
HAL Id: hal-01703205
https://hal.science/hal-01703205v1

Submitted on 7 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New objective functions based on jobs positions for
single machine scheduling with deadlines

Thanh Thuy Tien Ta, Kivin Ringard, Jean-Charles Billaut

To cite this version:
Thanh Thuy Tien Ta, Kivin Ringard, Jean-Charles Billaut. New objective functions based on jobs
positions for single machine scheduling with deadlines. 7th International Conference on Industrial
Engineering and Systems Management (IESM 2017), Oct 2017, Saarbrucken, Germany. �hal-01703205�

https://hal.science/hal-01703205v1
https://hal.archives-ouvertes.fr

New objective functions based on jobs positions for
single machine scheduling with deadlines

(presented at the 7th IESM Conference, October 11–13, 2017, Saarbrücken, Germany)

Thanh Thuy Tien TA, Kivin RINGARD, Jean-Charles BILLAUT
Laboratoire d’Informatique, ERL CNRS 6305,

64 avenue Jean Portalis
F-37200, Tours

Email: thanhthuytien.ta@etu.univ-tours.fr, jean-charles.billaut@univ-tours.fr

Abstract—In this paper, we study new single machine schedul-
ing problems where the objective functions are based on jobs
positions. The original idea is to characterize easily a huge set of
optimal solutions, without enumerating them. The (polynomially
solvable) scheduling problems that can be addressed by this ap-
proach are such that a simple rule exists, giving a priority between
two consecutive jobs. Assuming that the solution obtained by
applying the rule is sequence Id = (J1, J2, ..., Jn) (correct after
a renumbering of jobs), we search for a feasible solution (i.e.
also optimal), at a maximum distance from sequence Id. Such
considerations are also usefull for some robustness considerations.
We identify some new objective functions and present first
theoretical results and first computational experiments. Some new
problems remain open.

Key words: Scheduling, Single machine, Complexity,
MILP, branch-and-bound

I. INTRODUCTION

Many scheduling problems can be solved in polynomial
time by applying a simple sequencing rule, also called ”priority
rule” [10]. The application of such a rule indicates whether it
is preferable to place a job Ji before a job Jj , or the contrary.
For example, it is well known that problem 1||

∑
Cj is solved

optimally by sorting the jobs according to their nondecreasing
processing time order (SPT rule [10]), the problem 1||Lmax

is solved optimally by sorting the jobs according to their
non decreasing due dates order (EDD rule, [7]), the problem
F2||Cmax is solved by the Johnson’s rule ([8]), etc. (see [5]
for a generalization to other scheduling problems). It is also
well known that each scheduling problem generally has a lot
of optimal solutions (potentially an exponential number).

The original goal is to characterize a set of optimal
solutions without enumerating them. Such an approach is
useful in a dynamic environment, to react in real time to
unexpected events, or to data uncertainty. Some preliminary
studies concerning the search of the characteristics of the
optimal solutions (characteristics but not the list) have been
conducted in this direction, using the lattice of permutations
as support, for problems 1||Lmax and F2||Cmax in [2] and
for problem F2||Cmax only in [3].

In this paper, we only consider problem 1||Lmax. For any
instance, we apply the following pre-treatment in polynomial
time: (1) we apply EDD rule and we obtain L∗max, the
optimal maximum lateness value. Then, (2) we modify the
due dates in order to obtain deadlines: d̃j = dj + L∗max,

for any j ∈ {1, 2, ..., n}, limiting the deadlines to
∑
pj .

Finally, (3) we renumber the jobs in EDD order. At the end
we know that sequence Id = (J1, J2, ..., Jn) is feasible and
that jobs are numbered in EDD order. Suppose for example
that we have n = 4 jobs and that – after the pre-treatment
– it is found a sequence σ = (J3, J1, J4, J2) which is also
a feasible sequence. Then, because of the EDD rule, it is
possible by simple pairwise exchanges, to modify this se-
quence iteratively and to reach sequence Id. All the sequences
obtained during these changes are also feasible sequences:
sequence (J1, J3, J4, J2) is feasible, sequence (J3, J1, J2, J4)
is feasible, etc. So, all the ”predecessors” of sequence σ are
feasible. These sequences are exactly those such that J1 ≺ J4

and J1 ≺ J2 and J3 ≺ J4, i.e. are characterized by the
conjunction of three simple precedence relations. Therefore,
finding a feasible sequence, as far as possible from sequence
Id, allows immediately to characterize a big set of feasible
solutions.

