Thanh Thuy

Tien Ta

Kivin Ringard

Jean-Charles Billaut
email: jean-charles.billaut@univ-tours.fr

New objective functions based on jobs positions for single machine scheduling

Keywords: Scheduling, Single machine, Complexity, MILP, branch-and-bound

In this paper, we study new single machine scheduling problems where the objective functions are based on jobs positions. The original idea is to characterize easily a huge set of optimal solutions, without enumerating them. The (polynomially solvable) scheduling problems that can be addressed by this approach are such that a simple rule exists, giving a priority between two consecutive jobs. Assuming that the solution obtained by applying the rule is sequence Id = (J1, J2, ..., Jn) (correct after a renumbering of jobs), we search for a feasible solution (i.e. also optimal), at a maximum distance from sequence Id. Such considerations are also usefull for some robustness considerations. We identify some new objective functions and present first theoretical results and first computational experiments. Some new problems remain open.

I. INTRODUCTION

Many scheduling problems can be solved in polynomial time by applying a simple sequencing rule, also called "priority rule" [START_REF]Various optimizers for single stage production[END_REF]. The application of such a rule indicates whether it is preferable to place a job J i before a job J j , or the contrary. For example, it is well known that problem 1|| C j is solved optimally by sorting the jobs according to their nondecreasing processing time order (SPT rule [START_REF]Various optimizers for single stage production[END_REF]), the problem 1||L max is solved optimally by sorting the jobs according to their non decreasing due dates order (EDD rule, [START_REF] Jackson | Scheduling a production line to minimize maximum tardiness[END_REF]), the problem F 2||C max is solved by the Johnson's rule ([START_REF] Johnson | Optimal two-and three-stage production schedules with setup times included[END_REF]), etc. (see [START_REF] Bouquard | Application of an optimization problem in Max-Plus algebra to scheduling problems[END_REF] for a generalization to other scheduling problems). It is also well known that each scheduling problem generally has a lot of optimal solutions (potentially an exponential number).

The original goal is to characterize a set of optimal solutions without enumerating them. Such an approach is useful in a dynamic environment, to react in real time to unexpected events, or to data uncertainty. Some preliminary studies concerning the search of the characteristics of the optimal solutions (characteristics but not the list) have been conducted in this direction, using the lattice of permutations as support, for problems 1||L max and F 2||C max in [START_REF] Billaut | Characterization of all ρ-approximated sequences for some scheduling problems[END_REF] and for problem F 2||C max only in [START_REF] Billaut | Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem[END_REF].

In this paper, we only consider problem 1||L max . For any instance, we apply the following pre-treatment in polynomial time: [START_REF] Billaut | A method for characterizing the set of optimal sequences for some scheduling problems[END_REF] we apply EDD rule and we obtain L * max , the optimal maximum lateness value. Then, [START_REF] Billaut | Characterization of all ρ-approximated sequences for some scheduling problems[END_REF] we modify the due dates in order to obtain deadlines: dj = d j + L * max , for any j ∈ {1, 2, ..., n}, limiting the deadlines to p j . Finally, [START_REF] Billaut | Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem[END_REF] we renumber the jobs in EDD order. At the end we know that sequence Id = (J 1 , J 2 , ..., J n) is feasible and that jobs are numbered in EDD order. Suppose for example that we have n = 4 jobs and that -after the pre-treatment -it is found a sequence σ = (J 3 , J 1 , J 4 , J 2) which is also a feasible sequence. Then, because of the EDD rule, it is possible by simple pairwise exchanges, to modify this sequence iteratively and to reach sequence Id. All the sequences obtained during these changes are also feasible sequences: sequence (J 1 , J 3 , J 4 , J 2) is feasible, sequence (J 3 , J 1 , J 2 , J 4) is feasible, etc. So, all the "predecessors" of sequence σ are feasible. These sequences are exactly those such that J 1 ≺ J 4 and J 1 ≺ J 2 and J 3 ≺ J 4 , i.e. are characterized by the conjunction of three simple precedence relations. Therefore, finding a feasible sequence, as far as possible from sequence Id, allows immediately to characterize a big set of feasible solutions. Such an approach -described in details in [START_REF] Billaut | Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem[END_REF] is valid for any scheduling problem for which such a rule exists such as problems 1|r j |C max , F 2|s nsd |C max , etc.

