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ABSTRACT
Subjective classification of galaxies can mislead us in the quest of the origin regarding
formation and evolution of galaxies. Multivariate analyses are the best tools used for
such kind of purpose to better understand the differences between various objects, in
an objective manner. In the present study an objective classification of 362 923 galax-
ies of the Value Added Galaxy Catalogue (VAGC) is carried out with the help of three
methods of multivariate analysis. First, independent component analysis (ICA) is used
to determine a set of derived independent variables that are linear combinations of
various observed parameters (viz. ionized lines, Lick indices, photometric and morpho-
logical parameters, star formation rates etc.) of the galaxies. Subsequently, K-means
cluster analysis (CA) is applied on the independent components to find the optimum
number of homogeneous groups. Finally, a stepwise multiple regression is carried out
on each group to predict and study the star formation rate as a function of other
independent observables. The properties of the ten groups thus uncovered, are used to
explain their formation and evolution mechanisms. It is suggested that three groups
are young and metal poor, belonging to the blue sequence, three others are old and
metal rich (red sequence). The remaining four groups of intermediate ages cannot be
classified in this bimodal sequence: two belong to a pronounced mixture of early and
late type galaxies whereas the other two mostly contain old early type galaxies. The
above result is indicative of a continuous evolutionary scenario of galaxies instead of
two discrete modes, blue and red, so far suggested by previous authors. Some of our
groups occupy the transition region with different quenching mechanisms. This estab-
lishes the elegance of a multivariate analysis giving rise to a sophisticated refinement
over subjective inference.
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1 INTRODUCTION

Investigating the formation and evolution of galaxies is be-
coming a complicated process with the increased availability
of huge database as a result of instrumental improvements.
A good understanding of the underlying physical process re-
quires synthetic databases simulated numerically which are
replica of real life databases. Hubble’s subjective classifica-
tion based on galaxy morphology ignores many significant
observables e.g. kinematics, chemical composition etc.

According to various studies, classical formation of
galaxies have been proposed to follow five major trajecto-
ries: (i) the monolithic collapse model, (ii) the major merger
model, (iii) the multiphase dissipational collapse model, (iv)

⋆ tchatappmath@caluniv.ac.in

accretion and (v) in situ hierarchical merging. But no model
uniquely explains the formation of all galaxies.

The historical and still most common approach to the
classification of galaxies, is based on physical criteria, like
apparent traits (i.e. morphology, emission line properties
etc.) or more or less understood processes (starbursts, AGNs
etc.). With the advent of multi-wavelengths and multivariate
data bases, the goal of many studies has been to find the pa-
rameters that best characterize the established classes. One
such example is given by the BPT diagrams (Baldwin et al.
1981; Veilleux & Osterbrock 1987) which tries to split dif-
ferent kinds of ionizing sources using a few emission lines.

The so-called bimodality of galaxies is a counter exam-
ple to this traditional approach. The accumulation of ob-
servations have shown that for several properties, galaxies
show two distribution peaks that do not easily match pre-
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established physically motivated classes. Extragalactic stud-
ies have now entered the statistical era, with the complexity
of galaxies challenging our approaches to understand them.

In this context, one is tempted to apply multivariate
partitioning analysis to find homogeneous groups, not
focusing on only one aspect of the physics of galaxies,
so that the formation and evolutionary history can be
demonstrated satisfactorily. One basic tool is princi-
pal component analysis and it has been used by many
authors (e.g. Whitmore 1984; Watanabe et al. 1985;
Cabanac et al. 2002; Chattopadhyay & Chattopadhyay
2006; Peth et al. 2015) but this is not an appropri-
ate clustering (unsupervised classification) tool. Some
attempts have been made by K-means cluster analy-
sis (Ellis et al. 2005; Chattopadhyay & Chattopadhyay
2007; Chattopadhyay et al. 2007, 2008, 2009a,b;
Sánchez Almeida et al. 2010; Fraix-Burnet et al. 2010,
2012; De et al. 2016). Though sophisticated statistical
techniques are being developed steadily, multivariate
approaches are not widely used across the astronomical
community (see a review in Fraix-Burnet et al. 2015).

Some observations are as follows: a partitioning of ob-
jects into robust groups is possible when the parameters are
independent as well as physically significant. Observation-
ally the information is usually summarized into broad-band
fluxes (magnitudes), slopes (colors), medium-band and line
fluxes (Lick indices). Multivariate partitioning groups ob-
jects according to their similarity. They show a descriptive
diversity but cannot explain it. We need numerical simula-
tion to understand and explain the diversity.

In the present work, we have taken a large dataset from
SDSS data archive including various observables regarding
morphology, chemical composition and kinematics and used
multivariate statistical techniques to explore and explain the
underlying diversities. The present work is fundamental in
several ways since we use:

• a large dataset of galaxies,

• a larger number of observables at a time,
• a more sophisticated statistical technique, Independent

Component Analysis (ICA) which takes into account the
discrimination through the independent components instead
of parameters,

• a method (ICA) that is applicable to non-Gaussian
data,

• star formation rate, used as support of the evolutionary
status, is explored with a stepwise regression technique.

A brief description of the data set is given in Sect. 2. The
methods are described in Sect. 3, The results and discussion
are included under sections Sect. 4 and 5 respectively, before
the conclusion in Sect. 6.

2 DATA SET

The NYU Value-Added Galaxy Catalog (VAGC
Blanton et al. 2005; Padmanabhan et al. 2008;
Abazajian et al. 2009) is a cross-matched collection of
galaxy catalogs maintained for the study of galaxy forma-

tion and evolution1. It is based on the Sloan Digital Sky
Survey Data Release 7 (SDSS-DR72).

In the raw table, 2,506,754 objects are available. We
have selected only galaxies, which disregards QSOs and
stars, ending up with 865 333 entries. We have then re-
stricted the sample to z < 0.2 and a good signal to noise
ratio S/N > 10. This leaves us with 362 923 galaxies.

After eliminating redundant properties, the parameter
set used in the present analysis consists of 49 parameters
which covers photometry, spectroscopy, morphology, chem-
ical composition and kinematics. Star formation rates and
specific star formation rates are also included. All these pa-
rameters are described in Table A1 and details are given on
the source website3.

