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Abstract

Human action recognition in 3D sequences is one of the most challenging and

active areas of research in the computer vision domain. However designing au-

tomatic systems that are robust to significant variability due to object combi-

nations and high complexity of human motions are more challenging in addition

to the typical requirements such as rotation, translation, and scale invariance

is challenging task. In this paper, we propose a spatio-temporal modeling of

human-object interaction videos for on-line and off-line recognition. The inter

joint distances and the object are considered as low-level features for online clas-

sification. For off-line recognition, we propose rate-invariant classification of full

video and early recognition. A shape analysis of trajectories of the inter-joint

and object-joints distances is proposed for this end. The experiments conducted

following state-of-the-art settings using MSR Daily Activity 3D Dataset and On-

line RGBD Action Dataset and on a new Multi-view dataset for human object

interaction demonstrate that the proposed approach is effective and discrimina-

tive for human object interaction classification as demonstrated here.
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1. Introduction

Analysis of human activities and behavior through visual data has attracted

a tremendous interest in the computer vision community. Indeed, this repre-

sents a task of interest for a wide spectrum of areas due to its huge potential, like

human-machine interaction, physical rehabilitation, surveillance security, health5

care and social assistance, video games, etc[1]. Comparing to verbal or vocal

communication data, visual data forms one of the most important cues in devel-

oping systems for understanding human behavior. The applications range are

from tracking daily activities to classifying emotional states, as well as detecting

abnormal and suspicious activities.10

The recent development and wide-spread use of portable, commodity, high-

quality and accurate depth cameras such as Microsoft Kinect[2] has changed the

picture by providing 3D depth data for video-based human action recognition.

This type of data brings several advantages as it makes the background easy to

remove and allows extracting and tracking the human body, thus capturing the15

human motion at each frame. Additionally, the 3D depth data is independent of

the human appearance (texture) providing a more complete human silhouette

relative to the silhouette information used in the past[3]. So the emergence of

3D data reduces the challenges to human behavior analysis. In this context,

several datasets have been collected such as the MSR 3D-Action dataset, MSR20

Daily Activity 3D Dataset[4] and the Online RGBD Action Dataset [5].

However, human activity understanding is a more challenging problem due to

the diversity and complexity of human behaviors [6] and accurate human action

recognition is still a quite challenging task and is gradually moving towards

more structured interpretation of complex human activities involving multiple25

people and especially interaction with objects. To the best of our knowledge,

the majority of action recognition past approaches investigate simple action

recognition [7] [8] [9] [10] [11] [12] such as boxing, kicking, walking, etc. and

less effort have been spent on human object interaction. There are two different

scenarios for human-object interaction recognition. The first one is an on-line30
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classification that needs low level features and the second is off-line and brings

a new challenge which is the difference in rate and execution time.

Even though the depth cameras have generally a better quality of 3D action

data than those estimated from monocular video sensors, adopting the 3D joint

positions for human-object interaction is not sufficient to classify actions that35

includes interaction with objects. During a human object interaction scene, the

hands may hold objects thus are hardly detected or recognized due to heavy

occlusions and appearance variations [13]. A high level information of the ob-

jects is needed to recognize the human-object interaction. On the other hand,

the use of 3D skeleton joints is not sufficient to distinguish some actions like40

drinking and picking phone. Extra inputs need to be included and exploited for

more accurate recognition.

In this work, we propose two methods using both skeletal data and local

depth information for on-line and off-line human-object interaction videos clas-

sification. Several parts are common for the two scenarios such as the extraction45

of low-level features and the classification task. For the on-line classification, we

used [14]’s modeling framework to represent individual skeletons. Additionally,

local depth information of objects extracted for building feature vectors provides

more accurate human-object interaction recognition. For rate-invariant classifi-

cation, we use the shape analysis of features trajectories. An action is defined50

as an evolution of the inter-joint distances and thus actions are represented by

trajectories.

1.1. Related work

In this section, we briefly review related work from four streams of research

and discuss our contributions compared with the existing work.55

In the literature of activity recognition, many previous work in behavior

analysis used videos produced by conventional cameras [15], [16], [17], [18].

There are a large amount of existing methods for human-object interaction

recognition based on static and 2D videos such as [19] [18] [20] [21] [22] [23] [24]

[25]. [26] adopted grouplet encode detailed and structured information from60
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the images to estimate the 2D poses. In [27], the authors treated object and

human pose as the context of each other in human-object interaction activities.

[28] inferred the spatial information of objects by modeling the 2D geometric

relations between human body and objects. [29] combined spatial and functional

constraints between human and objects to recognize actions and objects on65

static images. [30] [31] developed spatio-temporal AND-OR graph to model

the spatio-temporal structure of the poses in an actions. [32] [33] learns a

discriminative deformable part model(DPM) that estimates both human poses

and object location. These methods define the human-object interactions on 2D

image. Such contextual cues are often compromised by the viewpoint changes70

and occlusions.

Recently, with the development of the commodity depth sensors like Kinect,

there has been a lot of interests in human action recognition from depth data

such as [9], [8], [10], [11], [12], [34], [35], [36]. Instead of covering all ideas

exhaustively, we direct interested readers to some recent surveys [7], [37], [38],75

[39] that together overview this domain.

