We have:

$$
\sum N_{j}=\sum_{j=1}^{n} \sum_{k=1}^{n} y_{j, k} x_{j, k}
$$

Proposition 1: $\sum_{j=1}^{n} \sum_{k=1}^{n} y_{j, k}$ is a function related to the positions of the jobs in the sequence.

Proof. We have:

$$
\sum_{j=1}^{n} \sum_{k=1}^{n} y_{j, k}=\sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{i=j+1}^{n} \sum_{h=k+1}^{n} x_{i, h}
$$

(notice that this expression is related to, but different than the expression of $\sum N_{j}$).

We can show that

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{k=1}^{n} y_{j, k} & =-n^{2}+\sum_{j=1}^{n} \sum_{k=1}^{n} j k x_{j, k} \\
& =-n^{2}+\sum_{j=1}^{n} j \sum_{k=1}^{n} k x_{j, k}
\end{aligned}
$$

In this expression, $P_{j}=\sum_{k=1}^{n} k x_{j, k}$ is exactly the position of J_{j} in the sequence. So, minimizing $\sum_{j=1}^{n} \sum_{k=1}^{n} y_{j, k}$ is equivalent to minimize $\sum_{j=1}^{n} j P_{j}$.

This new indicator, P_{j}, and this new objective function $\sum j P_{j}$ never appeared in the scheduling literature before, to the best of our knowledge. Notice that this objective function is not related to the jobs completion time, which is also not frequent in the literature.

B. New objective functions and first results

Even if $\sum N_{j}$ and $\sum j P_{j}$ are not the same objective functions, we can notice that these functions are related in some sense.

We introduce the following new objective functions:

- $\quad P_{\max }=\max _{1 \leq j \leq n} P_{j}$, the maximum position of a job in the sequence,
- $\quad \sum P_{j}=\sum_{j=1}^{n} P_{j}$, the sum of positions of the jobs in the sequence,
- $\quad \sum w_{j} P_{j}=\sum_{j=1}^{n} w_{j} P_{j}$, the weighted sum of positions of jobs in the sequence

Let us consider only single machine problems, without deadlines. We can exhibit the first following results:

- Problem $1 \| P_{\max }$ is trivial (similar to $1 \| C_{\max }$) since for any solution, we have $P_{\max }=n$. It is the same result for any sequencing problem.
- Problem $1 \| \sum P_{j}$ is trivial since in any solution we have $\sum P_{j}=n(n+1) / 2$. Again, it is the same result for any sequencing problem.
- Problem $1 \| \sum w_{j} P_{j}$ is equivalent to problem $1 \mid p_{j}=$ $1 \mid \sum w_{j} C_{j}$, and therefore it can be solved in $O(n \log n)$ by sorting the jobs in w_{j} nonincreasing order.

Let us consider now the case with deadlines. We can exhibit the first following results:

- Problem $1\left|\tilde{d}_{j}\right| P_{\text {max }}$ is trivial because if EDD is a feasible solution, this solution has $P_{\max }=n$, which is optimal. Otherwise, there is no solution.
- Problem $1\left|\tilde{d}_{j}\right| \sum P_{j}$ is trivial for the same reasons, and EDD is such that $\sum P_{j}=n(n+1) / 2$, which is optimal.
- Problem $1\left|\tilde{d}_{j}, p_{j}=1\right| \sum w_{j} P_{j}$ is equivalent to problem $1\left|\tilde{d}_{j}, p_{j}=1\right| \sum w_{j} C_{j}$, which can be solved in polynomial time [6].

We focuse in the rest of the paper on problem $1\left|\tilde{d}_{j}\right| \sum w_{j} P_{j}$.

III. Problem $1\left|\tilde{d}_{j}\right| \sum w_{j} P_{j}$

In this section, we assume that jobs are numbered in EDD order and that sequence $I d=\left(J_{1}, J_{2}, \ldots, J_{n}\right)$ is feasible and has a maximum lateness of 0 . We search to minimise the weighted sum of jobs positions.