The paper is organized as follows. We describe the problem more formally in Section II, where we define some new objective functions and we give first results. In Section III we focuse on the minimization of the sum of weighted positions. We show that this problem is strongly NP-hard and we propose some exact and approximated resolution methods. These methods are evaluated by randomly generated instances in Section IV. Finally, in the section V, we present some ideas for the future research directions.

II. PROBLEMS DEFINITIONS

We consider a set of n jobs {J 1 , J 2 , ..., J n } to schedule on a single machine. Preemption is not allowed and the machine can perform only one job at a time. To each job J j is associated a processing time p j and a deadline dj . It is assumed that the sequence is feasible (maximum lateness equal to 0) and that the jobs are numbered in EDD order (notice that it can be done in O(n log n) time for any instance).

Let consider a sequence σ. We denote by N j the number of jobs after J j in σ with an index greater than j. For example, consider σ = (J 3 , J 1 , J 4 , J 2), we have N 1 = 2, N 2 = 0, N 3 = 1 and N 4 = 0. The sum of N j , n j=1 N j is exactly equal to the number of simple precedence constraints in the conjunction (here n j=1 N j = 3). It also corresponds to the level of sequence σ in the lattice of permutations (see [START_REF] Billaut | Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem[END_REF]).

Finding a sequence as deep as possible in this lattice, or finding a sequence as far as possible from sequence Id is the same, and is equivalent to minimise the objective function N j . The problem can be denoted by 1||Lex(L max , N j) with a notation of a bi-objective problem [START_REF] T'kindt | Multicriteria scheduling. Theory, models and algorithms[END_REF], which is equivalent to 1| dj , d1 ≤ ... ≤ dn , dn = p j | N j for the instance after pre-treatment.

A. Expression of N j

Let us define the boolean variables x j,k = 1 if job J j is in position k and 0 otherwise. The expression of N j is the following:

N j = n j=1 n k=1 n i=j+1 n h=k+1 x i,h x j,k
This expression is quadratic, it can be linearized for a linear programming formulation [START_REF] Billaut | A method for characterizing the set of optimal sequences for some scheduling problems[END_REF], [START_REF] Billaut | Complete Characterization of Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling Problem[END_REF].

Let us define by y j,k = n i=j+1 n h=k+1 x i,h . We have: x i,h (notice that this expression is related to, but different than the expression of N j).

N j = n j=1 n k=1 y j,k x j,k
We can show that

n j=1 n k=1 y j,k = -n 2 + n j=1 n k=1 jkx j,k = -n 2 + n j=1 j n k=1 kx j,k
In this expression, P j = n k=1 kx j,k is exactly the position of J j in the sequence. So, minimizing n j=1 n k=1 y j,k is equivalent to minimize n j=1 jP j . This new indicator, P j , and this new objective function jP j never appeared in the scheduling literature before, to the best of our knowledge. Notice that this objective function is not related to the jobs completion time, which is also not frequent in the literature.

B. New objective functions and first results

Even if

N j and jP j are not the same objective functions, we can notice that these functions are related in some sense.

We introduce the following new objective functions:

• P max = max 1≤j≤n P j , the maximum position of a job in the sequence,

• P j = n j=1 P j , the sum of positions of the jobs in the sequence,

•

w j P j = n j=1 w j P j , the weighted sum of positions of jobs in the sequence Let us consider only single machine problems, without deadlines. We can exhibit the first following results:

• Problem 1||P max is trivial (similar to 1||C max) since
for any solution, we have P max = n. It is the same result for any sequencing problem.

• Problem 1|| P j is trivial since in any solution we have P j = n(n + 1)/2. Again, it is the same result for any sequencing problem.

• Problem 1|| w j P j is equivalent to problem 1|p j = 1| w j C j , and therefore it can be solved in O(n log n) by sorting the jobs in w j nonincreasing order.