Such an approach – described in details in [3] is valid for
any scheduling problem for which such a rule exists such as
problems 1|rj |Cmax, F2|snsd|Cmax, etc.

The paper is organized as follows. We describe the problem
more formally in Section II, where we define some new
objective functions and we give first results. In Section III
we focuse on the minimization of the sum of weighted
positions. We show that this problem is strongly NP-hard and
we propose some exact and approximated resolution methods.
These methods are evaluated by randomly generated instances
in Section IV. Finally, in the section V, we present some ideas
for the future research directions.

II. PROBLEMS DEFINITIONS

We consider a set of n jobs {J1, J2, ..., Jn} to schedule on
a single machine. Preemption is not allowed and the machine
can perform only one job at a time. To each job Jj is associated
a processing time pj and a deadline d̃j . It is assumed that the
sequence is feasible (maximum lateness equal to 0) and that
the jobs are numbered in EDD order (notice that it can be done
in O(n log n) time for any instance).

Let consider a sequence σ. We denote by Nj the number of
jobs after Jj in σ with an index greater than j. For example,
consider σ = (J3, J1, J4, J2), we have N1 = 2, N2 = 0,
N3 = 1 and N4 = 0. The sum of Nj ,

∑n
j=1Nj is exactly

equal to the number of simple precedence constraints in the

conjunction (here
∑n

j=1Nj = 3). It also corresponds to the
level of sequence σ in the lattice of permutations (see [3]).

Finding a sequence as deep as possible in this lattice, or
finding a sequence as far as possible from sequence Id is
the same, and is equivalent to minimise the objective function∑
Nj . The problem can be denoted by 1||Lex(Lmax,

∑
Nj)

with a notation of a bi-objective problem [11], which is
equivalent to 1|d̃j , d̃1 ≤ ... ≤ d̃n, d̃n =

∑
pj |

∑
Nj for the

instance after pre-treatment.

A. Expression of Nj

Let us define the boolean variables xj,k = 1 if job Jj is
in position k and 0 otherwise. The expression of

∑
Nj is the

following:

∑
Nj =

n∑
j=1

n∑
k=1

n∑
i=j+1

n∑
h=k+1

xi,hxj,k

This expression is quadratic, it can be linearized for a linear
programming formulation [1], [3].

Let us define by yj,k =
∑n

i=j+1

∑n
h=k+1 xi,h. We have:

∑
Nj =

n∑
j=1

n∑
k=1

yj,kxj,k

Proposition 1:
∑n

j=1

∑n
k=1 yj,k is a function related to the

positions of the jobs in the sequence.

Proof. We have:

n∑
j=1

n∑
k=1

yj,k =

n∑
j=1

n∑
k=1

n∑
i=j+1

n∑
h=k+1

xi,h

(notice that this expression is related to, but different than
the expression of

∑
Nj).

We can show that

n∑
j=1

n∑
k=1

yj,k = −n2 +

n∑
j=1

n∑
k=1

jkxj,k

= −n2 +

n∑
j=1

j

n∑
k=1

kxj,k

In this expression, Pj =
∑n

k=1 kxj,k is exactly the position
of Jj in the sequence. So, minimizing

∑n
j=1

∑n
k=1 yj,k is

equivalent to minimize
∑n

j=1 jPj .

This new indicator, Pj , and this new objective function∑
jPj never appeared in the scheduling literature before, to

the best of our knowledge. Notice that this objective function
is not related to the jobs completion time, which is also not
frequent in the literature.

B. New objective functions and first results

Even if
∑
Nj and

∑
jPj are not the same objective

functions, we can notice that these functions are related in
some sense.

