Distributed DC/DC architecture for an LVDC hydrogen production microgrid based on concentrated photovoltaïc sources
Kolja Neuhaus, Corinne Alonso

To cite this version:
Kolja Neuhaus, Corinne Alonso. Distributed DC/DC architecture for an LVDC hydrogen production microgrid based on concentrated photovoltaïc sources. Workshop LIA NextPV 2017, Dec 2017, Tokyo, Japan. 1p., 2017. hal-01702956
In the context of the decrease of fossil fuels and ecological transition, hydrogen production has been identified as a solution for storage consumption of renewable energies. High efficiency solar cells can be used in conjunction with solar concentration to further push the limits of photovoltaic energy production. In order to maximize this production, high precision solar tracking in addition to optimized conversion devices are needed. In this study, a distributed DC/DC architecture is proposed with a Low Voltage DC microgrid, aiming to optimize energy flows between high efficiency concentrated photovoltaic production and hydrogen production from electrolyzers.

Distributed converter architecture

One Single DC/DC Boost converter for each CPV cell + separate MPPT for each.

Exploiting different functioning points, optimizing energy flow

Perspectives

Experimental test with small size electrolyzer cells + CPV

Modelizing Electrolyzer cells in collaboration with RCAST, Tokyo (Equivalent circuit models, EIS)

Extrapolating results for bigger scale hydrogen production.

The ADREAM platform

LAAS-CNRS, Toulouse, France

AC microgrid for energy production and consumption. DC microgrid + storage: Lead-acid batteries + supercapacities

Concentrated PV + Tracking

RCAST, Tokyo

High efficiency cells + fresnel lenses and concentrators

2 axis Solar Tracker

TdAPS (Time derived Astronomical Positioning System)

RCAST, Tokyo

LAAS, Toulouse

LVDC microgrid for hydrogen production based on concentrated PV

LAAS-CNRS, Toulouse

Modelizing CPV, converters and batteries

LAAS-CNRS, Toulouse

/ Laboratoire d’analyse et d’architecture des systèmes du CNRS