Here we focus on the human-object interaction and action recognition ap-

proaches using human body descriptors which most closely related to our ap-

proach. The approaches on human-object interaction and action recognition

can be roughly divided into the following three main categories.80

Approaches based on depth information

Human pose estimation has generated a vast literature (surveyed in [40],

[41]). The computer vision researchers have been more interested in this area

with the availability of depth sensors [42],[43], [44]. Grest et al. [42] use Iterated

Closest Point to track a skeleton of a known size and starting position. Anguelov85

et al. [45] segment puppets in 3D range scan data into head, limbs, torso, and

background using spin images and a MRF. Thanks to the work of [46] by using

the depth cameras which offers a cost-effective method to track 3D human poses,

many approaches in the literature adopted skeleton, RGB and depth features to

model human activities (including human-object interaction). In this part, we90
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mainly discuss the works based on depth sequences. [47] extracted the objects

from depth data to perform sub-activity (referred to as action) classification

and functional categorization of objects. Their method first detected the sub-

activity being performed using the estimated human pose from depth data, and

then performed object localization and clustering of the objects into functional95

categories based on the detected sub-activity. [48] took advantage of pose tracks

and depth readings and employed the latent structural SVM to train the model

with part-based pose trajectories and object manipulations. [49] proposed a

shape analysis tool predicting human pose based on object affordance.

Many works of human activities using depth maps obtained decent perfor-100

mance. [4] employed an action graph to model the dynamics of the actions

and sample a bag of 3D points from the depth map to characterize a set of

salient postures that correspond to the nodes in the action graph. But there

are limitations of this work such as noise and occlusions in the depth maps and

sampling scheme is view dependent. In [50], they presented a descriptor his-105

togram of oriented 4d surface normals (HON4D) capturing the distribution of

the surface normal orientation in the 4d volume of time, depth and spatial co-

ordinates from depth maps. [51] learned dictionaries of sparse codes of sampled

spatial-temporal 3D volumes from depth maps and achieved real-time human

action recognition.110

In most cases, the works based on depth images adopt the whole depth maps

which is difficult to achieve the real-time recognition. Skeleton descriptor can

effectively solve this problem. So we take advantage of this property of skeleton

information applied in our approaches.

Approaches based on skeleton information115

To the best of our knowledge, there are a few works on recognizing human-

object interactions only based on skeleton joints. [13] presented a 4D human-

object interaction model for joint event recognition through joint inference from

RGBD videos. The 4DHOI model represents the geometric, temporal and se-

mantic relations in daily events involving human object interactions. [5] pro-120
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posed a novel middle level representation called orderlet [52] for recognizing

human object interactions. It presented an orderlet mining algorithm to dis-

cover the discriminative orderlets from a large pool of candidates.

But in current research field of action recognition, the skeleton information

is adopted in many works. [53] performed the Dynamic Time Warping (DTW)125

on feature vectors defined by 3d joint trajectories. In [54], an approach for

human action recognition with histograms of 3D joint locations (HOJ3D) as a

compact representation of postures is proposed. The HOJ3D computed from

the action depth sequences are re-projected using LDA and then clustered into

several posture visual words, which represent the prototypical poses of actions.130

The temporal evolutions of those visual words are modeled by discrete hidden

Markov models (HMMs). [55] proposed a general method for online estimation

of quality of movement on stairs and used depth sensors on staircases only

skeleton data adopted. [56] represented a human skeleton as a point in the

Lie group which is curved manifold, by explicitly modeling the 3D geometric135

relationships between various body parts using rotations and translations. Using

the proposed skeletal representation, it modeled human actions as curves in

this Lie group then mapped all the curves to its Lie algebra, which is a vector

space, and performed temporal modeling and classification in the Lie algebra.

The depth data is not suitable for online action recognition from unsegmented140

streams. [57] created a joint space can then be used to predict potential human

poses and joint locations from a single image. This joint space modeled he

physical interaction between human poses and scene geometry. [58] introduced

a human representation by comparing the similarity between human skeletal

joint trajectories in a Riemannian manifold [59].145

For fine-grained human object interaction recognition, [60] used the MSR

Daily Activity 3D Dataset obtained by Kinect and linked object proposals fol-

lowed by feature pooling in selected regions. In their work, the proposed method

only analyzed 2D video content without depth map. But they added skeleton

information to localize useful interaction parts and remove background noise150

and obtained best result on this dataset compared with state of the art. [3]
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proposed to model the evolution of human skeleton shapes as trajectories on

Kendalls shape manifolds, and used a parameterization-invariant metric [61]

for aligning, comparing, and modeling skeleton joint trajectories, which can

deal with noise caused by large variability of execution rates within and across155

humans. We also performed our approached by using depth and skeleton infor-

mation on this dataset and details will be shown in the following sections. There

are several works [62] and a comprehensive survey [63] of existing space-time

representations of people based on 3D skeletal data.

Approaches based on hybrid information160

Here we introduce some works proposed hybrid approaches by combining

both depth information and skeleton data features in order to improve recogni-

tion performances. [64] defined a Markov Random Field MRF over the spatio-

temporal sequence where nodes represent objects and sub-activities, and edges

represent the relationships between object affordances, their relations with sub-165

activities, and their evolution over time. This method needs the video to be pre-

segmented. And the object detection is independent of the contextual feedback

from human actions. [52] used relative skeleton position and local occupancy

patterns (LOP) features to model the human-object interaction, and developed

Fourier Temporal Pyramid to characterize temporal dynamics.170

1.2. Overview of the proposed method

In this paper, we develop an approach for two different scenarios with differ-

ent challenges. Actually, several applications require human object interaction

recognition after the action is done. The main challenges revealed in this sce-

nario are the execution time differing for same interaction and significant spa-175

tial variation in the way of performing an action. The pipeline of the proposed

approach (denoted off-line scenario) is depicted in Figure 1. The object de-

tection and the spatio-temporal modeling are common steps in both scenarios.

