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Abstract—Hard drives are an essential component of modern
data storage. In order to reduce the risk of data loss, hard drive
failure prediction methods using the Self-Monitoring, Analysis
and Reporting Technology attributes have been proposed. How-
ever, these methods were developed from datasets not necessarily
representative of operational systems. In this paper, we consider
the Backblaze public dataset, a recent operational dataset from
over 47,000 drives, exhibiting hard drive heterogeneity with 81
models from 5 manufacturers, an extremely unbalanced ratio
of 5000:1 between healthy and failure samples and a real-
world loosely controlled environment. We observe that existing
predictive models no longer perform sufficiently well on this
dataset. We therefore selected machine learning classification
methods able to deal with a very unbalanced training set, namely
SVM, RF and GBT, and adapted them to the specific constraints
of hard drive failure prediction. Our results reach over 95%
precision and 67% recall on a one year real-world public dataset
of over 12 million records with only 2586 failures.

I. INTRODUCTION

Hard drives are essential for data storage but they are
one of the most frequently failing components in modern
data centres [1], with consequences ranging from temporary
system unavailability to complete data loss. Many predictive
models, analysed in section II, have already been proposed to
mitigate hard drive failures but failure prediction in real-world
operational conditions remains an open issue. One reason is
that some failures might not be predictable in the first place,
resulting, for example, from improper handling happening
occasionally even in an environment maintained by experts.
However, this alone cannot explain why the high performances
of the failure prediction models that appear in the literature
have not mitigated the problem further. Therefore, the speci-
ficities of hard drives need to be better taken into account.

First of all, the high reliability of a hard drive implies that
failures have to be considered as rare events which leads to
two difficulties. The ideal application case of many learning
methods is obtained when the classes to predict are in equal
proportions. Next, it is difficult to obtain sufficient failure
occurrences. Indeed, hard drive manufacturers themselves pro-
vide data on the failure characteristics of their disks but it has
been shown to be inaccurate (see e.g. [1], [2]) and often based
on extrapolating from the behaviour of a small population
in an accelerated life test environment. For this reason, it is
important to work with operational data collected over a large
period of time to ensure that it contains enough samples of
hard drive failures.

Another challenge is that the Self-Monitoring, Analysis
and Reporting Technology (SMART) used to monitor hard
drives is not completely standardized. Indeed, the measured
set of attributes and the details of SMART implementation are
different for every hard drive manufacturer. From a machine
learning point of view, there is no guarantee that a learning
model trained to predict the failures of a specific hard drive
model will be able to accurately predict the failures of another
hard drive model. For this reason, in order to draw conclusions
on hard drive failure prediction in general, it is important to
ensure that the proposed predictive models are estimated from
a variety of hard drive models from different manufacturers
and also tested on a variety of hard drive models. Until
now, this constraint was not taken into account properly,
probably because gathering a representative dataset has been
a problem for many previous studies, impairing the generality
of their conclusions. We rather focus on the Backblaze public
dataset1 consisting of several years worth of measurements
on a large drive population operated in an expert-maintained
environment. It has been made available recently, with the
earliest measurements done in 2013.

The objective of this paper is to offer an insight as to
why many previous studies are not directly applicable when
considering class imbalance, data heterogeneity and data vo-
lume and next to adapt predictive models based on machine
learning methods for pattern recognition of hard drive failure
prediction. We also compare the proposed models and discuss
their performances on the Backblaze dataset that includes
hard drives from different manufacturers in order to determine
if they are robust to the differences in SMART parameters.
The paper is organized as follows. In section II, we review
the state-of-the-art while paying a particular attention to the
datasets that were used. In section III, we detail the new
dataset that we use for this study and the specific challenges
associated with it. In section IV, we describe the different
machine learning techniques that we applied to the dataset,
and we underline the different steps of pre-processing, feature
selection, sampling, learning and post-processing. In section
V, we present and discuss our experimental results obtained
with the three most relevant learning models: Support Vector
Machine (SVM), Random Forest (RF) and Gradient-Boosted
Tree (GBT). Finally, we end the paper with a conclusion and
we discuss possible ways to extend this study.