A. Complexity

Proposition 2: Problem $1\left|\tilde{d}_{j}\right| \sum w_{j} P_{j}$ is strongly NP-hard.
Proof. It is clear that the problem is in NP. Then, we proceed by reduction from 3-PARTITION problem.
3-PARTITION problem:
Instance: $A=\left\{a_{i}\right\}_{1 \leq i \leq 3 m}$ a set of $3 m$ elements such that $B / 4<a_{i}<B / 2$ and $\sum_{A} a_{i}=m B$, with a bound $B \in N$.

Question: Can A be partitioned into m disjont sets $A_{1}, A_{2}, \ldots, A_{m}$ such that $\sum_{A_{k}} a_{i}=B, \forall k \in\{1,2, \ldots, m\}$ (note that each A_{k} must contain exactly 3 elements of A)

Clearly, problem $1\left|\tilde{d}_{j}\right| \sum w_{j} P_{j}$ is in NP. We define $\bar{p}=$ $|A| \times \max (A)$. We build an instance to our problem with m dummy jobs $J_{i}, 1 \leq i \leq m$ such that $p_{i}=1, w_{i}=0, \widetilde{d}_{i}=$ $i(B+3 \bar{p}+1)$. We add $3 m$ regular jobs $J_{m+j}, 1 \leq j \leq 3 m$ with $p_{m+j}=w_{m+j}=a_{j}+\bar{p}$ and $\widetilde{d}_{m+j}=m(B+3 \bar{p}+1)$.

We first show that in an optimal solution, each job J_{i} is precisely at position $4 i, 1 \leq i \leq m$ and then we show that it completes exactly at its deadline if and only if the answer to 3-PARTITION is yes.
(a) We consider an optimal sequence S^{*}. We prove by induction that in any optimal sequence, each job $J_{i}, 1 \leq i \leq$ m, has a position equal to $4 i$.

First, we have to check it for $i=1$.
Suppose that $J_{1_{1}}$ is in position k, and suppose that it completes at time $C_{1}<\tilde{d}_{1}$. We denote by D the set of the first $k-1$ jobs (before J_{1}). We denote by J_{l} the job in position $k+1$, and we know that this job completes after \tilde{d}_{1} (since otherwise swapping J_{1} and J_{l} would lead to a better solution). We denote by Δ the difference between the starting time of J_{1} and \widetilde{d}_{1}.

We have:

$$
\begin{aligned}
\Delta \geq 1 & \Rightarrow \widetilde{d}_{1}-\sum_{J_{j} \in D} p_{j} \geq 1 \\
& \Rightarrow \widetilde{d}_{1}-\sum_{J_{j} \in D} a_{j}-(k-1) \bar{p} \geq 1 \\
& \Rightarrow B+3 \bar{p}+1-\sum_{J_{j} \in D} a_{j}-k \bar{p}+\bar{p} \geq 1 \\
& \Rightarrow B+4 \bar{p}-\sum_{J_{j} \in D} a_{j}-k \bar{p} \geq 0
\end{aligned}
$$

So we have:

$$
\begin{equation*}
k \leq 4+\frac{1}{\bar{p}}\left(B-\sum_{J_{j} \in D} a_{j}\right) \tag{1}
\end{equation*}
$$

Because $C_{l}>\widetilde{d}_{1}$, we have:

$$
\begin{array}{r}
\sum_{J_{j} \in D} a_{j}+(k-1) \bar{p}+1+a_{l}+\bar{p}>B+3 \bar{p}+1 \\
\sum_{J_{j} \in D} a_{j}+k \bar{p}+a_{l}>B+3 \bar{p}
\end{array}
$$

So we have:

$$
\begin{equation*}
k>3+\frac{1}{\bar{p}}\left(B-\sum_{J_{j} \in D} a_{j}-a_{l}\right) \tag{2}
\end{equation*}
$$

We deduce from (1), (2) that:

$$
\begin{gathered}
3+\frac{1}{\bar{p}}\left(B-\sum_{J_{j} \in D} a_{j}-a_{l}\right)<k \leq 4+\frac{1}{\bar{p}}\left(B-\sum_{J_{j} \in D} a_{j}\right) \\
\Leftrightarrow 3+\varepsilon_{1}<k \leq 4+\varepsilon_{2}
\end{gathered}
$$