3 STATISTICAL ANALYSES

3.1 Shapiro-Wilk test

The non Gaussian nature of the data set has been explored
by the statistical test Shapiro-Wilk test (1965) in which the

test statistic is defined by W =
n∑

i=1

ai x2

i
/

n∑

i=1

(xi − x̄)2, where n

is the number of observations, xi ’s are ordered sample values
and ai ’s are constants generated from the order statistics of
a sample from normal distribution. In the present situation a
multivariate extension has been used. The p value of the test
is less than 2.17×10

−13, which is very small to confidently
reject the null hypothesis. Therefore, the present data set is
found to be non Gaussian in nature.

3.2 Independent Component Analysis

We have already mentioned that Principal Component
Analysis (PCA) has been applied by many authors
(Murtagh & Heck 1987; Brosche 1973; Whitmore 1984, etc)
but it is not appropriate for clustering and classification.
Also it is applicable for Gaussian data which is not the
present case. On the other hand, Independent Component
Analysis (ICA) is applicable to non Gaussian data set like
the present situation and it is also a dimension reduction
technique like PCA. In addition of being uncorrelated, the
components here found are also independent, i.e., it reduces
the number of observable parameters p to a number m (m
<< p) of new parameters such that these m parameters are
mutually independent. Mathematically speaking, let X1, X2,
X3, ..., Xp be p random vectors (here p parameters, p = 49)
and n (here 362923) be the number of observations of each
Xi, (i = 1, 2, 3, ..., p).

Let X = AS, where S = [S1, S2, S3, ..., Sp]
′
is a random

vector of hidden components Si , (i = 1, 2, 3, ..., p) such
that Si ’s are mutually independent and A is a non singular
matrix. Then the objective is to find S by inverting A, i.e., S
= A−1X or S = WX. Using ICA we find the unmixing matrix
W such that any two functions g1(Si) and g2(Sj ), i , j has
covariance zero i.e. the ICs are independent (for more details

1 http://sdss.physics.nyu.edu/vagc/
2 http://classic.sdss.org/dr7/
3 http://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/raw_data.html
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see Comon 1994; Chattopadhyay et al. 2013, and references
therein).

Presently there is no good method available for
the determination of the optimum number of ICs. In
this work, the optimum number of ICs have been cho-
sen by the optimum number of Principal Components
(PCs) (Albazzaz & Wang 2004), to find m (m << p)
(Babu et al. 2009; Chattopadhyay & Chattopadhyay 2007;
Fraix-Burnet et al. 2010; Chattopadhyay et al. 2010). In the
present situation, we have first performed PCA to find the
significant number of ICs. In PCA the maximum variation
with significantly high eigenvalue (viz. λ ∼ 1) was found to
be almost 90% for nine PCs. Hence, we have chosen nine ICs
for cluster analysis (CA).

3.3 K-means cluster analysis

K-means cluster analysis (CA) is a multivariate technique
for finding coherent groups in a data set giving infor-
mation of the underlying structure. In this method, one
finds K groups, provided each group contains an object
and an object belongs to exactly one group. Details of al-
gorithm and applications are found in MacQueen (1967);
Chattopadhyay et al. (2009a, 2010, 2012, 2013); Das et al.
(2015),

The number K of groups is an input to the algorithm.
The optimum value of K is found as follows. First we have
found groups assuming K = 1, 2, 3, ....etc. Then a mea-
sure, called distortion (viz. dK ), which is a function of dis-
tances between the data points, is computed by the follow-
ing formula dK = (1/p)minxE[(xK − cK )

′
(xK − cK )], which

is the distance of xK vector (data point) from the centroid
cK of the corresponding group. The optimum value of K is

that for which the jump JK = (d
−p/2
K

− d
−p/2

K−1
) is maximum

(Sugar & James 2003).
In this study, we have performed a K-means CA with

respect to the ICs and have found the optimum number of
groups to be K = 10. We name the groups K1-K10.

3.4 Stepwise multiple regression

Multiple regression is the prediction of one dependent vari-
able (response) in terms of other independent variables (pre-
dictors). In stepwise regression, a small set of predictors are
chosen from a large set still having good predictive ability.
The first predictor for entry into the equation is the one with
the largest positive or negative correlation with the depen-
dent variable (here SFR and specific SFR). The statistics
used in the entry of such a variable is

Fchange =
R2

change
(n − p + 1)

q(1 − R2)

where n is the number of observations, p is the number of pa-
rameters, q is the number of parameters entered at the step
and R2

change
= R2 - R2

(i)
, where R2

(i)
is the square of multiple

correlation coefficient when all independent variables except
ith one are in equation and R2 is the square of the multiple
correlation coefficient.

Table 1. Parameters with highest correlation coefficients (in
parentheses) for each Independent Component.

IC Most influencial parameters

ICA1 EW(OII 3729)(0.83), Lick Fe5015 (0.53)
ICA2 vdis p (0.97), J (-0.7)
ICA3 σbalmer (-0.60)
ICA4 EW(OIII 5007) (0.98)
ICA5 Lick Fe5015 (0.83)
ICA6 Sersic r90 R(-0.99)
ICA7 σ forb (-0.60), σbalmer (0.42)
ICA8 Sersic amp R (-0.99)
ICA9 EW(NII 6584)(0.79), EW(Hα)(0.75),

EW(SII 6731)(0.72)

Table 2. Distribution of galaxies in the ten groups found with
K-means.

Group Number of galaxies

K1 79576
K2 109188
K3 12630
K4 17336
K5 40045
K6 10552
K7 16325
K8 1375

K9 68050
K10 7846

4 RESULTS

4.1 Properties of the ICs

Performing Independent Component Analysis for the VAGC
data set, we have taken nine significant ICs. Then we have
found the parameters with highest correlations for each com-
ponent. They have been listed in Table 1.

From Table 1, it is clear the nine ICs represent five kinds
of properties: 1) velocity dispersion (ICA 2, ICA 3, ICA 7),
2) ionisation (ICA 9, ICA 4), 3) metallicity (ICA 1, ICA
5), 4) surface brightness (ICA 8) and 5) structural proper-
ties (ICA 6). Thus complete description of the physics of
the galaxies can be reduced to this five independent char-
acteristics by means of ICA. Hence these nine independent
components are used instead of the initial 49 parameters
for Cluster Analysis (CA). This is the goal for a dimension
reduction technique like ICA.