The input sequences are modeled as trajectories in R210 via a Spatio-Temporal

Modeling (STM). A rate invariant shape analysis of these trajectories is then180
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performed and this make the comparison of the sequences invariant to the rate.

The shape analysis framework includes calculation of intrinsic mean of the tra-

jectories issued from the same interaction for training data. The rate invariant

distance between a trajectory issued from testing data and all mean trajecto-

ries calculated on training data built the final feature vector that represents the185

input of Random Forest classifier.

Furthermore, the trade-off between the accuracy and observation size for

rapid and real-time recognition is an important topic in a wide spectrum of real

applications, this motivates the second scenario we develop in this paper: online

human-object interaction recognition. The main challenge here is the accurate190

and real time recognition thus we propose to use the low-level features used

for the first scenario as input to classifier. Actually, the skeleton features (low-

level) are easy to extract and track from depth maps thanks to the work of [46],

utilizing low level features to describe interactions and the most relevant parts

of human poses with respect to object can make it possible to achieve rapid and195

online recognition of human-object interactions. The pipeline of this scenario

is depicted in Figure 1. The LOP algorithm [52] is applied on each frame of

input sequence to detect the presence and the position of the object. Then

the low-level features are calculated in each frame and the classification will be

done using one frame with N previous frames in the memory (N can be 0).200

The position of the object is necessary to calculate the object-joints distances

used as low features. Moreover, the rough shape and the size of the object are

estimated to allow for online human-object interaction recognition.

This paper is an extension of a previous conference paper [14]. The main

contributions of this work are the following:205

• Extending the low-level features (inter-joint distances) used previously in

[14] and propose a new object feature describing roughly the size and the

shape of the object for online classification.

• Modeling the evolution of the low-level features along videos by trajecto-

ries in R210 and perform an elastic shape analysis of these trajectories to210
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Figure 1: Overview of our method. Four main steps are shown: low-feature extraction from

each frame; Buiding feature vector by spatio-temporal modeling; Shape analysis of feature

vector for rate invariant classification; For Online classification, Random Forest-based classi-

fication.

allow rate-invariant human-object recognition.

• Presenting comparative evaluations on two challenging datasets presenting

different challenges.

• Propose a new scenario in Human Object interaction including abnormal

gait and multi view. Actually a new multiview dataset is collected for this215

end (collected by 2 kinects), a new protocol has been designed and results

are presented on this new dataset.

The rest of the paper is articulated as follow. Section 2 briefly describes

the related works. In Section 3, we introduce the overview of our method. The

spatio-temporal modeling of low-level joint feature is introduced in Section 4.220

The online classification and rate-invariant sequence classification presented in

Section 5 and Section 6 respectively. The recognition results of the proposed

approach on MSR Daily Activity 3D Dataset and Online RGBD Action Dataset

9



which represent the benchmark of of human activities and comparison with the

state-of-the-art algorithms are presented in Section 7. Finally Section 8 sum-225

marizes the work, addresses several aspects of the model that can be improved

and future research directions.

2. Spatio-temporal representation of actions

The invariance to the translation and rotation of the subject in the scene

is a necessary condition of human-object interaction recognition systems: two230

instances of the same action differing only for the position and orientation of the

person with respect to the scanning device should be recognized as belonging

to the same action class. This goal can be achieved either by adopting a trans-

lation and rotation invariant representation of the action sequence or providing

a suitable distance measure that copes with translation and rotation variations.235

Similarly to [14], we propose to use the inter-joints and the object-joints dis-

tances that handles well with the situations discussed above. The object position

is detected by the LOP algorithm [52]. For each frame, all pairwise distances

of 20 skeleton joints and object one are calculated. When the action does not

have object, the corresponding entries in the distance matrix are blank and are240

filled using an imputation technique [65]. In our experiments we employed the

mean imputation method, which consists of replacing the missing values by the

means of values already calculated in presence of the object from the training

set. The skeleton information is denoted as J which contains 20 joints from the

original data and object joint represented by jo.245

J = {j1, j2, ..., j20, jo} (1)

D refers to the set of the pairwise distances between the joint a and joint b from

J .

D = {d(a, b)} , a ∈ J , b ∈ J (2)

Thus the low-level feature vector is composed by the all pairwise distances

between the joints and the distances between the object and the joints. The
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Figure 2: Examples of our pairwise joint distance features on MSR Daily Activity 3D Dataset.

The red one refers to object joint for each action.

size of this vector is equal to m × (m − 1)/2, with m = 21: the 20 joints and250

the object joint. The concatenation of this feature vector along frames gives a

trajectory in R210.