Fig. 1. Case where J_{i} does not complete at time $\tilde{d}_{i}(1 \leq i \leq m)$

It shows that J_{1} is necessarilly in position 4 .
Suppose now that job J_{i} is in position $4 i, \forall i, 1 \leq i \leq m-1$. We want to show that job J_{i+1} is in position $4(i+1)$. Suppose that J_{i+1} is in position k. We denote by D the jobs preceding J_{i+1}. There are $(k-1-i)$ jobs in D that are regular jobs. We have: $C_{i+1} \leq \widetilde{d}_{i+1}$

$$
\begin{gather*}
\Rightarrow(i+1)(B+3 \bar{p}+1)-\left(\sum_{J_{j} \in D} a_{j}+(k-1-i) \bar{p}\right)-i-1 \geq 0 \\
\Rightarrow k \leq 4(i+1)+\varepsilon \tag{3}
\end{gather*}
$$

Let us denote by J_{l} the job just after J_{i+1}. We have: $C_{l}>\tilde{d}_{i+1} \Rightarrow \sum_{J_{j} \in D} a_{j}+|D| \bar{p}+i+1+\bar{p}+a_{l}>(i+1)(B+3 \bar{p}+1)$ If J_{i+1} is in position k, the number of jobs before J_{i+1} is $k-1$, and before this job, there are $|D|$ regular jobs and i dummy jobs. So we have $k-1=|D|+i$. Hence:

$$
\begin{array}{r}
\sum_{J_{j} \in D} a_{j}+(k-1-i) \bar{p}+i+1+\bar{p}+a_{l}>(i+1)(B+3 \bar{p}+1) \\
\Rightarrow k>(4 i+3)+\varepsilon \tag{5}
\end{array}
$$

We deduce from (3) and (5) that $k=4 i+4$.
(b) We must show now that there is an answer YES to 3-PARTITION problem, if and only if in an optimal solution to our problem, each dummy job completes at its deadline.

Suppose there is an answer YES to 3-PARTITION problem. In this case, we can take the partition of the jobs and put a dummy job between each partition. Because of the deadlines definition, each dummy jobs completes exactly at its deadline. Breaking the partition would either violate a deadline, or generate a weaker solution.

Suppose that we do not follow the 3-PARTITION solution and that in S^{*}, we have $C_{i}<\widetilde{d}_{i}$ for one job J_{i} with $1 \leq i \leq m$ (i.e. we have an optimal solution that is not a 3-partition). Suppose there are two jobs: J_{r} before J_{i} in position k and J_{s} after J_{i} in position l such that if the jobs are swapped, then $C_{i}=\widetilde{d}_{i}$. In this case, illustrated in Fig. 1 we must have $a_{r}<a_{s}$ and $k<l$.

We denote by S^{\prime} the solution S^{*} except that J_{r} and J_{s} are swapped in S^{\prime}. We have:

$$
\begin{aligned}
Z\left(S^{\prime}\right)-Z\left(S^{*}\right) & =k\left(a_{s}+\bar{p}\right)+l\left(a_{r}+\bar{p}\right)-k\left(a_{r}+\bar{p}\right)-l\left(a_{s}+\bar{p}\right) \\
& =k\left(a_{s}-a_{r}\right)+l\left(a_{r}-a_{s}\right) \\
& =(l-k)\left(a_{r}-a_{s}\right)<0
\end{aligned}
$$

This quantity is negative, which means that S^{*} is not optimal, so this case is not possible.