4.2 Properties of the galaxies in the ten groups

The cluster analysis divided the galaxies into ten groups,
K1-K10. The distribution of galaxies within these groups is
given in Table 2. It appears that the four groups K2, K1,
K9, K5, in decreasing importance, already gather 82% of
the objects (52% with K2 and K1 only), the K8 group being
very small.

The boxplots (Fig. B1) summarize the statistics of each
parameter for the ten groups. It is interesting to note that
the dispersions are nearly always relatively small, indicat-
ing that the groups found by the cluster analysis are quite

MNRAS 000, 1–19 (2017)
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Figure 1. Colour magnitude (u-z vs. U) diagrams of the whole
sample along with the classified groups K1 to K10.

homogeneous. This is particularly striking for the biggest
groups, K1 and K2. There are often large overlaps, but also
clearly separated properties distributions between groups in
many instances.

The properties of the groups taken together are clearly
distinct for some parameters, such as vdisp , J or NaD abs,
while they look similar for others, such as EW(Hαabs) or
H-K.

The small group K8 stand out in many parameters,
most spectacularly in EW(OIII 5007). This group is however
close to the groups K7 and the big K9 for many properties,
such as Ca K abs, Sersic n R or Lick G4300.

Instead of describing in great details the relative prop-
erties group by group, we concentrate in the following on
some more general physical interpretation that some par-
ticular plots are known to provide and that are familiar to
astronomers.

4.3 Color-magnitude diagram

The well known bimodality of galaxies is seen on the color
magnitude diagrams in Fig. 1 with a crescent shape of the
distribution of the whole sample, with the so-called red and
blue branches (or sequences).

The groups K3, K5 and K6 clearly belong to the red
branch, while K7 to K9 are essentially on the blue one. The
groups K1 and K2 span both branches, including the region
in between often called the green valley. Groups K4 and K10
are part of this green valley. The very small group K8 ap-
pears peculiar, with a very blue part, and 25% of its galaxies
belonging to the red branch.

Even though the correspondence between our groups
and the rough usual division in red, green or blue regions
of the plot is satisfactory, the multivariate clustering offers
more subtle and objective categories of galaxies that can be
investigated further by analyzing other properties.

1.0 1.5 2.0 2.5

0
1

2
3

4
5

6
d4000_n

D
e

n
s
it
y

K1

K2

K3

K4

K5

K6

K7

K8

K9

K10

Figure 2. Density distribution of D4000 n. The black line corre-
sponds to the whole sample. Thirty four galaxies with D4000 n>
2.5 are not shown.

4.4 D4000 n

In Fig. 2, a density plot of D4000 n (or Dn 4000 used in
some literature) is shown for the ten groups and the whole
sample. The limit D4000 n > 1.55 is generally used to define
quenched galaxies (e.g. Kauffmann et al. 2003; Haines et al.
2016).

A bimodality is clearly seen in Fig. 2 with two peaks:
groups K7, K8, K9 have smaller values of D4000 n, hence
contain younger stellar populations compared to K3, K4,
K5, K6 and K10 groups which have peaks at larger values
of D4000 n, K4, K10 having a longer tail toward smaller
values. The two biggest groups K1 and K2 show a larger span
but K1 tends to peak at high values and K2 at low values.
There is a hint of a bimodality, which is more obvious on
the distribution of D4000 n for the whole sample, indicating
a mixture population of old and young populations.

However, this bimodality does not match well with the
one seen on the color-magnitude diagram (Fig. 1). For in-
stance, the group K7 seems to extend in the red branch,
while the D4000 n distribution is entirely below 1.6. This
shows that the age of the stellar population alone does not
explain the blue, red and green valley categories.

4.5 EW(Hδabs)

At the same time Hδ in absorption is detected in a galaxy
spectrum when the massive hot stars just finish their evo-
lution on the main sequence i.e., at least 0.1-1 Gyr after a
star burst is truncated. Thus EW(Hδabs) gives a measure
of the age of the youngest stellar population in a galaxy
and it is a widely used indicator to determine the mean
stellar ages as well (Worthey & Ottaviani 1997). It is a
better age estimator than Balmer absorption lines due to
the presence of Balmer emissions from HII regions, AGN

MNRAS 000, 1–19 (2017)
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Figure 3. Fraction of galaxies in EW(Hδabs) distribution in the
young star forming groups (viz. K7, K8, K9), old quiescent groups
(viz. K3, K5, K6) and mixture groups (viz. K1, K2, K4, K10).

Figure 4. D4000 n vs EW(Hδabs) plot for the classified groups
K7, K8, K9 (top left), K3, K5, K6 (top right), K1, K2 (bottom
left) and K4, K10 (bottom right). The grey points in the back-
ground represent the whole sample.

and/or planetary nebulae causing age estimates spuriously
high (Trager et al. 2000; Prochaska et al. 2007). EW(Hδabs)
remains unaffected by the above factors (Osterbrock 1989;
Worthey & Ottaviani 1997).

We plot the fraction of galaxies vs EW(Hδabs) (viz.
Fig. 3) and EW(Hδabs) vs D4000 n (viz. Fig. 4) for the
groups K7, K8, K9 taken together, K3, K5, K6 taken to-
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Figure 5. Density distribution of the concentration index C of
galaxies in the groups for K1 to K10.

gether, K1, K2 and K4, K10 taken together. The figures
clearly show that K7, K8, K9 have younger populations,
K3, K5, K6 have older populations, K1, K2 have widely
mixture populations and K4, K10 have been dominated by
older ones.

4.6 Morphology

In Fig. 5, we plot the density distribution of the concentra-
tion index C = Sersic r90 R / Sersic r50 R for all the ten
groups. Late-type morphologies are characterized by a low
C (< 2.6, Strateva et al. 2001). Note the strong dichotomy
with two peaks at C≃ 2.5 and 7.5.