Let us consider now the case with deadlines. We can exhibit the first following results:

• Problem 1| dj |P max is trivial because if EDD is a
feasible solution, this solution has P max = n, which is optimal. Otherwise, there is no solution.

• Problem 1| dj | P j is trivial for the same reasons, and EDD is such that P j = n(n + 1)/2, which is optimal.

• Problem 1| dj , p j = 1| w j P j is equivalent to problem 1| dj , p j = 1| w j C j , which can be solved in polynomial time [START_REF] Chen | Scheduling unit processing time jobs on a single machine with multiple criteria[END_REF].

We focuse in the rest of the paper on problem 1| dj | w j P j .

III. PROBLEM 1| dj | w j P j

In this section, we assume that jobs are numbered in EDD order and that sequence Id = (J 1 , J 2 , ..., J n) is feasible and has a maximum lateness of 0. We search to minimise the weighted sum of jobs positions.

A. Complexity

Proposition 2: Problem 1| dj | w j P j is strongly NP-hard.

Proof. It is clear that the problem is in NP. Then, we proceed by reduction from 3-PARTITION problem.

3-PARTITION problem:

Instance: A = {a i } 1≤i≤3m a set of 3m elements such that B/4 < a i < B/2 and A a i = mB, with a bound B ∈ N .

Question: Can A be partitioned into m disjont sets A 1 , A 2 , ..., A m such that A k a i = B, ∀k ∈ {1, 2, ..., m} (note that each A k must contain exactly 3 elements of A)
Clearly, problem 1| dj | w j P j is in NP. We define p = |A| × max(A). We build an instance to our problem with m dummy jobs J i , 1 ≤ i ≤ m such that p i = 1, w i = 0, d i = i(B + 3p + 1). We add 3m regular jobs J m+j , 1 ≤ j ≤ 3m with p m+j = w m+j = a j + p and d m+j = m(B + 3p + 1).

We first show that in an optimal solution, each job J i is precisely at position 4i, 1 ≤ i ≤ m and then we show that it completes exactly at its deadline if and only if the answer to 3-PARTITION is yes.

(a) We consider an optimal sequence S * . We prove by induction that in any optimal sequence, each job J i , 1 ≤ i ≤ m, has a position equal to 4i.

First, we have to check it for i = 1. Suppose that J 1 is in position k, and suppose that it completes at time C 1 < d1 . We denote by D the set of the first k -1 jobs (before J 1). We denote by J l the job in position k + 1, and we know that this job completes after d1 (since otherwise swapping J 1 and J l would lead to a better solution). We denote by ∆ the difference between the starting time of J 1 and d 1 .

We have:

∆ ≥ 1 ⇒ d 1 - Jj ∈D p j ≥ 1 ⇒ d 1 - Jj ∈D a j -(k -1)p ≥ 1 ⇒ B + 3p + 1 - Jj ∈D a j -kp + p ≥ 1 ⇒ B + 4p - Jj ∈D a j -kp ≥ 0
So we have:

k ≤ 4 + 1 p (B - Jj ∈D a j) (1)
Because C l > d 1 , we have:

Jj ∈D a j + (k -1)p + 1 + a l + p > B + 3p + 1 Jj ∈D a j + kp + a l > B + 3p
So we have:

k > 3 + 1 p (B - Jj ∈D a j -a l) (2)
We deduce from (1), (2) that:

3 + 1 p (B - Jj ∈D a j -a l) < k ≤ 4 + 1 p (B - Jj ∈D a j) ⇔ 3 + ε 1 < k ≤ 4 + ε 2 J i di J r J s k l J i di J r J s k l S * S Fig. 1. Case where J i does not complete at time di (1 ≤ i ≤ m)
It shows that J 1 is necessarilly in position 4.