Suppose now that there are two jobs $J_{r_{1}}$ and $J_{r_{2}}$ before J_{i} and two jobs $J_{s_{1}}$ and $J_{s_{2}}$ after J_{i} so that if the jobs are swapped, then $C_{i}=\widetilde{d}_{i}$. In this case, we have $a_{s_{1}}+a_{s_{2}}>$ $a_{r_{1}}+a_{r_{2}}$ and :
$Z\left(S^{\prime}\right)-Z\left(S^{*}\right)=k_{1} a_{s_{1}}+k_{2} a_{s_{2}}+l_{1} a_{r_{1}}+l_{2} a_{r_{2}}-k_{1} a_{r_{1}}+$ $k_{2} a_{r_{2}}+l_{1} a_{s_{1}}+l_{2} a_{s_{2}}=\left(k_{1}-l_{1}\right)\left(a_{s_{1}}-a_{r_{1}}\right)+\left(k_{2}-l_{2}\right)\left(a_{s_{2}}-a_{r_{2}}\right)$

We know that $k_{1}-l_{1}<0, k_{2}-l_{2}<0$ $\Rightarrow \max \left(k_{1}-l_{1}, k_{2}-l_{2}\right)<0$ and we have $Z\left(S^{\prime}\right)-Z\left(S^{*}\right)=\left(k_{1}-l_{1}\right)\left(a_{s_{1}}-a_{r_{1}}\right)+\left(k_{2}-l_{2}\right)\left(a_{s_{2}}-a_{r_{2}}\right)$ $<\left(a_{s_{1}}-a_{r_{1}}\right) \max \left(k_{1}-l_{1}, k_{2}-l_{2}\right)+\left(a_{s_{2}}-a_{r_{2}}\right) \max \left(k_{1}-\right.$ $\left.\left.l_{1}, k_{2}-l_{2}\right)<\left(a_{s_{1}}-a_{r_{1}}-a_{s_{2}}-a_{r_{2}}\right)\right) \max \left(k_{1}-l_{1}, k_{2}-l_{2}\right)<0$

For the same reasons, this case is not possible because S^{*} is optimal. By extending this reasoning to any number of jobs to exchange (same number before and after J_{1} due to the position of this job), we prove that if the answer to 3-PARTITION problem is YES, we must follow the 3-PARTITION solution and therefore we have a feasible solution that is optimal.

B. Two exact resolution methods

We propose two ways to solve the problem to optimality: a linear programming formulation and a branch-and-bound algorithm.

1) MILP formulation: An MILP formulation of the problem with variables $x_{j, k}$ is the following.

$$
\begin{array}{r}
\text { Minimize } \sum_{j=1}^{n} \sum_{k=1}^{n} w_{j} k x_{j, k} \\
\sum_{j=1}^{n} x_{j, k}=1, \forall k \in\{1,2, \ldots n\} \\
\sum_{k=1}^{n} x_{j, k}=1, \forall j \in\{1,2, \ldots n\} \\
\sum_{l=1}^{k} \sum_{j=1}^{n} p_{j} x_{j, l} \leq \sum_{j=1}^{n} \tilde{d}_{j} x_{j, k}, \forall k \in\{1,2, \ldots n\}
\end{array}
$$

This model contains n^{2} binary variables and $3 n$ constraints. This model will be solved by CPLEX solver.
2) Branch-and-bound: A branch-and-bound procedure is an implicite enumeration method, characterized by two elements: the branching and the bounds. Here, a node is characterized by a partial ending sequence σ composed by k jobs (from position $n-k+1$ to n), a set S of unscheduled jobs and a lower bound. The branching consists in adding a job of S at position $n-k$ in σ.

The initial upper bound is given by the (simple) Backward Algorithm presented in Alg. 1.

The lower bound is evaluated as follows. The partial sequence σ is evaluated, and the jobs of S are sequenced in w_{j} non-increasing order. If the partial sequence is not feasible, the evaluation is put to $H V$ (high value).

Let consider the following instance with $n=5$ jobs.

```
Algorithm 1 BW algorithm
    \(\mathcal{J} \leftarrow\left\{J_{1}, J_{2}, \ldots, J_{n}\right\}\)
    \(t \leftarrow \sum_{j=1}^{n} p_{j} ; k \leftarrow n\)
    while \(\mathcal{J} \neq \emptyset\) do
        Let \(J_{r} \in \mathcal{J}\) such that \(w_{r}=\min _{j \in \mathcal{J} / \tilde{d}_{j} \geq t} w_{j}\)
        Put \(J_{r}\) in position \(k\)
        \(t \leftarrow t-p_{r} ; k \leftarrow k-1\)
        \(\mathcal{J} \leftarrow \mathcal{J} \backslash\left\{J_{r}\right\}\)
    end while
```

j	1	2	3	4	5
p_{j}	1	2	5	2	4
w_{j}	1	2	4	2	3
\tilde{d}_{j}	7	7	12	14	14

The BW algorithm gives sequence $\left(J_{2}, J_{1}, J_{3}, J_{5}, J_{4}\right)$. The evaluation is equal to 38 .