We start by outlining a mathematical framework for helping in analyzing

the temporal evolution of human object interactions when viewed as trajec-

tories on shape space of distance trajectories. This framework respects the255

underlying geometry of the shape space of the trajectories and helps maintain

desired invariance. Then calculate the distance between the mean trajectory

of each action to the trajectories from testing set based on square-root velocity

function (SRVF[66]. So that the trajectories from different action classes can

be fairly compared in a another shape space.260

2.1. Shape analysis of distance trajectories

Let β : I → R210, where I = [0, 1], represents a parameterized curve encoding

the trajectory of pairwise distances along a video. For each frame t, β(t) = Dt

encodes the pairwise distances at this frame. The shape of trajectories of the
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3D joints have been studied previously [3], [58]. In this work we analyze the265

shape of the trajectory engendered by the evolution of the distances between the

joints in time. To analyze the shape of β, we shall represent it mathematically

using the square-root velocity function (SRVF) [66], denoted by q(t), according

to: q(t) = β̇(t)√
‖β̇(t)‖

; q(t) is a special function of β that simplifies computations

under elastic metric.270

Actually, under L2-metric, the re-parametrization group acts by isometries

on the manifold of q functions, which is not the case for the original curve β.

To elaborate on the last point, let q be the SRVF of a curve β. Then, the SRVF

of a re-parameterized curve β ◦ γ is given by
√
γ̇(q ◦ γ). Here γ : I → I is a

re-parameterization function and let Γ be the set of all such functions.275

Define the preshape space of such curves: C = {q : I → R210|‖q‖ = 1} ⊂

L2(I,R210), where ‖ · ‖ implies the L2 norm. With the L2 metric on its tangent

spaces, C becomes a Riemannian manifold. Also, since the elements of C have a

unit L2 norm, C is a hypersphere in the Hilbert space L2(I,R210). The geodesic

path between any two points q1, q2 ∈ C is given by the great circle, ψ : [0, 1]→ C,280

where

ψ(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) , (3)

and the geodesic length is θ = dc(q1, q2) = cos−1(〈q1, q2〉).

In order to study shapes of curves, one identifies all re-parameterizations of

a curve as an equivalence class.

Note that the parameterization of a trajectory during an action corresponds285

to the rate of the action. Thus comparison of equivalent classes rather than tra-

jectories themselves is rate invariant differentiation which reduces the difference

in rate between actions and facilitates the action recognition.

Let’s define the equivalent class of q as: [q] = {
√
γ̇(t)q(γ(t)), γ ∈ Γ}.

The set of such equivalence classes, denoted by S .
= {[q]|q ∈ C} is called the290

shape space of open curves in R210. As described in [66], S inherits a Rieman-

nian metric from the larger space C due to the quotient structure. To obtain

geodesics and geodesic distances between elements of S, one needs to solve the
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optimization problem:

γ∗ = argminγ∈Γdc(q1,
√
γ̇(q2 ◦ γ)). (4)

The optimization over Γ is done using the dynamic programming algorithm.295

Let q∗2(t) =

√
˙γ∗(t)q2(γ∗(t))) be the optimal element of [q2], associated with

the optimal re-parameterization γ∗ of the second trajectory, then the geodesic

distance between [q1] and [q2] in S is ds([q1], [q2])
.
= dc(q1, q

∗
2) and the geodesic

is given by Eqn. 3, with q2 replaced by q∗2 .

2.2. Statistics of the trajectories300

One advantage of a shape analysis framework of the trajectories is that one

has the actual deformations in addition to distances. In particular, we have a

geodesic path in S between the two trajectories β1 and β2 in R210. This geodesic

corresponds to the optimal elastic deformations of two trajectories. The Rie-

mannian structure defined on the manifold of shape of the trajectories in S305

enables us to perform such statistical analysis for computing curves (trajecto-

ries) mean and variance. The Karcher mean [59] utilizes the intrinsic geometry

of the manifold to define and compute a mean on that manifold. It is defined

as follows: Let ds(β
i, βj) denote the length of the geodesic from βi to βj in S.

To calculate the Karcher mean of trajectories {β1, ..., βn} in S, define the310

variance function:

V : S → R,V(N) =

n∑
i=1

ds(SRV F (βi), SRV F (βj))2 (5)

The Karcher mean is then defined by:

β = arg min
µ∈S
V(µ) (6)

The intrinsic mean may not be unique, i.e. there may be a set of points in S

for which the minimizer of V is obtained. To interpret geometrically, β is an

element of S, that has the smallest total deformation from all given trajectories.315

The karcher mean has been previously used in biometrics [67], [68].
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Algorithm 1 Karcher mean algorithm

Set k = 0. Choose some time increment ε ≤ 1
n

. Choose a point µ0 ∈

S as an initial guess of the mean. (For example, one could just take µ0 =

β1.)

1- For each i = 1, ..., n choose the tangent vector ti ∈ Tµk (S) which is tangent to the

geodesic from µk to βi. The vector g =
∑i=n
i=1 ti is proportional to the gradient at µk of

the function V.

2- Flow for time ε along the geodesic which starts at µk and has velocity vector g. Call the

point where you end up µk+1.

3- Set k = k + 1 and go to step 1.

The mean are calculated on trajectories belonging to the same action in

order to get mean of the trajectory for each action. These means will be used

in the classification of the actions. Moreover, the mean trajectory is invariant

to the rate of execution of given videos due to the elastic metric used in the320

calculation of the mean.

2.3. Rate-invariant Action classification

The classification step is performed by Random Forest classifier based on

an Euclidean signature for each sequence (trajectory) -training or test. The eu-

clidean signature calculation process is illustrated in Figure 3 Given n sequences325

{v1, ..., vn} in the training set, we first calculate the corresponding trajectories

{β1, ..., βn} ∈ R210∗n using the spatio-temporal modeling. Each resulting tra-

jectory βi corresponds to an action class labeli ∈ {a1, ..., ak}. Using algorithm

1, the mean µi for each class is first calculated on the training set. Next, the

geodesic distance dS between any query trajectory -training or test- and the330

mean curves µi is calculated and denoted di.