1https://www.backblaze.com/b2/hard-drive-test-data.html



II. RELATED WORK

Several studies on the subject of hard drive failure prediction
based on SMART data have already been carried out. [3],
[4], [5] and [6] all used the same dataset. The models were
tested on a dataset of 369 hard drives of the same model with
healthy drives and failed drives in equal proportions. The data
from healthy drives was collected in a controlled environment
by the manufacturer. In [3], several methods are proposed
to build a prediction model: SVM, unsupervised clustering,
rank-sum test and reverse arrangements test. This study found
the best method among those tested to be the rank-sum test
by detecting 24% of the failed drives while maintaining a
false alarm rate below 1%. In [4], a subsequent study from
the same authors, the best performances were obtained with
a SVM with a detection rate of 50.6% and a false alarm
rate below 0.1%. In [5], hidden Markov models and hidden
semi-Markov models are tested. The best model reaches a
detection rate of 52% and a false alarm rate below 0.1%.
In [6], a health monitoring method based on the Mahalanobis
distance is developed. It yields a detection rate of 67% while
maintaining the false alarm rate below 0.1% still.

In [7], two Bayesian methods are tested, a Bayesian clus-
tering model based on expectation maximization and a super-
vised naive Bayes classifier. The dataset used was collected
from 1927 drives including 9 failed drives. The performances
reached are 60% detection rate and a false alarm rate of 0.5%.

In [8] and [9], a dataset comprising samples from 23, 395
drives operating in a data center is studied. Two different
hard drives models from the same manufacturer are used. The
methods used are back-propagation recurrent neural networks,
SVM, classification and regression trees. The best results are
obtained with classification trees achieving over 95% detection
with a false alarm rate of 0.09%.

In [10], a population of 1, 000, 000 drives is studied. 6 hard
drive models are considered. The method used is threshold-
based classification with only 1 SMART parameter. It reaches
70.1% recall and 4.5% false alarm rate. The dataset is unfor-
tunately not publicly available.

As we see, most previous studies were conducted have been
led on small datasets collected in a controlled environment
using manufacturer data. Moreover, [1] and [2] have shown
that manufacturer data on disk reliability is not accurate as it
is relying on accelerated life tests and stress tests that appear to
consistently underestimate the actual disk failure rate. As such,
hard drive failure prediction models trained on manufacturer
data have a high risk of being biased and cannot be relied on.
Additionally, in [3] manufacturer data on hard drives is mixed
with data from hard drives returned by users. The authors
highlight in their paper the importance of understanding the
induced limitations. However, given how often this dataset is
used in other studies such as [5] or [6], it is preferable to rely
on a dataset without such mixing.

The most notable exceptions to these issues are the stu-
dies [8] and [9]. Unfortunately the associated dataset used is
not publicly available and is limited to two drive models.

Very recently, some studies started to exploit the Back-
blaze dataset. [11] considers a large subset of over 30, 000
drives from the Backblaze dataset to train several classifiers.
However, the results (98% for the detection and 98% for the
precision) are obtained on a limited and different subset of
filtered data. In the industry, [12] shows promising results but
the lack of implementation details prevents comparison.

Another limitation of previous studies is the choice of
evaluation metrics which generally coincide with the detection
and false alarm rates. This is a relevant choice for balanced
datasets but, as operational datasets are extremely unbalanced
in favour of healthy samples, even a low false alarm rate in the
range of 1% could translate into poor performances. Therefore,
we rather report precision and recall metrics.

In order to overcome these issues related to the dataset
and to provide reproducible results, we consider a large,
operational and publicly available dataset from Backblaze, and
compute the precision and recall metrics, rather than detection
and false alarm rates, on unfiltered samples. This enables us
to draw conclusions for operational data.

III. DATASET

This work relies on operational data that the Backblaze
company started to release at the end of 2013. It gathers
daily measurements of SMART parameters of each operational
hard drive disk of this company data centre. Updates to the
dataset are provided quarterly. The fields of the daily reports
are composed as follows: the date of the report, the serial
number of the drive, the model of the drive, the capacity
of the drive in bytes, a failure label that is at 0 as long
as the drive is healthy and that is set to 1 when the drive
fails and finally the SMART parameters. For the rest of the
study, we focus on the data from January 2014 to December
2014 in order to enable a comparison between prediction
performances. Over this period, 80 fixed SMART parameters
are collected among those defined by the manufacturers. They
include, for example, counts of read errors, write faults, the
temperature of the drive and its reallocated sectors count.
However, it should be noted that most drives do not report
every parameter resulting in many blank fields. The reason
why is that hard drive disk manufacturers are free to decide
how to implement SMART parameters. For the same reason,
there is no guarantee that SMART parameters from two
different models or manufacturers have the same meaning
since the details of their implementation are not disclosed.