Let consider node $\sigma=\left(J_{3}, J_{4}\right)$ and $S=\left\{J_{1}, J_{2}, J_{5}\right\}$. The partial sequence σ has an evaluation equal to $16+10=26$. The unscheduled jobs are sequenced in an 'optimal' (but not necesserally feasible) way, leading to sequence (J_{5}, J_{2}, J_{1}) evaluated by $3+4+3=10$. The evaluation of this node is equal to 36 .

C. Heuristic algorithms

We propose two heuristic algorithms. The first one is the previous Backward algorithm. This algorithm is important because it is very intuitive (remember that such an algorithm is optimal for problems $1|p r e c| f_{\max }$ [9]). We also propose a Forward algorithm described in Alg. 2 ($J_{[s i]}$ is the job in position si).

```
Algorithm 2 FW algorithm
    \(\sigma=\left(J_{1}, J_{2}, \ldots, J_{n}\right)\)
    \(s i=1 / /\) si stands for "smallest index"
    while \(P_{s i}<n\) do
        \(S^{\prime} \leftarrow\left\{J_{j} / P_{j}>s i\right\}\)
        while \(S^{\prime} \neq \emptyset\) do
            Let \(J_{k} \in S^{\prime}\) such that \(w_{k}=\max _{J_{j} \in S^{\prime}} w_{j}\)
            \(/ / \sigma\) is a sequence of type \(\sigma_{1} / / J_{[s i]} / / \sigma_{2} / / J_{k} / / \sigma_{3}\)
            \(\sigma^{\prime} \leftarrow \sigma_{1} / / J_{k} / / J_{[s i]} / / \sigma_{2} / / \sigma_{3}\)
            if \(\sigma^{\prime}\) is not feasible then
                \(S^{\prime} \leftarrow S^{\prime} \backslash\left\{J_{k}\right\}\)
            else
                \(\sigma \leftarrow \sigma^{\prime}\)
                \(s i \leftarrow s i+1\)
            end if
        end while
        \(S^{\prime} \leftarrow\left\{J_{j} / P_{j}>s i\right\}\)
        si \(\leftarrow\) smallest index in \(S^{\prime}\)
    end while
```

Let us consider the previous example. We start with $\sigma=$ $\left(J_{1}, J_{2}, J_{3}, J_{4}, J_{5}\right)$. We have si $=1$ Job J_{3} cannot be put before J_{1} (otherwise J_{2} is late). Job J_{5} can be put before J_{1}. We obtain sequence $\sigma=\left(J_{5}, J_{1}, J_{2}, J_{3}, J_{4}\right)$. Then, J_{2} can be put before J_{1}. We obtain sequence $\sigma=\left(J_{5}, J_{2}, J_{1}, J_{3}, J_{4}\right)$. Then, we have $s i=3$. It is not possible to put J_{4} before J_{3}. Then, we have $s i=4$ and the procedure stops because $P_{4}=5$. The evaluation of this solution is equal to 36 .

A global lower bound LB can also be easily computed by relaxing the MILP.