The groups K4 and K10 are nearly entirely made of
early-type galaxies while all the other groups are mixtures of
both categories, with a higher fraction of late-type galaxies
in K7 and K9 and of early-type ones in K1, K3, K5, K6.

4.7 BPT diagrams

Two emission line ratios were recommended by
Baldwin et al. (1981, hereafter BPT) and are often
used to discriminate between star forming and composite
galaxies and the AGN-dominated galaxies. This diagram is
also the basis for more refined empirical classifications based
on theoretical population synthesis and photoionization
models (Veilleux & Osterbrock 1987; Kauffmann et al.
2003; Kewley et al. 2006; Kewley et al. 2013). Two other
similar diagrams, BPT-SII and BPT-OI, were proposed by
Veilleux & Osterbrock (1987).

The standard classification scheme on this diagram is
based on equations of curves separating the different classes.
These cuts are sharp, somewhat arbitrary. Its main goal
is to distinguish between different ionization source (basi-
cally thermal or non-thermal) while the properties used for

MNRAS 000, 1–19 (2017)
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Figure 6. The distribution of galaxies in the groups K1 to K10
in the BPT diagram: [OIII]/Hα vs [NII]/Hβ. Curves are from
Kewley et al. (2001); Kauffmann et al. (2003); Stasińska et al.
(2006) (right to left respectively).

our clustering analysis are not limited to this peculiar as-
pect of galaxies. It also appears that the classification based
on these diagrams is not clearcut. For instance, ”the cur-
rent LINER classification scheme encompasses two or more
types of galaxies, or galaxies at different stages in evolution”
(Kewley et al. 2006). Cid Fernandes et al. (2010) proposed
a new cut between Seyfert and LINERs to resolve this am-
biguous class. They also present an interesting and critical
discussion of the classifications based on the BPT diagrams.
An important reminder in their discussion is that the star-
forming region delimitation is rather arbitrary in the lower
part of the diagram where most of the galaxies lie. Also,
the upper right part of the diagram is not composed of pure
AGNs. Finally, different cuts are proposed by different au-
thors (e.g. Kewley et al. 2001; Lamareille 2010). Interest-
ingly, all these works tend to suggest that more parameters
are probably required to fully understand different kinds of
galaxies and ionization processes (Richardson et al. 2016).

Indeed, an objective classification with soft frontiers
performed with the diagnostics line ratios indicates a some-
what different picture with only four categories, some in-
cluding for instance sub-divisions like strong or weak AGNs
(de Souza et al. 2017). However while being multivariate,
this study has a small number and variety of parameters.

An additional limitation of the classifications based

Figure 7. The distribution of galaxies in the groups K1 to K10
in a different version of the BPT diagram: [OIII]/Hβ vs [SII]/Hα.
Curves from Kewley et al. (2001).

on single kinds of ionization processes is that the galax-
ies are indeed very probably a mixture of different regions
(Belfiore et al. 2016).

These limitations on the significance of the cuts should
be kept in mind when comparing our multivariate clustering
results and diagnostics diagrams (Figs. 6, 7 and 8).

It is clear from the three diagnostics diagrams that K7
and K9 have no AGN, hence are pure star forming galax-
ies, whereas the very small group K8 is quite peculiar with
two peaks, one in the pure star forming region, the other
one in the pure AGN zone. Groups K2 and K6 are clearly
intermediate between star forming galaxies and AGNs.

All the other groups (K1, K3, K4, K5 and K10) are
AGNs (Fig. 6). This interpretation is however less clear from
Figs. 7 and 8 since the groups K1, K4, K5, K6 and K10 ap-
pear rather as a mixture of star forming and mainly LINERs
galaxies. Only K3 seem to be mainly composed of LINERs.

Our results are in the line of the discussion found in
the literature as presented above. Our multivariate analysis
shows that only some galaxies can be identified with sim-
ple properties, most others are more complex and confirms
that more parameters than these diagnostics diagrams are
required.

MNRAS 000, 1–19 (2017)
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Figure 8. The distribution of galaxies in the groups K1 to K10
in a different version of the BPT diagram: [OIII]/Hβ vs [OI]/Hα.
Curves from Kewley et al. (2001, 2006).

4.8 Fe5270 vs Mgb

A galaxy having younger age may be due to lowest value
of Lick Fe5270 and Mgb, but younger age is also sensitive
to the colour of the horizontal branch (HB), higher values
meaning a bluer HB. Bluer HB in turn can be due to He-
enriched stars, hence higher α/Fe values.

We have placed the mean values and the associated
standard errors of the ten groups in the scatter plot
Lick Fe5270 vs Mgb (Fig. 9). Also shown are the isochrones
of SSP model from Thomas et al. (2011) at 9 (red) and 12
(blue) Gyrs respectively for [α/Fe] = -0.3, 0, 0.3 and 0.5
respectively.

Groups K3, K5, K6, K9 and K10 are compatible with
α/Fe = 0.3, K1 and K4 may have a slightly lower value, still
lower for K2 with α/Fe ≃ 0.15, while K7 is compatible with
α/Fe ≃ 0.5 and K8 with a much higher value. Group means
of K7, K8, K9 fall in the low metallicity region, with a high
α/Fe, indicating they are young starbursts galaxies.

4.9 Star Formation Rate

We have performed a stepwise regression in order to check
whether we can infer the star formation rate (SFR) and
the specific SFR (specSFR) from the data without fit-
ting some SED templates/models or using specific tracers
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Figure 9. Mean values of Lick Fe5270 vs Lick Mgb for K1 to
K10. Blue and red lines are for stellar populations models of
Thomas et al. (2011) for the age of 9 Gyr (red lines) and 12 Gyr
(blue lines). Dotted lines are for α/Fe = -0.3 and solid lines are
for α/Fe = 0.0, 0.3, 0.5 respectively from top to bottom.
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Figure 10. Density of the distribution of the SFR in the ten
groups K1 to K10.

as usually done (Brinchmann et al. 2004; Kennicutt 1998;
Kennicutt & Evans 2012). This would be especially suited
for very large data bases. Such a machine learning approach
has been explored by Stensbo-Smidt et al. (2016) through
a k-Nearest-Neighbour regression technique to estimate re-
liably specSFR and photometric redshifts by using only the
u, g, r, i, and z photometric bands. In our case, we are also

MNRAS 000, 1–19 (2017)



8 T. Chattopadhyay, D. Fraix-Burnet, S. Mondal

Figure 11. SFR vs Mass for the ten groups K1 to K10.