A concatenation of the k individual Euclidean representations results in a

large Euclidean vector that represents the final Euclidean signature of any a

given trajectory.

The classification is performed using the multi-class version of Random For-335

est algorithm. The Random Forest algorithm was proposed by Leo Breiman

in [69] and defined as a meta-learner comprised of many individual trees. It
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Figure 3: Overview of off-line classification. Note that the both training and testing data are

built by spatio-temporal modeling and the red point is the object position we assumed. First,

Spatio-Temporal Modeling (STM) is applied on each video of training and testing data to get

trajectories of dimension R210∗n (where n is the number of frames for each video). Then, the

rate-invariant mean shape µi of each action ai, i = 1..k is calculated. The feature vector for a

given trajectory is then built by concatenating the distances dS between this trajectory and

all of the mean trajectories.
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was designed to operate quickly over large datasets and more importantly to

be diverse by using random samples to build each tree in the forest. Diversity

is obtained by randomly choosing attributes at each node of the tree and then340

using the attribute that provides the highest level of learning. Once trained,

Random Forest classify a new action from an input feature vector by putting

it down each of the trees in the forest. Each tree gives a classification decision

by voting for that class. Then, the forest chooses the classification having the

most votes (over all the trees in the forest). In our experiments we used Weka345

multi-class implementation of Random Forest algorithm. A study of the effect

of the number of the trees is reported later in the experimental part.

3. Online recognition

Based on the inter-joints and object-joints distances presented previously, we

propose in this section an algorithm for on-line recognition. The classification350

is based on one frame with N previous ones in the memory (N can be zero).

When N is not null, the N-frames sliding window is considered for the on-line

classification. The first step in the on-line recognition system we propose is

the object feature. This object feature will be fused later with the low-level

extracted features to built the final features vector which will be classified on-355

line using random forest classifier.

3.1. Object Feature

A specific object description can be helpful to characterize the human object

interaction. But this is a difficult and time consuming way to realize online

classification. As we discussed in the previous part, it is insufficient to only360

use the 3D joint positions to fully model an action, especially when the action

includes the interactions between the subject and other objects such as drinking

and picking phone. The extra input like depth information need be adopted in

order to have more precise classification.

Motivated by properties of objects, we try to utilize the size and shape365

information of objects which is more efficient and convenient way for online
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Figure 4: The illustration of object cube size. In the first row, the green rectangular and red

rectangular represent small and large cube respectively. The yellow rectangular in the second

row represent the appropriate size of object cube.

Figure 5: Examples of our object features on Online RGBD Action Dataset (ORGBD) dataset.

The red cube refers to object cube for each action.

human-object interaction recognition. When performing an interaction, human

usually hold objects by two hands. Moreover, the depth points located around

the skeleton joints of two hands contain a lot of messages about the size and

shape of objects.370
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The object is assumed to be present around one hand, thus similarly to the

LOP algorithm [52] that counts the number of points inside a given cube around

given point (hand for example) and decides the presence of an object given a

threshold, we extend this algorithm to exploit the number of the points inside

the cube and the 3D coordinates of these points to built the object feature. The375

number of depth points refers to the rough size of objects and the coordinates

of these points refer to the rough shape of objects. The PCA algorithm is

applied on the coordinates in order to determine the principal directions of the

object inside the cube. These directions are concatenated with the number of

the points to build the object feature. The feature vector calculation depends380

on the size of chosen cubes to detect these points. If the cube size is too small

like the situation shown at the top left in Fig. 4, the green rectangular is too

small to show the features of different object. So the resulting feature will not

be discriminative for interaction classification. If the cube size is too big like

the situation shown at the top right in Fig. 4, the red rectangular is so big that385

contains a lot of context from background and other parts of body. So we have

to detect objects in a appropriate size as shown in the second row in Fig. 4. In

the experiment, the retained size of cubes is 50. A trade of the size of this cube

and the results will be discussed later in experimental section. We report in Fig.

2 examples of different human action interactions. The object is reported in red390

and the joints are reported in green. The proposed features are the pairwise

distances between all these points in 3D.

3.2. Online action recognition

The feature vector is the concatenation of the pairwise distances of elements

from J in equation 1 and the object feature that contains the number of points395

inside the cube around the hand holding the object and the main directions de-

scribing the rough shape of the object given by PCA algorithm. The proposed

approach handles also the human action with no object interaction. In this

case, the LOP algorithm detects the absence of objects around the hands and

an imputation technique is used to fill the missing informations. In our exper-400
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iments we employed the mean imputation method, which consists of replacing

the missing values by the means of values already calculated in presence of the

object from the training set. For the classification task we used the multi-class

version of Random Forest algorithm. The Random Forest algorithm was pro-

posed by Leo Breiman in [69] and defined as a meta-learner comprised of many405

individual trees. It was designed to operate quickly over large datasets and more

importantly to be diverse by using random samples to build each tree in the

forest. Diversity is obtained by randomly choosing attributes at each node of

the tree and then using the attribute that provides the highest level of learning.

Once trained, Random Forest classify a new action from an input feature vector410

by putting it down each of the trees in the forest. Each tree gives a classification

decision by voting for that class. Then, the forest chooses the classification hav-

ing the most votes (over all the trees in the forest). In our experiments we used

Weka multi-class implementation of Random Forest algorithm by considering

100 trees. A study of the effect of the number of the trees is reported later in415

the experimental part.