Suppose now that job

J i is in position 4i, ∀i, 1 ≤ i ≤ m-1.
We want to show that job J i+1 is in position 4(i+1). Suppose that J i+1 is in position k. We denote by D the jobs preceding J i+1 . There are (k -1 -i) jobs in D that are regular jobs. We have:

C i+1 ≤ d i+1 ⇒ (i + 1)(B + 3p + 1) -(Jj ∈D a j + (k -1 -i)p) -i -1 ≥ 0 ⇒ k ≤ 4(i + 1) + ε (3)
Let us denote by J l the job just after J i+1 . We have:

C l > di+1 ⇒ Jj ∈D a j +|D|p+i+1+p+a l > (i+1)(B+3p+1)
If J i+1 is in position k, the number of jobs before J i+1 is k-1, and before this job, there are |D| regular jobs and i dummy jobs. So we have k -1 = |D| + i. Hence:

Jj ∈D a j + (k -1 -i)p + i + 1 + p + a l > (i + 1)(B + 3p + 1) (4) ⇒ k > (4i + 3) + ε (5)
We deduce from (3) and (5) that k = 4i + 4.

(b) We must show now that there is an answer YES to 3-PARTITION problem, if and only if in an optimal solution to our problem, each dummy job completes at its deadline.

Suppose there is an answer YES to 3-PARTITION problem. In this case, we can take the partition of the jobs and put a dummy job between each partition. Because of the deadlines definition, each dummy jobs completes exactly at its deadline. Breaking the partition would either violate a deadline, or generate a weaker solution.

Suppose that we do not follow the 3-PARTITION solution and that in S * , we have C i < d i for one job J i with 1 ≤ i ≤ m (i.e. we have an optimal solution that is not a 3-partition). Suppose there are two jobs: J r before J i in position k and J s after J i in position l such that if the jobs are swapped, then C i = d i . In this case, illustrated in Fig. 1 we must have a r < a s and k < l.

We denote by S the solution S * except that J r and J s are swapped in S . We have:

Z(S) -Z(S *) = k(a s + p) + l(a r + p) -k(a r + p) -l(a s + p) = k(a s -a r) + l(a r -a s) = (l -k)(a r -a s) < 0
This quantity is negative, which means that S * is not optimal, so this case is not possible.

Suppose now that there are two jobs J r1 and J r2 before J i and two jobs J s1 and J s2 after J i so that if the jobs are swapped, then C i = d i . In this case, we have a s1 + a s2 > a r1 + a r2 and :

Z(S) -Z(S *) = k 1 a s1 + k 2 a s2 + l 1 a r1 + l 2 a r2 -k 1 a r1 + k 2 a r2 +l 1 a s1 +l 2 a s2 = (k 1 -l 1)(a s1 -a r1)+(k 2 -l 2)(a s2 -a r2) We know that k 1 -l 1 < 0, k 2 -l 2 < 0 ⇒ max(k 1 -l 1 , k 2 -l 2) < 0 and we have Z(S) -Z(S *) = (k 1 -l 1)(a s1 -a r1) + (k 2 -l 2)(a s2 -a r2) < (a s1 -a r1) max(k 1 -l 1 , k 2 -l 2) + (a s2 -a r2) max(k 1 - l 1 , k 2 -l 2) < (a s1 -a r1 -a s2 -a r2)) max(k 1 -l 1 , k 2 -l 2) < 0
For the same reasons, this case is not possible because S * is optimal. By extending this reasoning to any number of jobs to exchange (same number before and after J 1 due to the position of this job), we prove that if the answer to 3-PARTITION problem is YES, we must follow the 3-PARTITION solution and therefore we have a feasible solution that is optimal.

B. Two exact resolution methods

We propose two ways to solve the problem to optimality: a linear programming formulation and a branch-and-bound algorithm.

1) MILP formulation: An MILP formulation of the problem with variables x j,k is the following. This model contains n 2 binary variables and 3n constraints. This model will be solved by CPLEX solver.

2) Branch-and-bound: A branch-and-bound procedure is an implicite enumeration method, characterized by two elements: the branching and the bounds. Here, a node is characterized by a partial ending sequence σ composed by k jobs (from position n -k + 1 to n), a set S of unscheduled jobs and a lower bound. The branching consists in adding a job of S at position n -k in σ.