We introduce the following new objective functions:

• Pmax = max1≤j≤n Pj , the maximum position of a
job in the sequence,

•
∑
Pj =

∑n
j=1 Pj , the sum of positions of the jobs in

the sequence,

•
∑
wjPj =

∑n
j=1 wjPj , the weighted sum of posi-

tions of jobs in the sequence

Let us consider only single machine problems, without
deadlines. We can exhibit the first following results:

• Problem 1||Pmax is trivial (similar to 1||Cmax) since
for any solution, we have Pmax = n. It is the same
result for any sequencing problem.

• Problem 1||
∑
Pj is trivial since in any solution we

have
∑
Pj = n(n+ 1)/2. Again, it is the same result

for any sequencing problem.

• Problem 1||
∑
wjPj is equivalent to problem 1|pj =

1|
∑
wjCj , and therefore it can be solved in

O(n log n) by sorting the jobs in wj nonincreasing
order.

Let us consider now the case with deadlines. We can exhibit
the first following results:

• Problem 1|d̃j |Pmax is trivial because if EDD is a
feasible solution, this solution has Pmax = n, which
is optimal. Otherwise, there is no solution.

• Problem 1|d̃j |
∑
Pj is trivial for the same reasons,

and EDD is such that
∑
Pj = n(n + 1)/2, which is

optimal.

• Problem 1|d̃j , pj = 1|
∑
wjPj is equivalent to prob-

lem 1|d̃j , pj = 1|
∑
wjCj , which can be solved in

polynomial time [6].

We focuse in the rest of the paper on problem
1|d̃j |

∑
wjPj .

III. PROBLEM 1|d̃j |
∑
wjPj

In this section, we assume that jobs are numbered in EDD
order and that sequence Id = (J1, J2, ..., Jn) is feasible and
has a maximum lateness of 0. We search to minimise the
weighted sum of jobs positions.

A. Complexity

Proposition 2: Problem 1|d̃j |
∑
wjPj is strongly NP-hard.

Proof. It is clear that the problem is in NP. Then, we
proceed by reduction from 3-PARTITION problem.

3-PARTITION problem:
Instance: A = {ai}1≤i≤3m a set of 3m elements such that
B/4 < ai < B/2 and

∑
A ai = mB, with a bound B ∈ N .

Question: Can A be partitioned into m disjont sets
A1, A2, ..., Am such that

∑
Ak
ai = B, ∀k ∈ {1, 2, ...,m}

(note that each Ak must contain exactly 3 elements of A)

Clearly, problem 1|d̃j |
∑

wjPj is in NP. We define p =

|A| × max(A). We build an instance to our problem with m
dummy jobs Ji, 1 ≤ i ≤ m such that pi = 1, wi = 0, d̃i =
i(B + 3p + 1). We add 3m regular jobs Jm+j , 1 ≤ j ≤ 3m

with pm+j = wm+j = aj + p and d̃m+j = m(B + 3p+ 1).

We first show that in an optimal solution, each job Ji is
precisely at position 4i, 1 ≤ i ≤ m and then we show that it
completes exactly at its deadline if and only if the answer to
3-PARTITION is yes.

(a) We consider an optimal sequence S∗. We prove by
induction that in any optimal sequence, each job Ji, 1 ≤ i ≤
m, has a position equal to 4i.

First, we have to check it for i = 1.
Suppose that J1 is in position k, and suppose that it completes
at time C1 < d̃1. We denote by D the set of the first k − 1
jobs (before J1). We denote by Jl the job in position k + 1,
and we know that this job completes after d̃1 (since otherwise
swapping J1 and Jl would lead to a better solution). We denote
by ∆ the difference between the starting time of J1 and d̃1.

We have:

∆ ≥ 1⇒ d̃1 −
∑
Jj∈D

pj ≥ 1

⇒ d̃1 −
∑
Jj∈D

aj − (k − 1)p ≥ 1

⇒ B + 3p+ 1−
∑
Jj∈D

aj − kp+ p ≥ 1

⇒ B + 4p−
∑
Jj∈D

aj − kp ≥ 0

So we have:

k ≤ 4 +
1

p
(B −

∑
Jj∈D

aj) (1)

Because Cl > d̃1, we have:∑
Jj∈D

aj + (k − 1)p+ 1 + al + p > B + 3p+ 1

∑
Jj∈D

aj + kp+ al > B + 3p

So we have:

k > 3 +
1

p
(B −

∑
Jj∈D

aj − al) (2)

We deduce from (1), (2) that:

3 +
1

p
(B −

∑
Jj∈D

aj − al) < k ≤ 4 +
1

p
(B −

∑
Jj∈D

aj)

⇔ 3 + ε1 < k ≤ 4 + ε2

Ji

d̃i

Jr Js

k l

......