4. Multi-view Human Object Interaction Recognition

4.1. Dataset description

To evaluate our method, we built a large-scale 3D event dataset with ab-

normal and normal human activities involved human object interactions. It is420

captured by two stationary Kinect sensors from different viewpoints simulta-

neously. It includes 8 event categories: press button with injured arm or with

injured leg, pick phone with injured arm or with injure leg, use remote and take it

back with injured arm or with injure leg, fetch water from dispenser with injured

arm, walk around holding cane with injured leg, walk around holding umbrella425

with injured leg, remove chair with injured leg, walk with plate and put it back

on the table with injured arm or with injure leg and 3 modalities include normal,

injured arm and injured leg. All these activities were performed by 10 differ-

ent subjects each two times in normal and abnormal way. Each event category
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includes about 30 video sequence instances. For each frame, the Kinect V2430

provides 25 skeleton joints which is different from Kinect V1 which provides 20

skeleton joints.

Figure 6: The setting up of dataset collection
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Figure 7: The setting up of dataset collection

Here, Fig. 6 and Fig. 7 are the photographs of the system we set up. We

have two Kinects (one on the left and one on the right), mounted on tripods

so that we get a big enough common fields (see next forwarded mail to see the435

trace on the floor (dashed lines) that corresponds to the area where both Kinects

provide a good detection of the skeleton. This represent a surface of about 3 x

3 meters starting at (about, again) 1,5 meters from the Kinects’ lenses).

There are several characteristics which make the new multi-view dataset

challenging. In the first place, we use two Kinect sensors to capture the video.440

As the various types of subjects’ action, the synchronization from different view

for rate invariant recognition is a big issue to address. In the second place, we

not only capture the normal persons holding different objects but also abnor-

mal persons executing activities with objects. At last, there are two abnormal

modalities which means our new dataset has large variety when each subject445

21



performing an event.

4.2. Multi view data synchronization and fusion

For the synchronized view experiments, we propose two steps for synchroniz-

ing the same action from different views. First, we use the resampling algorithm

and the function 4 of shape analysis framework for the alignment of trajectories450

from each frame. Second, after alignment, we adopt the proposed fusion frame-

work to achieve a fused trajectories by selecting the best distance attributes

from each trajectory. For the fusion algorithm, we will detail it later.

As shown in Fig. 8, we apply the same framework like we did in the temporal

modeling. The β1 and β2 refer to the feature matrix obtained from the low-level

feature based on the same action from different views. β1 (t0) is the trajectory

of first frame of β1 and β1 (t1) is the trajectory of second frame of β1. So the

β1 (t) is the one of trajectories of the frames of β1 and β2 is the same. So after

resampling, we align them frame by frame.

β2 ∗ γ∗

is the aligned trajectory after applying the function γ∗ (4). Then, we fuse the

β1 and β2 ∗ γ∗ as following for the same action.455

As explained above, we need fuse the trajectories for each frame of the videos

from K1 and K2 which refer to these two Kinect sensors. In Fig. 9, we can notice

that there are three colors to represent different distance attributes. Here, we

calculate the distance between β1 (t) and β2 (t) : if they are not close, we choose

the mean of the corresponding distances (red); if they are close, we choose the460

smoother one by comparing their own curvature 7.

k = |dt/ds| (7)

t is the velocity vector which is also the difference between the distance at-

tributes on β1 (t) and β2 (t).
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Figure 8: The illustration of trajectories synchronization

Figure 9: The illustration of trajectories fusion. The green, yellow and red points refer to the

distance on β (t) of the videos from K1, K2 after synchronization and mean respectively.
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5. Experimental evaluation

5.1. Datasets465

1. MSRDaily Activity 3D dataset is a daily activity dataset captured by

Kinect [2] device, to cover human daily activities in the living room. There

are 16 action classes: drink, eat, read book, call cellphone, write on a

paper, use lap- top, use vacuum cleaner, cheer up, sit still, toss paper,

play game, lay down on sofa, walk, play guitar, stand up, sit down each470

of which was performed twice by 10 subjects. For each video, it provides

3 kinds of data: RGB, depth image and joint and 320 samples in total.

Additionally, the activities includes human-object interactions and human

motion that is the most important reason we choose this dataset. We

propose to evaluate the MSR Daily Activity 3D dataset[52] for both of475

online and rate-invariant classifications (off-line scenario).

2. ORGBD dataset contains seven types of actions which all those actions

are human-object interactions: drinking, eating, using laptop, picking up

phone, reading phone (sending SMS), reading book, and using remote.

The bounding box of the object in each frames is manually labeled. In480

our approach, we use the object labels to locate our object feature. All

of the videos are captured by Kinect. Each action was performed by 16

subjects for two times. We compare our approach with state-of-the-art

methods on the cross-subject test setting, where half of the subjects are

used as training data and the rest of the subjects are used as test data.485

This dataset was proposed for online recognition [5]. Thus we evaluate

the performance of our online algorithm on this dataset.