Finally, the dataset contains over 12 million samples from
47, 793 drives including 81 models from 5 manufacturers.
Among those 12 million samples, only 2, 586 have their failure
labels set to 1 and the others are healthy samples, for an overall
ratio of about 2 failure samples for every 10, 000 healthy
samples that is below 0.022%.

IV. DATA PROCESSING

We identify in this section a set of classification techniques
that are best suited for an extremely unbalanced training set
and a loosely controlled environment in real operation as



opposed to laboratory experimentations. Considering the size
of the dataset, we focus on classification computations that can
be distributed across several nodes. Roughly speaking, we have
at our disposal a set of multidimensional observations x ∈ Rd,
(x1, x2, ..., xd). For example, x may represent the SMART
parameters or a transformation of the SMART parameters. For
a given x, we associate a label y ∈ {0, 1}. The goal of the
classification is to determine a function that given a sample
x associates a label y that matches the failure label of the
dataset.

A. Pre-processing

As noted in [2], traditionally used outlier filtering techniques
such as Extreme Value Filtering are inadequate for SMART
values of an operational set as it is difficult to distinguish
between exceptional values caused by a measurement artefact
or by an anomalous behaviour that may lead to a hard drive
failure. A classical approach is to limit filtering to obvious
errors. In our case, this corresponds to physically impossible
values such as power-on hours exceeding 30 years. We filter
on two SMART parameters, SMART 9, power-on hours, and
SMART 194, temperature. In turned out that this filtering is
negligible and does not noticeably impact the dataset with only
5 drives concerned, matching the observation in [2] that less
than 0.1% of the hard drives are concerned.

Similarly to what is done in [8], we define a time window
for failure in the following manner: after a drive fails, we
relabel a posteriori the N previous samples from this particular
drive as failures where N is the length of the time window in
days. In other words, with our classification model we try to
answer the question ”Is the hard drive going to fail in the next
N days?”. This length will be optimized as a hyper parameter
of the model to determine its optimal value if it exists.

B. Feature selection

Not every SMART parameter is indicative of a failure [2].
As such, we consider different strategies for feature selection.
The main one is based on the pre-selection used in [2], [8],
[9] of SMART parameters highly correlated to failure events.
With this scheme, we consider only the nine raw SMART
parameters number 5, 12, 187, 188, 189, 190, 198, 199 and
200.

Some models such as Random Forests are not vulnerable
to noisy features and are, in fact, able to extract information
from features with low correlation with failure events. This
also provides the additional benefit of not relying on sources
external to the dataset to select the features. When it is
relevant, we thus train these models on the complete set of
features.

C. Sampling techniques

In order to reduce the impact of the class imbalance issue
on the learning algorithms, we investigated the use of sam-
pling techniques. Given the extreme imbalance factor of the
dataset, naive oversampling and undersampling were excluded
as potential sources of overfitting [13]. Contrary to [11], we

limit the application of sampling techniques to the same subset
of data used for training.

SMOTE (Synthetic Minority Oversampling Technique) aims
at alleviating class imbalance by generating additional training
samples of the minority class through interpolation [14].
SMOTE first selects a random minority sample, then de-
termines its k nearest neighbours, selects one of them and
places randomly on the segment between the two samples a
new artificial minority sample. This process is then repeated
as many times as necessary before reaching a pre-selected
oversampling factor. By creating artificial instances distinct
from the existing minority samples, it partially avoids the
overfitting problem observed with naive oversampling.

Another step to improve the training set is to filter a
certain category of failure samples. We observe that some
failure samples share the exact same feature values as healthy
samples leading to the impossibility for any classifier based
on those features to discriminate them. Thus, filtering those
hard-to-classify failure samples leads to a trade-off of a higher
precision at the expense of recall.

D. Machine Learning algorithms

Previous studies such as [11] have considered Logistic
Regression (LR) for hard drive failure prediction. We imple-
mented it but results show a constant prediction in favour
of the majority class, which is understandable given the
sensitivity of LR to class imbalance. Further work on sampling
techniques is needed in order to use LR on the Backblaze
dataset. We therefore focus our experimentations on solutions
able to deal with extreme class imbalance.