The initial upper bound is given by the (simple) Backward Algorithm presented in Alg. 1.

The lower bound is evaluated as follows. The partial sequence σ is evaluated, and the jobs of S are sequenced in w j non-increasing order. If the partial sequence is not feasible, the evaluation is put to HV (high value).

Let consider the following instance with n = 5 jobs.

Algorithm 1 BW algorithm J ← {J 1 , J 2 , ..., J n } t ← n j=1 p j ; k ← n while J = ∅ do Let J r ∈ J such that w r = min j∈J / dj ≥t w j Put J r in position k t ← t -p r ; k ← k -1 J ← J \ {J r } end while j 1 2 3 4 5 p j 1 2 5 2 4 w j 1 2 4 2 3 dj 7 7 12 14 14
The BW algorithm gives sequence (J 2 , J 1 , J 3 , J 5 , J 4). The evaluation is equal to 38.

Let consider node σ = (J 3 , J 4) and S = {J 1 , J 2 , J 5 }. The partial sequence σ has an evaluation equal to 16+10=26. The unscheduled jobs are sequenced in an 'optimal' (but not necesserally feasible) way, leading to sequence (J 5 , J 2 , J 1) evaluated by 3+4+3=10. The evaluation of this node is equal to 36.

C. Heuristic algorithms

We propose two heuristic algorithms. The first one is the previous Backward algorithm. This algorithm is important because it is very intuitive (remember that such an algorithm is optimal for problems 1|prec|f max [START_REF] Lawler | emphOptimal sequencing of a single machine subject to precedence constraints[END_REF]). We also propose a Forward algorithm described in Alg. 2 (J [si] is the job in position si).

Algorithm 2 FW algorithm σ = (J 1 , J 2 , ..., J n) si = 1 // si stands for "smallest index" while P si < n do S ← {J j /P j > si} while

S = ∅ do Let J k ∈ S such that w k = max Jj ∈S w j // σ is a sequence of type σ 1 //J [si] //σ 2 //J k //σ 3 σ ← σ 1 //J k //J [si] //σ 2 //σ 3 if σ is not feasible then S ← S \ {J k } else σ ← σ si ← si + 1 end if end while S ← {J j /P j > si} si ← smallest index in S end while
Let us consider the previous example. We start with σ = (J 1 , J 2 , J 3 , J 4 , J 5). We have si = 1 Job J 3 cannot be put before J 1 (otherwise J 2 is late). Job J 5 can be put before J 1 . We obtain sequence σ = (J 5 , J 1 , J 2 , J 3 , J 4). Then, J 2 can be put before J 1 . We obtain sequence σ = (J 5 , J 2 , J 1 , J 3 , J 4). Then, we have si = 3. It is not possible to put J 4 before J 3 . Then, we have si = 4 and the procedure stops because P 4 = 5. The evaluation of this solution is equal to 36.

A global lower bound LB can also be easily computed by relaxing the MILP.

IV. COMPUTATIONAL EXPERIMENTS

A. Data generation

The computational experiments have been run on a Mac-Book Air Intel Core i5 1,6 GHz, using IBM ILOG CPLEX 12.6. Two types of instances have been generated. Instances of type 1 are classical random data sets, instances of type 2 are difficult random data sets. For each type, 30 instances have been generated for each value of n, with n ∈ {10, 20, ..., 100}. For instances of type 1, random data sets have been generated as follows:

• p j ∈ [1, 100], w j ∈ [1, 100]
• d j ∈ [(α -β/2)P, (α + β/2)P] with P = p j , α = 0.75 and β = 0.25 Then, these instances receive the pre-treatment.

For instances of type 2, random data sets have been generated as follows:

• for n = n/4 jobs:

• p j = 1, w j = 0 • dj = 4jP/n
• for the (n -n) remaining jobs:

• p j ∈ [1, 100], w j = w 0j + P , with w 0j ∈ [1, 100] and P = p j • dj = P + n/4

These instances do not need the pre-treatment.