3. Multi-view Human Object Interaction Recognition Lille Douai dataset

To the best of our knowledge, this dataset represents the first multi-view

human object interaction dataset that include normal and abnormal gaits.490

We collect it to test the performance of the proposed method within this

different scenarios for human object interaction. The dataset description

was presented in the previous section.
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5.2. Comparative results on ORGBD dataset

We compare our online approach with results achieved by the state-of-the-495

art methods on ORGBD dataset and compare our results to [5] which is, to our

best knowledge, the only work on this database for real time classification. We

used the same protocol as [5], where half of the subjects are used as training

data and the rest of the subjects are used as test data. As shown in Table 1,

we reveal different experimental results based on the different features we used500

in our approach. As illustrated in the second row of Table 1, based on the low-

level features (object to joints and inter joints distances), the recognition rate

is 75.58% compared to 71.4% in [5]. By adding the rough shape of the object,

using PCA on the points inside the cube, we reach 77.26% as illustrated in the

third row of the table. Based of the low-level features and the rough size of505

the object, the recognition rate is 77.22% as presented in the fourth row of the

table. Finally, the fusion of the all the features (the low-level features (all the

distances), the rough size and the rough shape of the objects) gives 78.4% The

size of the sliding window used here is 50 frames. More results with different

sizes of sliding windows will be presented later.510

Table 1: Comparison of Online Classification on ORGBD Dataset with state of the art results

Method Accuracy

Discriminative Orderlet Mining [5] 71.4%

Proposed approach: low-level feature 75.58%

Proposed approach: low-level features and the rough shape of the object 77.26%

Proposed approach: low-level features and the rough size of the object 77.22%

Proposed approach: low-level features, the rough shape and the rough size of the object 78.4%

Relevant Features

We reveal the relevant features for human object interaction recognition.

The distances between the object and the joints are selected ones in general. In

order to better understand the behavior of the proposed approach, we perform

binary classification of each interaction. For action 1 (drinking), we label the515
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data from action 1 as the first class, the second class includes all the remaining

actions. The best features to classify action 1 (drinking) are revealed. We

repeat this experiments for all the remaining actions separately. Fig. 13 shows

the results of this experiment. The pairwise distances between the the yellow

and red joints are the best features to recognize each human object interaction.520

Figure 10: Selected features for each interaction, the best features are the distances between

the yellow and red joints.

For example, the best features for drinking (action 1) are the pairwise dis-

tances between the object joint and the skeleton joints which are on the right

hands, on both sides of the crotch, on the left hand and on the left feet. Another

example, for eating (action 2), the best features are the pairwise distances be-

tween the object joint and the skeleton joints which are on the left hand and on525

the right hand. There is another situation, for using laptop (action 3), the best

features are the pairwise distances between the object joint and the skeleton

joints which are on the crotch and on the spinal part. Based on the attributed

distances, we know which joint on the skeleton data for each action is more

meaningful for recognizing different human object interaction.530

Effect of Temporal Size of the Sliding Window

We have conducted additional experiments when varying the temporal size

of the sliding window used to define the sub-sequences. We test different sizes

of sliding window on the two kinds of feature discussed above and report results

on these two datasets. The recognition rate is reported in Fig. 11 for different535

window sizes (from 10 to 80). As these results show the fusion of the rough
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Figure 11: Effect of the temporal size of the sliding window on ORGBD Dataset

shape (PCA) and the rough size (number of points) increases the accuracy

of the recognition for the different sizes of window. Moreover, the accuracy

increases with the size of the window, the recognition rate is about 75% for a

window size of 20 and reaches about 80% when the window size is 80. Actually540

the bigger the window is, a bigger memory is used for the recognition.

5.3. Comparative results on MSR Daily Activity 3D dataset

Most current methods worked on MSR Daily Activity 3D Dataset only based

on the whole sequences, not online classification. We used the same protocol as

[5], where we use the videos from half of the subjects for training and the other545

half for testing. For fair comparison, we show our results comparing with online

methods in Table 2. Here we also adopt four different features as introduced

in previous subsection with the same memory set to compare with state of the

art results. We can see from Table 2, we achieves the classification accuracy
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of 76.35% based on the low-level features (all the distances) and 76.9% based550

on the rough shape. The accuracy reaches 77.2% based on the rough size of

the object and 77.5% based on the fusion of all the features (the distances, the

rough size and the rough shape). The accuracy revealed in this experience is

much better than the frame level accuracy of discriminative orderlet mining [5].

Table 2: Comparison of Online Classification on MSR Daily Activity 3D Dataset with state

of the art results

Method Accuracy

Discriminative Orderlet Mining on Continuous Recognition [5] 60.1%

Proposed approach: low-level feature 76.35%

Proposed approach: low-level feature and the rough size of the object 76.9%

Proposed approach: low-level feature and the rough shape of the object 77.2%

Proposed approach: low-level feature and the rough shape and size of the object 77.5%

In Fig. 12, the recognition rate is reported in for different window sizes555

(from 10 to 80). As these results show the fusion of the rough shape (PCA)

and the rough size (number of points) increases the accuracy of the recognition

for the different sizes of window. Moreover, the accuracy increases with the

size of the window, the recognition rate is about 72% for a window size of 20

and reaches about 76.5% when the window size is 80. It clearly emerges that560

the action recognition rate increases when increasing the temporal length of the

window. This reveals the importance of the temporal dynamics and shows that

the spatio-temporal analysis outperforms a spatial analysis of the frames.

As the property of rate-invariant classification which is not online method,

we just evaluated this method on MSR Daily Activity 3D Dataset.565

As our feature vectors built only based on skeleton joint information, this

dataset is very challenging if the depth information is not used. To make it fair

for comparison, we mainly compared with the algorithms on skeleton feature

[52], [13] and [5]. [3] only used skeleton information that is the same as our

work. We used the same experimental setting as [5] and performed on the 2-570

fold cross-validation which is using the samples of half of the subjects as training
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Figure 12: Effect of the temporal size of the sliding window on MSR Daily Activity 3D Dataset

Figure 13: Selected features for each interaction, the best features are the distances between

the yellow and red joints.

data, and the samples of the rest half as testing data. The comparison of the

performance is shown in Table 3. We can notice in Table 3 that we obtained

better accuracy than other works. The accuracy of our approach is 77.05%.