Support Vector Machine (SVM) is a technique that re-
lies on finding the hyperplane that splits the two classes
to predict while maximizing the distance with the closest
data points [15]. We use a linear kernel in order to enable
parallelization of the computations. With N the number of
samples, xi the features of a sample, y its label and ~w the
normal vector to the hyperplane considered, b the hyperplane
offset and λ he soft-margin, the SVM equation to minimize
is:

f(~w, b) = λ‖~w‖2 + 1

N

N∑
i=1

max(0, 1− yi(w.xi − b)) (1)

It is optimized through 100 steps of stochastic gradient de-
scent.

Random Forest (RF) is an ensemble technique based on a
decision tree classifier. A decision tree works by splitting the
data set into smaller subsets based on measured attributes until
either the subsets are each composed of only one class or the
maximum depth of the tree has been reached. RF improves
on this technique by combining several decision trees each
trained on bootstrapped samples with different attributes. New
predictions are then made based on a vote among the different
decision trees [16]. The loss function minimized for each split
is as follow: given m the current node to split, Qm the data
available at that node, Nm the number of samples in Qm,
θ the candidate split, nleft and nright the amount of sample



split respectively to the left and right of the node and H the
impurity function,

nleft
Nm

H(Qleft(θ)) +
nright
Nm

H(Qright(θ)) (2)

This step is repeated until Nm = 1 or the maximum depth
is reached. In this study, we set the number of decision trees
at 50 with a maximum depth of 8, constructed using the Gini
impurity metric.

Finally, Gradient boosted tree (GBT) is another ensemble
technique based on decision trees. Instead of training random
trees like in RF, the training takes place in an iterative fashion
with the goal of trying to minimize a loss function using a
gradient descent method [16]. In this study, the initial splits
are done using the same equation as the RF trees and the
iterations are done with a log loss function characterized by
the formula: 2 ×

∑N
i=1 log(1 + exp(−2yiF (xi))) where N

is the number of samples, xi and yi respectively the features
and the label of the sample i and F (xi) the predicted label
for sample i. This function is minimized through 10 steps of
gradient descent.

All the parameters of the learning methods are optimized
through grid-search.

V. EXPERIMENTAL RESULTS

A. Post-processing

In order to ensure the accuracy of the results, two additional
steps are taken. First, we perform cross-validation through a
customized stratified k-folding algorithm. The samples are first
regrouped by HDD serial number so that the samples measured
on one HDD are always in the same fold. HDDs are then split
between those that reported a failure during the study and those
that did not. The stratified k-sampling then takes place on the
HDD level and not on the individual sample level in order
to ensure that samples from a given HDD are always in the
same fold. For this study, the number of folds has been fixed
to 3. On top of that, in order to account for the optimization
of the length of the time-window as an hyper-parameter of the
models, every measurement is rerun three times by selecting
new sets of folds for the cross-validation and the mean value
is reported.

Two metrics are measured on the failed samples, precision
and recall respectively defined as the number of successfully
predicted failures divided by the total number of predictions
and the number of failures successfully predicted divided by
the total number of failures observed. If we define the failure
sample as positive and the healthy samples as negative we
have:

precision =
true positive

true positive+ false positive
(3)

recall =
true positive

true positive+ false negative
(4)

Note that contrary to similar studies referenced in section II,
we decide to report precision instead of false alarm rate: due to
the high class imbalance, even a small false alarm rate could

translate into poor performances. Indeed, a misclassification
of only 1% of the healthy samples would result in 100 false
alarms for every 10, 000 healthy samples, on average; since
there are only 2 failure samples for every 10, 000 healthy
samples, it means that we have 50 false alarms for every
detected failure if we assume 100% recall on the failure
samples, and consequently a precision below 2%. Similarly,
we can note that a constant prediction in favour of the majority
class would result in an accuracy of 99.98%.

B. Results and discussion

The performances in terms of precision and of recall are
displayed in Fig. 1 (SVM), Fig. 2 (RF) and 3 (GBT) as a
function of the time window length.

The SMOTE sampling strategy is then tested on the best
performing model, RF with all features.

The experimental setup we use is a cluster of 3 computers
running Apache Spark v2.1 using a total of 24 cores. Due to
the various size of the time window parameter, cross-validation
and repetition of the tests, every technique is run a total of 180
times, not including the grid-search executions to optimize the
parameters. The execution time is reported in Table I.