Figure 12. Plot of the SFR predicted by the regression using 45
parameters vs the computed SFR provided in the data set. The
regression was performed on the whole sample and on each of the
ten groups K1 to K10.

interested to see how much the most influent parameters
depend on the groups and how good is the prediction.

The well-known bimodality of the SFR
(Kauffmann et al. 2003) is shown in Fig. 10. Our groups
are split in low (K1, K3, K4, K5, K6, K10) and high (K2,
K7, K8, K9) SFRs. However, K2 is kind of intermediate
while the other big group, K1, shows a significant fraction
of galaxies with high SFRs. This is also illustrated in
Fig. 11: most of the groups clearly belong to either the

Figure 13. Same as Fig. 12 but for the specific SFR.

main sequence (quenched galaxies) or the starburst ones
(Renzini & Peng 2015).

The predictive power of our regression analysis is illus-
trated in Figs. 12 and 13. It clearly appears that the analysis
fails for groups K7 and K10, and is not very good for K8 in
specSFR. Globally, it is less good for specSFR than for SFR.

The coefficients of the regression equations are given in
Tables C1 and C2, the highest values (i.e. the most influ-
ential parameters) are indicated in boldface. In both SFR
and specSFR, D4000 n dominates largely as expected since
it is a known indicator of star formation. However, it is re-
markable that it has a noticeably weaker influence in K7 and
K9.

For SFR, the U and J magnitudes are important, re-
vealing role of the global mass of the galaxy. In addition,
the three colors U − z, J − H and H − K are positively corre-
lated with SFR, in contrary to U, J and D4000 n which are
negatively correlated.

For specSFR, the photometry has a much weaker influ-
ence but not totally negligible such as in K6, K8 and K9.
The colors are also less inflent than for SFR, U − z being the
strongest one.

The very strong influence of the concentration index C

in K4 for both SFR and specSFR is rather surprising and
unique to this group.

Hence, it seems somewhat difficult to derive the SFR
from a regression analysis for all galaxies with a high ac-
curacy. This is possible only for some groups of galaxies for
which the dispersion is slightly lower than for the entire sam-
ple. However, it is striking that this seems more problematic
for specSFR than for SFR. In any case, some groups clearly
show unexpected behaviors which probably tells something
on their star formation activity.
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5 DISCUSSION

From the results described in the previous section, we can
distinguish four categories of groups.

5.1 Groups K1, K2

There two dominating groups which gather about half of
our sample: K1 and K2. From the colour-magnitude diagram
(viz. Fig. 1), it is clear that K1 and K2 have well defined bi-
modality. The Sersic n R indices of K1 and K2 lie between
2 - 4 which show that some of the galaxies are young and in
the formative stages of their bulges and some of them have
well developed bulges. The SFR and metallicities in these
galaxies are intermediate between highest and lowest values.
They differ largely in their light element abundances: K1 has
larger value than K2. Regarding EW(Hδabs) the values lie
between 0.5 and 2.5 with pronounced scatter. Groups K1
and K2 have globally intermediate values of SFR and more
particularly of specSFR with respect to the other groups.
Most of the parameters like metallicity, SFR, EW(Hδabs),
specSFR, D4000 n and C have large scatters which indicate
that K1 and K2 have a mixture of old and young popula-
tions of active and passive galaxies with well defined bulges
for K1 and more pseudo bulges for K2. K1 group has higher
velocity dispersion hence more massive galaxies as compared
to K2. K1 group is more abundant in helium enriched pop-
ulation than K2, which is a signature of second generation
stars. So K1 has slightly older population than K2. This is
also evident from D4000 n peaks: K1 has a larger peak at
higher D4000 n whereas the opposite is true for K2. Also
C values show that the two groups have populations of late
type spirals, but in much higher proportion in K2.

While one of the BPT diagram (Fig. 6) seem to show
that these two groups are undoubtely AGNs, the other BPT
diagrams (Fig. 7 and 8) seem to indicate they are more prob-
ably LINERS with an extension in the star forming galaxy
region. They probably correspond to both the composite
class and the ambiguous galaxies mentioned in Kewley et al.
(2006). Hence, in the multivariate space, these galaxies show
more subtle similarities than the sole ionization processes.

As a conclusion, K1 and K2 galaxies represent the bulk
of galaxies in the Universe, with somewhat average values for
most parameters, gathering both high and low mass galax-
ies, star forming and non-forming as well as intermediate
objects.

Another interpretation might be that even with 49 pa-
rameters, it is not possible to distinguish sub-classes within
these two big groups. This may be due to several rea-
sons: lack of more distinctive information, uncertainties that
smears out true differences, or to the fact that galaxies are
big and complex systems so that integrated values mix up
several peculiarities like AGN emission, multiple star form-
ing or ionization regions etc.

5.2 Groups K4, K10

Groups K4 and K10 are globally similar with mostly average
values. They are often close to groups K1 and K2. However,
they have remarkable high C together with very high Ser-
sic r50 R and Sersic r90 R. Hence they are very big and
large galaxies, and thus spheroidals. They occupy the same

region in the color-magnitude diagram, corresponding to the
green valley. However they have a relatively old population
as based on D4000 n, but with a small fraction of younger
stellar populations and some star formation ongoing. These
galaxies are thus clearly in the transitional phase of being
quenched.

5.3 Groups K3, K5, K6

The three groups K3, K5, and K6 are rather specific: they
have least specSFR, high velocity dispersion, high metallic-
ity, high Sersic indices and C >> 2.6 for most of their mem-
bers. All this indicates that they are early type spheroidal
galaxies and quenched. They are more concentrated at the
centre and massive in nature. There is a high abundance
of oxygen (viz. Fig. B1, EW(OIII 4363), especially in K3)
which might be due to the explosion of massive supernovae
(Pop II objects). They have well developed bulges as seen
from their highest Sersic n R values (∼ 4, Fig. B1). The
forbidden line are pronounced in K3, indicating that these
galaxies have enough neutral gas. They might be formed by
wet mergers of galaxies. K3, K5, K6 have lower EW(Hδabs)
values with small scatters and high D4000 n values. The
EW(Hδabs) values do not vary much in these groups. The
BPT diagrams (Fig. 6) and C - parameter (Fig. 5) show that
these groups have a significant population of ellipticals.