Effect of the number of trees in Random Forest algorithm on off-line Classifica-575

tion

The performance of Random Forest classifier varies with the number of trees.

Thus, we perform the experiments with different numbers of trees; the results of

this experimentation is shown in Fig. As illustrated in this figure, the recognition
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Table 3: Comparison of Rate-invariant Classification on MSR Daily Activity 3D Dataset with

state of the art results

Method Accuracy

Skeleton in [52] 68.0%

4DHOI model [13] 70.0%

Skeletal shape trajectories [3] 70.0%

Discriminative Orderlet Mining on Batch Recognition [5] 73.8%

Proposed approach 77.05%

rate raises with the increasing number of trees until 60, when the recognition580

rate reaches 72.5%, and then becomes quite stable. Thus, in the following we

consider 50 trees and we report detailed results with this number of trees in

Fig.14.

To fully evaluate our method, we perform the experiments with different

numbers of trees. So we can see clearly that the performance of Random Forest585

classifier varies with the number of trees from Figure 14. As illustrated in this

figure, the recognition rate raises with the increasing number of trees until 150;

the recognition rate reaches the peak 77.05% and then becomes quite stable. A

similar behavior of this effect is revealed in the online scenario.

Latency Analysis590

The recognition here is still off-line, however, the earlier the decision can be

provided the better it is in several applications like abnormal activities detection.

For this end, we provide the recognition rate using the first k×10% of the data,

with k = 1, 2...10. A given test sequence is first modeled as a trajectory in

R210 and then the corresponding part of the trajectory is compared to the595

corresponding part of karcher mean trajectories.

As illustrated in Figure 15, the recognition rate increases slowly using 10 to

40% of the data. Then the slope becomes greater until 70% of the data where

the performance reaches about 67%. The improvement further is slower using

more data.600
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Figure 14: Human-Object interaction recognition results using a Random Forest classifier

when varying the number of trees.

5.4. Experiments on Multi-view Human Object Interaction Recognition Lille

Douai dataset

Experimental protocol

Due to the new multi-view data, we test our on-line framework on the new

dataset in two main scenarios: different views and synchronized view. In the605

scenario of synchronized view, we divide it into two different experiments based

on person independent or not. For each scenario, there are three different proto-

cols according to the properties of the new dataset. In the first protocol, there

are two classes which are normal and abnormal. As there are two types of ab-

normal modalities, we make three classes: normal, injured arm and injured leg610

in the second protocol. In the third protocol, we class them by different types

of activities.

So in the experiments of different views, we use all of the videos from the

one of Kinect sensors as the training set and all of the videos from the other.

In the experiments of synchronized view on person dependent, due to each615
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Figure 15: Early detection: trade off between the recognition rate and the percentage of used

data.

action performing twice, we use all the first iteration videos as training set and

the second time as testing set. In addition, for synchronized view on person

independent, we choose all the videos from half actors as training set and the

other half of actors’ videos as testing data. All these experiments were based

on the 2-fold cross-validation.620

Experimental results

During these experiments, we built our feature vectors based on the on-

line framework. Due to the different characters of two scenarios, different views

experiments use the low-level feature for the task of abnormal and normal human

object interaction recognition. In the synchronized view experiments, we build625

the feature vectors based on fusing the low-level feature of the same action from

different view by shape analysis framework.
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Table 4: The results of different scenarios for the task of multi-view human object interaction

recognition

Protocols Accuracy (%)

Different views

Protocol1 74.32

Protocol2 60.61

Protocol3 77.05

Synchronized view on person dependent

Protocol1 67.12

Protocol2 55.24

Protocol3 70.17

Synchronized view on person independent

Protocol1 62.21

Protocol3 51.41

Protocol3 65.27
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By analyzing Table. 4, it can be noticed that the results of the two scenarios

based on the three protocols show the success of the proposed method.

6. Conclusion and future work630

In this paper we have presented an effective human object interaction ap-

proach. We have also presented results on human object interaction designed

to handle variations of pose and rate. This method has several properties that

make it appropriate for non-cooperative recognition (rate different, pose varia-

tion) and on-line recognition. Firstly, to handle pose variation, we have proposed635

the inter-joints and objects to joints distances as low-level features. Secondly,

to handle rate variations, we have presented a Riemannian analysis of the dis-

tance trajectories. This framework offers the possibility to calculate an intrinsic

trajectory means which represent the mean variations in several sequences be-

longing to the same class to build the feature vector that will be fed to SVM640

classifier. Thirdly, to handle on-line recognition, we have proposed, in addition

to the low-level features, an object feature describing roughly the shape and the

size of the object. Finally, we have collected a new Multi-view dataset (IMT

Lille Douai dataset) with normal and abnormal human-object interaction se-

quences using two kinects. The experimental results on the MSR Daily Activity645

3D, ORGBD and IMT Lille Douai datasets demonstrate the effectiveness of

the proposed approach. As future work, we plan to integrate in our framework

other descriptors based on both depth and skeleton information. We also expect

widespread applicability in domains such as physical therapy and rehabilitation.
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