The CPU time to solve each instance has been limited to 180 seconds.

B. Results

The computational results are reported in Tables I to IV. Tables I and II are related to instances of type I, Tables III and IV are related to instances of type II. Tables I andIII give the results of the exact methods. Columns cpu and opt indicate respectively the CPU time in seconds and the number of times the method found the optimal solution in less than 180 seconds. Tables II andIV give the results of the heuristic methods. Columns best, DeltaBest and DeltaLB indicate respectively the number of times the method returns the best solution among all the methods (including the exact methods), the relative deviation to the best solution, and the relative deviation to the lower bound. Column ∆ indicates the relative deviation between BW and FW:

∆ = BW -F W BW
About the exact methods (Tables I andIII), one can see that the B&B algorithm is competitive with CPLEX for type I instances, both methods solving 29 problems over 30 with up to 70 jobs, and less with more jobs. However, for instances of type II, CPLEX is much more better than the B&B, solving instances with up to 40 jobs, where the B&B cannot solve instances with more than 10 jobs. It is clear that it is possible to improving the B&B algorithm, by pruning some nodes by using some dominance conditions.

About the heuristic methods (Tables II andIV), FW algorithm returns better solution than BW algorithm. For instances of type I, BW returns solution that are not so bad, with a relative deviation to the best solution under 0.44%, whereas FW is under 0.17%. Note that the relative deviation between BW and FW is in favor of FW, but with a percentage less than 0.41%. However, for instances of type II, BW is dominated by FW. BW returns solutions that are far from the optimal solution, and the relative deviation between BW and FW is around 10%.

V. CONCLUSION AND PERSPECTIVES

We identify in this paper a new category of scheduling problems, with the definition of new objective functions, based on jobs positions. Some trivial problems are identified, and a problem with weights is proved strongly NP-hard. Some problems remain open, such as the 1| dj | jP j problem and the original 1| d j | N j problem.

For the difficult problem, heuristic algorithms and exact methods are proposed and evaluated on randomly generated instances. The results of the exact methods and of the heuristic algorithms are relatively good for the first type instances, where data are generated 'as usual' in the scheduling literature. However, for more difficult instances, the limits of the exact methods are reached, and the difference between the heuristic algorithms is more clear.

The perspectives consist in continuing the investigations for the open problems, and in the improvment of the exact methods -introducing cuts and dominance conditions -and of the heuristic methods, by using metaheuristic algorithms.

 j,k is a function related to the positions of the jobs in the sequence.Proof. We have:

Minimize

 k = 1,∀k ∈ {1, 2, ...n} n k=1 x j,k = 1,∀j ∈ {1, 2, ...n} k l=1 n j=1 p j x j,l ≤ n j=1 dj x j,k ,∀k ∈ {1, 2, ...n}

TABLE I

 I

		.	RESULTS OF THE EXACT METHODS FOR TYPE I INSTANCES
			BW			FW		∆
	n	best	DeltaBest	DeltaLB	best	DeltaBest	DeltaLB	BW/FW
	10	28	0,08%	2,28 %	28	0,04%	2,24%	0,04%
	20	23	0,08%	1,37 %	28	0,02%	1,31%	0,06%
	30	18	0,19%	1,51 %	24	0,03%	1,35%	0,16%
	40	6	0,44%	1,52 %	16	0,04%	1,09%	0,41%
	50	3	0,24%	1,72 %	11	0,11%	1,59%	0,13%
	60	6	0,15%	1,46 %	8	0,08%	1,38%	0,07%
	70	3	0,24%	1,22 %	4	0,1%	1,08%	0,14%
	80	3	0,28%	1,2 %	2	0,17%	1,08%	0,12%
	90	3	0,35%	1,22 %	3	0,15%	1,01%	0,20%
	100	0	0,29%	1,08 %	6	0,09%	0,87%	0,20%

TABLE II .

 II RESULTS OF THE HEURISTIC METHODS FOR TYPE I

	INSTANCES

TABLE IV .

 IV RESULTS OF THE HEURISTIC METHODS FOR TYPE II INSTANCES