Ji

d̃i

JrJs

k l

......

...

...

S∗

S′

Fig. 1. Case where Ji does not complete at time d̃i (1 ≤ i ≤ m)

It shows that J1 is necessarilly in position 4.

Suppose now that job Ji is in position 4i,∀i, 1 ≤ i ≤ m−1.
We want to show that job Ji+1 is in position 4(i+1). Suppose
that Ji+1 is in position k. We denote by D the jobs preceding
Ji+1. There are (k − 1 − i) jobs in D that are regular jobs.
We have: Ci+1 ≤ d̃i+1

⇒ (i+ 1)(B+ 3p+ 1)− (
∑
Jj∈D

aj + (k− 1− i)p)− i− 1 ≥ 0

⇒ k ≤ 4(i+ 1) + ε (3)

Let us denote by Jl the job just after Ji+1. We have:
Cl > d̃i+1 ⇒

∑
Jj∈D

aj+|D|p+i+1+p+al > (i+1)(B+3p+1)

If Ji+1 is in position k, the number of jobs before Ji+1 is k−1,
and before this job, there are |D| regular jobs and i dummy
jobs. So we have k − 1 = |D|+ i. Hence:∑
Jj∈D

aj + (k − 1− i)p+ i+ 1 + p+ al > (i+ 1)(B + 3p+ 1)

(4)
⇒ k > (4i+ 3) + ε (5)

We deduce from (3) and (5) that k = 4i+ 4.

(b) We must show now that there is an answer YES to
3-PARTITION problem, if and only if in an optimal solution
to our problem, each dummy job completes at its deadline.

Suppose there is an answer YES to 3-PARTITION prob-
lem. In this case, we can take the partition of the jobs and put
a dummy job between each partition. Because of the deadlines
definition, each dummy jobs completes exactly at its deadline.
Breaking the partition would either violate a deadline, or
generate a weaker solution.

Suppose that we do not follow the 3-PARTITION solution
and that in S∗, we have Ci < d̃i for one job Ji with 1 ≤ i ≤ m
(i.e. we have an optimal solution that is not a 3-partition).
Suppose there are two jobs: Jr before Ji in position k and
Js after Ji in position l such that if the jobs are swapped,
then Ci = d̃i. In this case, illustrated in Fig. 1 we must have
ar < as and k < l.

We denote by S′ the solution S∗ except that Jr and Js are
swapped in S′. We have:

Z(S′)− Z(S∗) = k(as + p) + l(ar + p)− k(ar + p)− l(as + p)

= k(as − ar) + l(ar − as)
= (l − k)(ar − as) < 0

This quantity is negative, which means that S∗ is not optimal,
so this case is not possible.

Suppose now that there are two jobs Jr1 and Jr2 before
Ji and two jobs Js1 and Js2 after Ji so that if the jobs are
swapped, then Ci = d̃i. In this case, we have as1 + as2 >
ar1 + ar2 and :
Z(S′) − Z(S∗) = k1as1 + k2as2 + l1ar1 + l2ar2 − k1ar1 +
k2ar2+l1as1+l2as2 = (k1−l1)(as1−ar1)+(k2−l2)(as2−ar2)

We know that k1 − l1 < 0, k2 − l2 < 0
⇒ max(k1 − l1, k2 − l2) < 0 and we have
Z(S′)−Z(S∗) = (k1 − l1)(as1 − ar1) + (k2 − l2)(as2 − ar2)
< (as1 − ar1) max(k1 − l1, k2 − l2) + (as2 − ar2) max(k1 −
l1, k2−l2) < (as1−ar1−as2−ar2)) max(k1−l1, k2−l2) < 0

For the same reasons, this case is not possible because S∗ is
optimal. By extending this reasoning to any number of jobs to
exchange (same number before and after J1 due to the position
of this job), we prove that if the answer to 3-PARTITION
problem is YES, we must follow the 3-PARTITION solution
and therefore we have a feasible solution that is optimal.