IV. Computational experiments

A. Data generation

The computational experiments have been run on a MacBook Air Intel Core i5 $1,6 \mathrm{GHz}$, using IBM ILOG CPLEX 12.6. Two types of instances have been generated. Instances of type 1 are classical random data sets, instances of type 2 are difficult random data sets. For each type, 30 instances have been generated for each value of n, with $n \in\{10,20, \ldots, 100\}$. For instances of type 1, random data sets have been generated as follows:

- $\quad p_{j} \in[1,100], w_{j} \in[1,100]$
- $d_{j} \in[(\alpha-\beta / 2) P,(\alpha+\beta / 2) P]$ with $P=\sum p_{j}$, $\alpha=0.75$ and $\beta=0.25$

Then, these instances receive the pre-treatment.
For instances of type 2 , random data sets have been generated as follows:

- for $n^{\prime}=\lfloor n / 4\rfloor$ jobs:

$$
\begin{array}{ll}
\circ & p_{j}=1, w_{j}=0 \\
\circ & \tilde{d}_{j}=4 j P / n
\end{array}
$$

- for the $\left(n-n^{\prime}\right)$ remaining jobs:

$$
\begin{aligned}
& \circ \quad p_{j} \in[1,100], w_{j}=w_{0 j}+P, \text { with } w_{0 j} \in \\
& \circ[1,100] \text { and } P=\sum p_{j} \\
& \circ \\
& \tilde{d}_{j}=P+\lfloor n / 4\rfloor
\end{aligned}
$$

These instances do not need the pre-treatment.
The CPU time to solve each instance has been limited to 180 seconds.

B. Results

The computational results are reported in Tables I to IV. Tables I and II are related to instances of type I, Tables III and IV are related to instances of type II. Tables I and III give the results of the exact methods. Columns cpu and opt indicate respectively the CPU time in seconds and the number of times the method found the optimal solution in less than 180 seconds. Tables II and IV give the results of the heuristic methods. Columns best, DeltaBest and DeltaLB indicate respectively the number of times the method returns the best solution among all the methods (including the exact methods), the relative deviation to the best solution, and the relative deviation to the lower bound. Column Δ indicates the relative deviation between BW and FW:

$$
\Delta=\frac{B W-F W}{B W}
$$

About the exact methods (Tables I and III), one can see that the $\mathrm{B} \& \mathrm{~B}$ algorithm is competitive with CPLEX for type I instances, both methods solving 29 problems over 30 with up to 70 jobs, and less with more jobs. However, for instances of type II, CPLEX is much more better than the B\&B, solving instances with up to 40 jobs, where the $\mathrm{B} \& \mathrm{~B}$ cannot solve instances with more than 10 jobs. It is clear that it is possible

	B\&B		CPLEX	
n	cpu	opt	cpu	opt
10	0,01	30	0,11	30
20	0,03	30	0,15	30
30	0,09	30	0,42	30
40	0,18	30	0,99	30
50	0,54	30	3,22	30
60	0,81	30	7,22	30
70	11,87	29	26,45	29
80	53,11	23	52,17	26
90	87,15	18	86,94	23
100	139,17	11	145,93	10

TABLE I. RESULTS OF THE EXACT METHODS FOR TYPE I INSTANCES

n	best	$\begin{gathered} \text { BW } \\ \text { DeltaBest } \end{gathered}$	DeltaLB	best	$\begin{gathered} \text { FW } \\ \text { DeltaBest } \end{gathered}$	DeltaLB	BW/FW
10	28	0,08\%	2,28 \%	28	0,04\%	2,24\%	0,04\%
20	23	0,08\%	1,37\%	28	0,02\%	1,31\%	0,06\%
30	18	0,19\%	1,51\%	24	0,03\%	1,35\%	0,16\%
40	6	0,44\%	1,52 \%	16	0,04\%	1,09\%	0,41\%
50	3	0,24\%	1,72 \%	11	0,11\%	1,59\%	0,13\%
60	6	0,15\%	1,46 \%	8	0,08\%	1,38\%	0,07\%
70	3	0,24\%	1,22 \%	4	0,1\%	1,08\%	0,14\%
80	3	0,28\%	1,2 \%	2	0,17\%	1,08\%	0,12\%
90	3	0,35\%	1,22 \%	3	0,15\%	1,01\%	0,20\%
100	0	0,29\%	1,08 \%	6	0,09\%	0,87\%	0,20\%

TABLE II. Results of The heuristic methods for Type I INSTANCES
to improving the $\mathrm{B} \& \mathrm{~B}$ algorithm, by pruning some nodes by using some dominance conditions.