However the other two BPT diagrams on Fig. 7 and 8
seem to show a mixture of star forming galaxies and LIN-
ERS/Seyfert. These may correspond somehow to the com-
posite galaxy class of Kewley et al. (2006), the difference be-
ing that here it is a composite class derived from the observa-
tions, not from theoretical models (see also Bamford et al.
2008; Zhang & Hao 2016). In addition, our multivariate
analysis is better able to reveal some hidden properties in
such composite objects.

We may also explain the extension of these groups on
the BPT diagrams as galaxies seen at different stages of
evolution that indeed belong to the same multivariate class
(e.g. Fiorenza et al. 2014).

5.4 Groups K7, K8, K9

The three groups are active sites of star formation as
supported by high EW(Hβabs), EW(Hδabs), EW(Hγabs),
specSFR, low metallicity and high EW(OIII 5007) and in
particular for the signature of a star burst in K8 other than
AGN.

They are also the less massive ones of the sample, es-
pecially K8. They have higher values of EW(Hδabs) thus
containing young stellar populations but the widths of its
distribution are not similar in these groups. There is max-
imum scatter in K8 and minimum scatter in K7. They all
have a high SFR, but the very small group K8 has a par-
ticularly high specSFR. The large scatter in EW(OIII 5007)
in the latter groups indicates that these galaxies contain gas
at high temperature to form new generation of stars. Hence
K8 has stellar population which is a mixture of various ages
as a result of star burst of recent origin.

Though K7 and K9 are dominated by late type galaxies,
they also have small fractions of spheroidals. The galaxies
in these groups have a low Sersic n R lying between 0 and
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2 which indicates that the bulges in the spheroidals are not
also very pronounced i.e., these galaxies may be in a forma-
tion stage.

The galaxies in the three groups K7, K8 and K9 are thus
identified by our multivariate analysis as being in an active
stage of their evolution, the only one in our large sample.

5.5 SFR and quenching

Contrarily to most if not all SFR studies, we do not assume
or find only two categories of galaxies despite an apparent
bimodality in many parameters. Instead, our ten groups do
not simply split into the so-called red ant blue sequences or
in the green valley, they often show some non negligible ex-
tensions. In addition, about half of our large sample belongs
to two groups (K1 and K2) that span these three regions of
the color-magnitude diagram.

The usual interpretation of the bimodality is that galax-
ies undergo a dramatic decrease of their SFR at some time,
so moving from the blue sequence to the red one through the
transitional green valley. This picture is certainly true on av-
erage, but ignores specificities of sub-populations of galaxies
and different quenching mechanisms.

The apparent bimodality strongly suggests that the
transitional phase is generally short. However, the quench-
ing mechanisms are various and their timescales are rather
different (e.g. Lian et al. 2016; Fossati et al. 2017).

It can be expected that the fast quenching mechanisms
may be somewhat sufficiently violent so that the galaxies
move quickly in the multivariate property space, and hence
in the color-magnitude diagram as well. This may explain
that groups K3, K5 and K6 are confined on the red sequence.
Another possibility is that their quenching were not so fast
but occurred a long time ago since they have well developed
bulges (highest Sersic n R) and are the oldest group of our
sample (highest u − z and D4000 n).

Groups K4 and K10 are in the transitional phase, being
also probably quickly quenched since they have a low SFR
with little dispersion (Fig. 11), are easily identified in our
multivariate analysis and are confined to the green valley.

Conversely, groups K1 and K2 contain star forming,
quenched and transitional galaxies, which can be explained
by slow quenching mechanisms, and/or rejuvenating pro-
cesses creating new starbursts as seen in K1.

For the blue groups K7, K8 and K9 we cannot predict
what kind of quenching mechanism will take place.

A more precise picture would require stellar population
modelling and fitting, which will deserve a subsequent paper.

The regression analysis of SFR and specSFR fails for
groups K7, K10 and also K8, while for K4 the concentration
index C has a strong influence. Even if we have no clear ex-
planation at this moment, it is interesting to note that these
four groups are all star forming galaxies or in the transitional
phase of quenching.

6 SUMMARY AND CONCLUSION

In the present work we have classified a large data set of
galaxies with a large number of morphological, photometric
and spectroscopic parameters compiled from VAGC/SDSS

data archive. We have used two very sophisticated statisti-
cal methods e.g. ICA and k-means cluster analysis for find-
ing coherent groups and subsequently used another sophis-
ticated method, Stepwise Multiple Regression to predict the
SFR and specSFR in each group as a function of significant
galaxy parameters. Unlike other studies we have chosen ICA
which is appropriate for a non-Gaussian data set like the
present one. We have found ten coherent groups with the
following features.

• K1: populations of young and old objects, early-type
in nature with a small fraction of late-type ones. Some of
its galaxies are in formative stages of their bulges. Probably
slow quenching mechanisms and rejuvenating processes.

• K2: mixture populations of late- (majority) and early-
type, young and old, galaxies, some of them are in formative
stages of their bulges. Slow quenching mechanisms.

• K3: old populations of early type galaxies, might have
been formed by wet mergers. Possibly fast quenching mech-
anisms.

• K4: massive elliptical galaxies, mixture populations of
young and old objects, early type in nature and some of them
are in formative stages of their bulges. In the transitional
phase of quenching.

• K5: old populations of early type galaxies and/or fast
quenching mechanisms.

• K6: old populations of early type galaxies and/or fast
quenching mechanisms.

• K7: mostly starburst young galaxies.
• K8: mostly starburst young galaxies, K8 consists of

mixture populations of various ages compared to semi pas-
sive and passive groups of galaxies K7 and K9 respectively.
Includes some true AGNs.

• K9: mostly starburst young galaxies.
• K10: massive elliptical galaxies, mixture populations of

young and old objects, and some of them are in formative
stages of their bulges. In the transitional phase of quenching.