B. Two exact resolution methods

We propose two ways to solve the problem to optimality:
a linear programming formulation and a branch-and-bound
algorithm.

1) MILP formulation: An MILP formulation of the prob-
lem with variables xj,k is the following.

Minimize
n∑

j=1

n∑
k=1

wjkxj,k

n∑
j=1

xj,k = 1,∀k ∈ {1, 2, ...n}

n∑
k=1

xj,k = 1,∀j ∈ {1, 2, ...n}

k∑
l=1

n∑
j=1

pjxj,l ≤
n∑

j=1

d̃jxj,k,∀k ∈ {1, 2, ...n}

This model contains n2 binary variables and 3n constraints.
This model will be solved by CPLEX solver.

2) Branch-and-bound: A branch-and-bound procedure is
an implicite enumeration method, characterized by two ele-
ments: the branching and the bounds. Here, a node is charac-
terized by a partial ending sequence σ composed by k jobs
(from position n − k + 1 to n), a set S of unscheduled jobs
and a lower bound. The branching consists in adding a job of
S at position n− k in σ.

The initial upper bound is given by the (simple) Backward
Algorithm presented in Alg. 1.

The lower bound is evaluated as follows. The partial
sequence σ is evaluated, and the jobs of S are sequenced in
wj non-increasing order. If the partial sequence is not feasible,
the evaluation is put to HV (high value).

Let consider the following instance with n = 5 jobs.

Algorithm 1 BW algorithm
J ← {J1, J2, ..., Jn}
t←

∑n
j=1 pj ; k ← n

while J 6= ∅ do
Let Jr ∈ J such that wr = minj∈J /d̃j≥t wj

Put Jr in position k
t← t− pr ; k ← k − 1
J ← J \ {Jr}

end while

j 1 2 3 4 5
pj 1 2 5 2 4
wj 1 2 4 2 3
d̃j 7 7 12 14 14

The BW algorithm gives sequence (J2, J1, J3, J5, J4). The
evaluation is equal to 38.

Let consider node σ = (J3, J4) and S = {J1, J2, J5}.
The partial sequence σ has an evaluation equal to 16+10=26.
The unscheduled jobs are sequenced in an ’optimal’ (but not
necesserally feasible) way, leading to sequence (J5, J2, J1)
evaluated by 3+4+3=10. The evaluation of this node is equal
to 36.

C. Heuristic algorithms

We propose two heuristic algorithms. The first one is the
previous Backward algorithm. This algorithm is important
because it is very intuitive (remember that such an algorithm
is optimal for problems 1|prec|fmax [9]). We also propose
a Forward algorithm described in Alg. 2 (J[si] is the job in
position si).

Algorithm 2 FW algorithm
σ = (J1, J2, ..., Jn)
si = 1 // si stands for ”smallest index”
while Psi < n do

S′ ← {Jj/Pj > si}
while S′ 6= ∅ do

Let Jk ∈ S′ such that wk = maxJj∈S′ wj

// σ is a sequence of type σ1//J[si]//σ2//Jk//σ3

σ′ ← σ1//Jk//J[si]//σ2//σ3

if σ′ is not feasible then
S′ ← S′ \ {Jk}

else
σ ← σ′

si← si+ 1
end if

end while
S′ ← {Jj/Pj > si}
si← smallest index in S′

end while

Let us consider the previous example. We start with σ =
(J1, J2, J3, J4, J5). We have si = 1 Job J3 cannot be put
before J1 (otherwise J2 is late). Job J5 can be put before J1.
We obtain sequence σ = (J5, J1, J2, J3, J4). Then, J2 can be
put before J1. We obtain sequence σ = (J5, J2, J1, J3, J4).
Then, we have si = 3. It is not possible to put J4 before J3.
Then, we have si = 4 and the procedure stops because P4 = 5.
The evaluation of this solution is equal to 36.

A global lower bound LB can also be easily computed by
relaxing the MILP.