About the heuristic methods (Tables II and IV), FW algorithm returns better solution than BW algorithm. For instances of type I, BW returns solution that are not so bad, with a relative deviation to the best solution under 0.44%, whereas FW is under 0.17%. Note that the relative deviation between BW and FW is in favor of FW, but with a percentage less than 0.41%. However, for instances of type II, BW is dominated by FW. BW returns solutions that are far from the optimal solution, and the relative deviation between BW and FW is around 10%.

V. Conclusion and perspectives

We identify in this paper a new category of scheduling problems, with the definition of new objective functions, based on jobs positions. Some trivial problems are identified, and a problem with weights is proved strongly NP-hard. Some problems remain open, such as the $1\left|\tilde{d}_{j}\right| \sum j P_{j}$ problem and the original $1\left|\widetilde{d}_{j}\right| \sum N_{j}$ problem.

For the difficult problem, heuristic algorithms and exact methods are proposed and evaluated on randomly generated instances. The results of the exact methods and of the heuristic algorithms are relatively good for the first type instances, where data are generated 'as usual' in the scheduling literature. However, for more difficult instances, the limits of the exact methods are reached, and the difference between the heuristic algorithms is more clear.

The perspectives consist in continuing the investigations for the open problems, and in the improvment of the exact methods - introducing cuts and dominance conditions - and of the heuristic methods, by using metaheuristic algorithms.

	B\&B		CPLEX	
n	cpu	opt	cpu	opt
10	0,12	30	0,18	30
20	178,18	1	1,57	30
30	180	0	9,85	30
40	180	0	50,87	28
50	180	0	174,78	5
60	180	0	180,06	0
70	180	0	180,06	0
80	180	0	180,08	0
90	180	0	180,11	0

TABLE III. Results of The exact methods for Type II INSTANCES

| | BW
 n | | | | best | DeltaBest | DeltaLB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | best | DeltaBest | DeltaLB |
| :---: | :---: |
| BW/FW | |
| 10 | 0 |

TABLE IV. Results of the heuristic methods for Type II INSTANCES

References

[1] Billaut J-C., Lopez P. and Takouti L, A method for characterizing the set of optimal sequences for some scheduling problems. 12th Congress of the French OR Society (ROADEF'2011), Saint-Etienne, March 2011.
[2] Billaut J-C., Lopez P., Characterization of all ρ-approximated sequences for some scheduling problems. IEEE International Conference on Emerging Technologies and Factory Automation, ETFA, art. no. 6059026, 2011.
[3] Billaut J-C., Hebrard E. and Lopez P., Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem, Ninth International Conference on Integration of Articial Intelligence and Operations Research Techniques in Constraint Programming (CPAIOR'2012), Nantes, June 2012.
[4] Blazewicz J, Ecker K.H., Pesch E., Schmidt G., Weglarz J., Scheduling Computer And Manufacturing Processes. Springer, 2nd edition, 2007.
[5] Bouquard J-L., Lente C, Billaut J-C., Application of an optimization problem in Max-Plus algebra to scheduling problems, Discrete Applied Mathematics, 154(15), pp. 2041-2238, 2006.
[6] Chen C-L., Bulfin R.L., Scheduling unit processing time jobs on a single machine with multiple criteria, Computers \& Operations Research, 17(1), pp. 1-7, 1990.
[7] Jackson J-R., Scheduling a production line to minimize maximum tardiness. Research report 43, Management Science Research Project, University of California, Los Angeles, 1955.
[8] Johnson S.M., Optimal two- and three-stage production schedules with setup times included. Naval Research Logistics Quarterly, 1, pp. 61-68, 1954.
[9] Lawler E., emphOptimal sequencing of a single machine subject to precedence constraints. Management Science, 19(8), 544-546, 1973.
[10] Smith W.E, Various optimizers for single stage production. Naval Research Logistics Quarterly, 3(1-2):59-66, 1956.
[11] T'Kindt V., Billaut J-C., Multicriteria scheduling. Theory, models and algorithms, Springer, 2nd edition, 2006.