The most important aspect of a multivariate technique
is to explain (i) the significance of mixture populations e.g.
groups K1, K2, K4 and K10, as well as the several groups
in the blue (viz. K7, K8, K9) or red (viz. K3, K5, K6) se-
quences, (ii) the implications of the mixture groups. There
can be two aspects; (i) one from their compositional aspect
and (ii) the other from their evolutionary aspect. In the for-
mer case we can point out in respect e.g. of BPT diagram
(viz. Fig. 8) that the AGNs in the group K8 have higher
[OIII]/Hβ values (viz. ∼ 1.0) as compared to the AGNs the
other groups (K1, K2, K3, K4, K5, K6 and K10). On the
other hand the trend is opposite for the starburst galaxies
i.e. these are continuously decreasing from blue to red via
green valley.

In the latter case in respect of the Fig. 11 it is seen that
the number of massive galaxies is generally increasing from
the blue to the red end along with a decreasing trend in star
formation rates.

From the above conjecture we can immediately reach
at the conclusion that galaxies are not classified in two dis-
tinct groups, blue or red but there is a rather continuous
process in the scenario of star formation: galaxies which
are starburst galaxies become active and massive by minor
and/or major mergers and gradually become passive pass-
ing into the red sequence, galaxies harboring AGNs and ini-
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tially having stronger activities become weaker passing to
the red sequence, the green valley actually shows the tran-
sition trajectory of this evolution. Using many parameters
as in our analysis allows to distinguish galaxies according to
the quenching mechanisms of stellar formation.

The multivariate analysis thus unveils this hidden pic-
ture automatically, which is not possible to explore other-
wise like through scatter diagrams only. The detailed study
of this aspect for giving a complete scenario of galaxy for-
mation and subsequent evolution using such huge data base
will be carried out in a subsequent paper.
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M., Groves B., Sutherland R., 2013, ApJ, 774, 100

Lamareille F., 2010, A&A, 509, A53

Lian J., Yan R., Zhang K., Kong X., 2016, The Astrophysical
Journal, 832, 29

MacQueen J. B., 1967, in Proceedings of 5th Berkeley Sympo-
sium on Mathematical Statistics and Probability. pp 281–297,
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.

Murtagh F., Heck A., eds, 1987, Multivariate Data Anal-
ysis Astrophysics and Space Science Library Vol. 131,
doi:10.1007/978-94-009-3789-5.

Osterbrock D. E., 1989, Astrophysics of gaseous nebulae and ac-
tive galactic nuclei

Padmanabhan N., et al., 2008, ApJ, 674, 1217

Peth M. A., et al., 2015, preprint (arXiv:1504.01751)

Prochaska L. C., Rose J. A., Caldwell N., Castilho B. V., Concan-
non K., Harding P., Morrison H., Schiavon R. P., 2007, AJ,
134, 401

Renzini A., Peng Y.-j., 2015, ApJ, 801, L29
Richardson C. T., Allen J. T., Baldwin J. A., Hewett P. C., Fer-

land G. J., Crider A., Meskhidze H., 2016, MNRAS, 458, 988

Sánchez Almeida J., Aguerri J. A. L., Muñoz-Tuñón C., de Vi-
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MNRAS 000, 1–19 (2017)

http://dx.doi.org/10.1088/0067-0049/182/2/543
http://dx.doi.org/10.1088/0004-637X/700/2/1768
http://dx.doi.org/10.1086/130766
http://dx.doi.org/10.1111/j.1365-2966.2008.13963.x
http://dx.doi.org/10.1093/mnras/stw1234
http://dx.doi.org/10.1086/429803
http://dx.doi.org/10.1111/j.1365-2966.2004.07881.x
http://dx.doi.org/10.1051/0004-6361:20020665
http://dx.doi.org/10.1088/0004-637X/724/1/678
http://dx.doi.org/10.1088/0004-637X/750/2/91
http://dx.doi.org/10.1007/978-1-4614-3508-2
http://dx.doi.org/10.1111/j.1365-2966.2009.16185.x
http://dx.doi.org/http://dx.doi.org/10.1016/0165-1684(94)90029-9
http://dx.doi.org/10.1017/pasa.2015.42
http://dx.doi.org/10.1080/03610926.2013.848286
http://dx.doi.org/10.1088/0004-637X/784/2/140
http://dx.doi.org/10.1111/j.1365-2966.2010.17097.x
http://adsabs.harvard.edu/abs/2010MNRAS.407.2207F
http://dx.doi.org/10.1051/0004-6361/201218769
http://dx.doi.org/10.3389/fspas.2015.00003
http://arxiv.org/abs/1611.07050
http://dx.doi.org/10.1111/j.1365-2966.2003.07154.x
http://dx.doi.org/10.1146/annurev.astro.36.1.189
http://dx.doi.org/10.1146/annurev-astro-081811-125610
http://dx.doi.org/10.1086/321545
http://dx.doi.org/10.1111/j.1365-2966.2006.10859.x
http://dx.doi.org/10.1088/0004-637X/774/2/100
http://dx.doi.org/10.1051/0004-6361/200913168
http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/kmeans.html#macqueen
http://dx.doi.org/10.1007/978-94-009-3789-5. 
http://dx.doi.org/10.1086/524677
http://arxiv.org/abs/1504.01751
http://dx.doi.org/10.1086/516754
http://dx.doi.org/10.1088/2041-8205/801/2/L29
http://dx.doi.org/10.1093/mnras/stw100
http://dx.doi.org/10.1088/0004-637X/714/1/487


12 T. Chattopadhyay, D. Fraix-Burnet, S. Mondal

2006, MNRAS, 371, 972

Stensbo-Smidt K., Gieseke F., Igel C., Zirm A., Pedersen K. S.,
2016, Monthly Notices of the Royal Astronomical Society,
464, 2577

Strateva I., et al., 2001, AJ, 122, 1861
Sugar C. A., James G. M., 2003,

Journal of the American Statistical Association, 98, 750
Thomas D., Maraston C., Johansson J., 2011, MNRAS, 412, 2183
Trager S. C., Faber S. M., Worthey G., González J. J., 2000, AJ,
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Table A1. All the parameters of the data set used for the analysis. See http://wwwmpa.mpa-garching.mpg.de/SDSS/DR7/SDSS_line.html

for more details.