IV. COMPUTATIONAL EXPERIMENTS

A. Data generation

The computational experiments have been run on a Mac-
Book Air Intel Core i5 1,6 GHz, using IBM ILOG CPLEX
12.6. Two types of instances have been generated. Instances
of type 1 are classical random data sets, instances of type 2
are difficult random data sets. For each type, 30 instances have
been generated for each value of n, with n ∈ {10, 20, ..., 100}.
For instances of type 1, random data sets have been generated
as follows:

• pj ∈ [1, 100], wj ∈ [1, 100]

• dj ∈ [(α − β/2)P, (α + β/2)P] with P =
∑
pj ,

α = 0.75 and β = 0.25

Then, these instances receive the pre-treatment.

For instances of type 2, random data sets have been
generated as follows:

• for n′ = bn/4c jobs:
◦ pj = 1, wj = 0
◦ d̃j = 4jP/n

• for the (n− n′) remaining jobs:
◦ pj ∈ [1, 100], wj = w0j + P , with w0j ∈

[1, 100] and P =
∑
pj

◦ d̃j = P + bn/4c

These instances do not need the pre-treatment.

The CPU time to solve each instance has been limited to
180 seconds.

B. Results

The computational results are reported in Tables I to IV.
Tables I and II are related to instances of type I, Tables III and
IV are related to instances of type II. Tables I and III give the
results of the exact methods. Columns cpu and opt indicate
respectively the CPU time in seconds and the number of times
the method found the optimal solution in less than 180 seconds.
Tables II and IV give the results of the heuristic methods.
Columns best, DeltaBest and DeltaLB indicate respectively the
number of times the method returns the best solution among
all the methods (including the exact methods), the relative
deviation to the best solution, and the relative deviation to
the lower bound. Column ∆ indicates the relative deviation
between BW and FW:

∆ =
BW − FW

BW

About the exact methods (Tables I and III), one can see
that the B&B algorithm is competitive with CPLEX for type I
instances, both methods solving 29 problems over 30 with up
to 70 jobs, and less with more jobs. However, for instances of
type II, CPLEX is much more better than the B&B, solving
instances with up to 40 jobs, where the B&B cannot solve
instances with more than 10 jobs. It is clear that it is possible

B&B CPLEX
n cpu opt cpu opt
10 0,01 30 0,11 30
20 0,03 30 0,15 30
30 0,09 30 0,42 30
40 0,18 30 0,99 30
50 0,54 30 3,22 30
60 0,81 30 7,22 30
70 11,87 29 26,45 29
80 53,11 23 52,17 26
90 87,15 18 86,94 23
100 139,17 11 145,93 10

TABLE I. RESULTS OF THE EXACT METHODS FOR TYPE I INSTANCES

BW FW ∆
n best DeltaBest DeltaLB best DeltaBest DeltaLB BW/FW
10 28 0,08% 2,28 % 28 0,04% 2,24% 0,04%
20 23 0,08% 1,37 % 28 0,02% 1,31% 0,06%
30 18 0,19% 1,51 % 24 0,03% 1,35% 0,16%
40 6 0,44% 1,52 % 16 0,04% 1,09% 0,41%
50 3 0,24% 1,72 % 11 0,11% 1,59% 0,13%
60 6 0,15% 1,46 % 8 0,08% 1,38% 0,07%
70 3 0,24% 1,22 % 4 0,1% 1,08% 0,14%
80 3 0,28% 1,2 % 2 0,17% 1,08% 0,12%
90 3 0,35% 1,22 % 3 0,15% 1,01% 0,20%
100 0 0,29% 1,08 % 6 0,09% 0,87% 0,20%

TABLE II. RESULTS OF THE HEURISTIC METHODS FOR TYPE I
INSTANCES

to improving the B&B algorithm, by pruning some nodes by
using some dominance conditions.

About the heuristic methods (Tables II and IV), FW algo-
rithm returns better solution than BW algorithm. For instances
of type I, BW returns solution that are not so bad, with a
relative deviation to the best solution under 0.44%, whereas
FW is under 0.17%. Note that the relative deviation between
BW and FW is in favor of FW, but with a percentage less than
0.41%. However, for instances of type II, BW is dominated
by FW. BW returns solutions that are far from the optimal
solution, and the relative deviation between BW and FW is
around 10%.