Method Execution time (1 run) Execution time (180 runs)
SVM preselected 11 min 33 hours
SVM all features 24 min 72 hours
GBT preselected 10 min 30 hours
GBT all features 41 min 123 hours
RF preselected 14 min 42 hours
RF all features 37 min 111 hours
RF+SMOTE 42 min 126 hours

TABLE I
EXECUTION TIME OF THE METHODS

There are several interesting points to notice on the graphs.
First, on figure 1 for the linear SVM, we note that the perfor-
mances are low. This is likely a sign that the classes to predict
are not linearly separable. The solution for this would be to use
another kernel for the SVM but unfortunately this would be
at the cost of the parellelization of the implementation which
would push the computation time beyond acceptable range.
Regarding the length of the time window, it should be noted
that the linear increase in precision with preselected features is
likely only a side-effect of the relabelling. Further investigation
reveals that the support vectors are not changing when the time
window changes so the model learnt is the same. This is most
likely because the inertia of the SVM model is too high to be
affected by changing less than 0.1% of the labels.

Second, for RF, on figure 2, we can note that the usage
of pre-selected features does not improve the performances
but decreases them. The fact that feature selection does not
bring improvement is understandable given that RF models
have been shown to be resilient to noisy features. However
the decrease also implies that the features that were not pre-
selected are not pure noise but also contain useful information
to predict an impending failure. This highlights the fact that
SMART features are implemented differently on different
drives and thus that conclusion regarding features useful for



(a) Precision

(b) Recall

Fig. 1. Precision and Recall of SVM for two feature selection modes and
varying time window length

predicting failures of a specific type of hard drive model cannot
easily be generalized to every type of hard drive. Additionally,
for small values of the time window, the RF model struggles
because the scarcity of the failure labels is further aggravated
by the bagging technique used to learn the individual decision
trees that compose the RF model. This is especially true with
the pre-selected features.

Finally, for GBT, on figure 3 it does not display the same
limitation as RF for time windows higher than one day,
likely because it is not based on a bagging technique. The
performances when using all available features are mostly
similar to RF.

Overall, the best performances are reached by RF and GBT
when using all available features with RF reaching up to
95% precision and 67% recall and GBT reaching up to 94%
precision and 67% recall. The reported precision of 95% and
94% would translate on average with daily measurements on
a single hard drive into a single false alarm respectively every
100.000 days and 83.333 days. In the mean time, over two
thirds of the failures would be predicted correctly.

In table 4, the last experiment with the SMOTE sampling

(a) Precision

(b) Recall

Fig. 2. Precision and Recall of RF for two feature selection modes and
varying time window length

technique resulted in negative results. The precision and recall
of RF are decreased by SMOTE for smaller values of the time
window and are similar at higher values. This is likely the
result of an imbalance factor of 5000, much higher than the
one used when developing sampling techniques which remains
in the range of 2 to 100 [17].

VI. CONCLUSION

In this paper, we work on hard drive failure prediction
with a publicly available, large and operational dataset from
Backblaze with relevant metrics, which is crucial to bridge
the gap between laboratories studies and real-world systems
and for reaching reproducible scientific results. This implies to
address the class imbalance between failures and non-failures
and the large dataset size. We have selected the precision
and recall metrics, most relevant to the problem, and tested
several learning methods, SVM, GBT and RF. With 95%
precision and 67% recall, the best performances were provided
by RF with all features while GBT was a close contender
with 94% precision and 67% recall. SVM performances were



(a) Precision

(b) Recall

Fig. 3. Precision and Recall of GBT for two feature selection modes and
varying time window length

unsatisfactory with a precision below 1%. We have also shown
that when studying different hard drive models from different
manufacturers, selecting the features classically used for hard
drive failure prediction leads to a drop in performances.

Contrary to what was expected, SMOTE did not improve the
prediction performances highlighting the difficulties stemming
from the extreme unbalanced ratio of the Backblaze dataset.
Additional work on sampling techniques is needed to balance
the dataset. Ensemble-based Hybrid sampling techniques [17]
such as SMOTEBagging, an improvement of the SMOTE
sampling technique, could help to improve our learning models
and might enable to use learning methods more sensitive to
class imbalance such as logistic regression.

Finally, we plan to evaluate on the Backblaze dataset
other learning techniques which have demonstrated promising
results on other samples such as back-propagation recurrent
neural networks [8], Bayesian classifiers [7] or Mahalanobis
distance [6].

(a) Precision

(b) Recall

Fig. 4. Precision and Recall of the RF model for varying time window length
with and without SMOTE sampling
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