Parameter Description

vdis p estimated velocity dispersion from spectrum
U u absolute magnitude (log of intensity)

J J absolute magnitude
Sersic amp R The best fit to the variable “A” in band R (nanomaggies/arcsec2 ): describes the radial distribution of light
Sersic n R The best fit to the Sersic index “n” in band R
sigma balmer Velocity dispersion (σ not FWHM) measured simultaneously in all of the Balmer lines in km/s
sigma forb Velocity dispersion (σ not FWHM) measured simultaneously in all the forbidden lines in km/s
oii 3729 seqw The equivalent width of the continuum-subtracted emission line with the other emission lines subtracted off
neiii 3869 seqw ”
oiii 4363 seqw (EW(OIII 4363)) ”
oiii 5007 seqw (EW(OIII 5007)) ”
hei 5876 seqw ”

oi 6300 seqw ”
h alpha seqw (EW(Hα)) ”
nii 6584 seqw ”
sii 6731 seqw ”
EW(Hδabs) Equivalent width in the absorption line
EW(Hγabs) ”
EW(Hβabs) ”
EW(Hαabs) ”
Ca K abs ”
ca h abs ”
na d abs ”
Lick CN2 stellar absorption line (Lick) index
Lick Ca4227 ”
Lick G4300 ”
Lick Fe4383 ”
Ca4455 ”
Lick Fe4531 ”
Lick c4668 ”
Lick Hb ”
Lick Fe5015 ”
Lick Mgb ”
Lick Fe5270 ”
Lick Fe5335 ”
Lick Fe5406 ”
Lick Fe5709 ”
Lick Fe5782 ”
Lick NaD ”
Lick Hd A ”

D4000 n The break in the spectrum at 4000 Å
SFR Star Formation Rate
specSFR specific Star Formation Rate
Sersic r0 R The best fit to the variable r 0 in R band (arcsec)
Sersic r50 R 50% light radius of best fit model in R band (arcsec)
Sersic r90 R 90% light radius of best fit model in R band (arcsec)
C Concentration Index: ratio between Sersic r90 R and Sersic r50 R
U − z magnitude u minus magnitude z (u-z)
J − H

H − K

MNRAS 000, 1–19 (2017)
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Figure B1. Boxplots for the parameters within the classified groups K1 to K10.
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Table C1. Coefficients of the step wise regression of SFR. Boldface fonts indicate absolute values higher than 0.05.

All K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

U -0.16 -0.20 -0.22 -0.24 -0.16 -0.19 -0.14 -0.22 -0.27 -0.30 -0.27

J -0.27 -0.20 -0.23 -0.10 -0.24 -0.19 -0.18 -0.15 -0.11 -0.11 -0.10

EW(Hα) -0.00 -0.05 -0.01 -0.05 -0.02 -0.03 -0.07 -0.00 0.00 -0.01 -0.02
EW(Hαabs) 0.02 0.06 0.01 0.07 0.06 0.06 0.11 -0.00 0.00 -0.01 0.07

Ca K abs -0.01 -0.05 -0.01 -0.01 -0.02 -0.03 -0.02 0.00 -0.01 -0.01 -0.02
NaD abs 0.08 0.02 0.06 0.00 0.11 0.03 0.00 0.13 0.03 0.06 0.07

Lick CN2 -0.02 -0.03 -0.01 0.00 -0.06 0.00 0.00 0.04 0.00 0.00 0.00
D4000 n -1.59 -0.68 -1.44 -0.98 -1.61 -1.37 -0.97 0.00 -1.09 0.00 -1.54

C -0.06 0.05 0.06 -0.03 0.79 0.00 -0.05 0.00 0.00 -0.04 0.00
U − z 0.00 0.05 0.01 0.17 -0.10 0.11 0.08 0.18 0.20 0.26 0.09

J − H 0.23 0.19 0.19 0.13 0.21 0.18 0.18 0.09 0.13 0.09 0.09

H − K 0.12 0.11 0.08 0.07 0.10 0.11 0.08 0.10 0.08 0.07 0.05
EW(OIII 4363) -0.06 -0.04 -0.04 -0.01 -0.04 -0.04 -0.02 -0.02 -0.03 -0.01 -0.02
EW(HeI 5876) -0.04 -0.03 -0.04 0.00 -0.06 -0.02 0.02 -0.03 -0.04 0.01 -0.04

Table C2. Coefficients of the step wise regression of specSFR. Boldface fonts indicate absolute values higher than 0.05.

All K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

U 0.00 0.05 -0.08 0.06 0.08 0.06 0.14 -0.09 -0.13 -0.15 0.07

J -0.03 -0.06 0.02 0.00 -0.09 -0.04 -0.06 0.09 0.15 0.12 -0.04
EW(Hα) -0.00 -0.05 -0.02 -0.05 -0.02 -0.03 -0.06 -0.00 -0.00 -0.01 -0.03

EW(Hαabs) 0.02 0.06 0.02 0.07 0.05 0.06 0.10 -0.00 0.00 -0.01 0.07

Ca K abs -0.01 -0.05 -0.01 -0.01 -0.02 -0.03 -0.02 -0.00 -0.02 -0.01 -0.02
NaD abs 0.02 -0.03 0.00 -0.05 0.03 -0.01 -0.04 0.07 0.00 0.02 0.01
D4000 n -1.60 -0.69 -1.49 -1.04 -1.61 -1.40 -1.03 -0.57 -1.56 -0.31 -1.54

C 0.01 0.00 0.04 0.00 0.48 0.00 0.00 0.05 0.00 0.00 0.00
U − z -0.20 -0.22 -0.18 -0.14 -0.39 -0.17 -0.22 -0.03 0.00 -0.02 -0.28

J − H 0.08 0.09 0.03 0.06 0.12 0.09 0.09 -0.02 0.00 -0.03 0.05
H − K 0.06 0.07 0.02 0.04 0.07 0.07 0.04 0.06 0.00 0.02 0.04

MNRAS 000, 1–19 (2017)
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