V. CONCLUSION AND PERSPECTIVES

We identify in this paper a new category of scheduling
problems, with the definition of new objective functions, based
on jobs positions. Some trivial problems are identified, and
a problem with weights is proved strongly NP-hard. Some
problems remain open, such as the 1|d̃j |

∑
jPj problem and

the original 1|d̃j |
∑
Nj problem.

For the difficult problem, heuristic algorithms and exact
methods are proposed and evaluated on randomly generated
instances. The results of the exact methods and of the heuristic
algorithms are relatively good for the first type instances,
where data are generated ’as usual’ in the scheduling literature.
However, for more difficult instances, the limits of the exact
methods are reached, and the difference between the heuristic
algorithms is more clear.

The perspectives consist in continuing the investigations
for the open problems, and in the improvment of the exact
methods – introducing cuts and dominance conditions – and
of the heuristic methods, by using metaheuristic algorithms.

B&B CPLEX
n cpu opt cpu opt
10 0,12 30 0,18 30
20 178,18 1 1,57 30
30 180 0 9,85 30
40 180 0 50,87 28
50 180 0 174,78 5
60 180 0 180,06 0
70 180 0 180,06 0
80 180 0 180,08 0
90 180 0 180,11 0

TABLE III. RESULTS OF THE EXACT METHODS FOR TYPE II
INSTANCES

BW FW ∆
n best DeltaBest DeltaLB best DeltaBest DeltaLB BW/FW
10 0 8,44% 21,5 % 1 1,26% 12,62% 7,26%
20 0 7,84% 20,8 % 0 0,31% 11,66% 7,56%
30 0 10,5% 23,43 % 0 0,34% 10,85% 10,19%
40 0 10,55% 23,55 % 0 0,39% 10,95% 10,20%
50 0 9,74% 22,39 % 0 0,48% 11% 9,31%
60 0 10,66% 23,35 % 0 0,35% 10,59% 10,34%
70 0 10,49% 23,47 % 0 0,46% 11,04% 10,07%
80 0 13,6% 27,22 % 0 0,52% 10,5% 13,14%
90 0 8,85% 21,88 % 0 0,25% 11,38% 8,62%

TABLE IV. RESULTS OF THE HEURISTIC METHODS FOR TYPE II
INSTANCES

REFERENCES

[1] Billaut J-C., Lopez P. and Takouti L, A method for characterizing the
set of optimal sequences for some scheduling problems. 12th Congress
of the French OR Society (ROADEF’2011), Saint-Etienne, March 2011.

[2] Billaut J-C., Lopez P., Characterization of all ρ−approximated se-
quences for some scheduling problems. IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, art. no.
6059026, 2011.

[3] Billaut J-C., Hebrard E. and Lopez P., Complete Characterization of
Near-Optimal Sequences for the Two-Machine Flow Shop Scheduling
Problem, Ninth International Conference on Integration of Articial Intel-
ligence and Operations Research Techniques in Constraint Programming
(CPAIOR’2012), Nantes, June 2012.

[4] Blazewicz J, Ecker K.H., Pesch E., Schmidt G., Weglarz J., Scheduling
Computer And Manufacturing Processes. Springer, 2nd edition, 2007.

[5] Bouquard J-L., Lente C, Billaut J-C., Application of an optimization
problem in Max-Plus algebra to scheduling problems, Discrete Applied
Mathematics, 154(15), pp. 2041-2238, 2006.

[6] Chen C-L., Bulfin R.L., Scheduling unit processing time jobs on a single
machine with multiple criteria, Computers & Operations Research, 17(1),
pp. 1-7, 1990.

[7] Jackson J-R., Scheduling a production line to minimize maximum tar-
diness. Research report 43, Management Science Research Project,
University of California, Los Angeles, 1955.

[8] Johnson S.M., Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1, pp. 61-68,
1954.

[9] Lawler E., emphOptimal sequencing of a single machine subject to
precedence constraints. Management Science, 19(8), 544–546, 1973.

[10] Smith W.E, Various optimizers for single stage production. Naval
Research Logistics Quarterly, 3(1-2):59-66, 1956.

[11] T’Kindt V., Billaut J-C., Multicriteria scheduling. Theory, models and
algorithms, Springer, 2nd edition, 2006.

