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Abstract—Due to the Lagrangian nature of SPH, dealing
with open boundaries (which are intrinsically Eulerian) is a
challenging issue. This issue has recently been addressed in the
Unified Semi-Analytical Boundaries framework [1], where it has
been shown how to properly deal with mass fluxes at the open
boundaries. However imposing both velocities and pressures on
the open boundaries will over-constrain the problem, and in
most cases only one of these quantities will be known. Therefore,
Riemann Solvers can be used to calculate and prescribe compat-
ible fields at the open boundaries. These compatible fields allow
therefore complex boundary conditions to be imposed.

I. INTRODUCTION

Due to the nature of SPH method, simulations can have a

high computational cost. As such, it becomes of great interest

to model only a portion of the fluid domain to focus on the area

of interest when using SPH to solve several fluid mechanics

problems. This is why open boundaries are being researched.

The simplest way to deal with inlets/outlets is to use a

buffer layer, where the values of the field at the open boundary

are imposed on several layers of particle, so that the kernel

of the free particles near the boundaries is complete [2]–

[4]. However, this method can generate spurious shocks when

particles are allowed to move freely after the buffer layer. It

should be noted that Riemann solvers have already been used

in this framework for Weakly Compressible SPH (WCSPH)

[5], and it helped reduce the shocks. Nonetheless, modelling

a complex boundary where the flow is not parrallel to the

boundary remains difficult.

A slightly more flexible method has been developped by

Kunz et al. [6], where mirror particles were used at the open

boundaries. Through this method, Dirichlet pressure boundary

conditions were succefully applied. Nonetheless, this work is

just starting.

The most promising approach was developped by Kassiotis

et al. [1], where the Semi-Analytical boundary conditions

developped by Ferrand et al. [7] were extended to open

boundaries. However, using this method both velocities and

pressures were imposed, which tended to over-constrain the

problem. This also limited the method to application where

both fields are know at the open boundaries.

The work presented here will therefore use Riemann invari-

ants to calculate compatible fields along the open boundaries.

This will be validated using several test cases solving confined

and free-surface problems.

II. REMINDERS OF THE SEMI-ANALYTICAL BOUNDARY

CONDITIONS FOR WEAKLY COMPRESSIBLE SPH

A. Notations

v

b

a

s
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Fig. 1. Space discretization. Vertex particles are shown in green and segments
in orange.

In terms of notations, the weakly compressible fluid domain

Ω is discretised by a set of SPH fluid particles F . These

particles will be denoted by the subscript (.)a and it will be

surrounded by neighbours (.)b. The boundary ∂Ω is meshed.

On the nodes of the mesh “vertex” particles V are placed.

Along the elements of the mesh that connect the nodes,

“segment particles” S are placed. The vertex particles will

be denoted by (.)v and segment particles by (.)s, see Fig. 1.

Each particle stores information such as mass ma, posi-

tion center ra, Lagrangian velocity va (i.e. the Lagrangian

derivative of the position), Eulerian fluid velocity ua, density

ρa, dynamic viscosity µa ≡ νρa, pressure pa and volume

Va = ma/ρa.

It is important to underline that two sets of velocities are

needed here, since the vertex particles and boundary segments

at open boundaries are (most of the time) fixed in space but

carry an information on the fluid velocity, namely uv and

us. In other words, we have ua = va except for vertex

particles and segments located onto the open boundaries. On
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the other hand, this equality holds for wall segments and

vertex particles, thanks to the no-slip condition. Furthermore,

in our model all particle masses ma are constant in time, with

the exception of the vertex particles of open boundaries, as

detailed later.

Let ρ0 be the reference density of the considered fluid. In the

Weakly Compressible SPH approach used herein, the pressure

field is deduced from the density field using Tait’s equation of

state [8], given as:

pa =
ρ0c

2
0

ξ

[(
ρa
ρ0

)ξ

− 1

]
, (1)

where c0 is the numerical speed of sound and ξ is taken to 7
for water.

The SPH interpolation used id the Wendland Kernel of order

5 [9]. The subscripts (.)ab generally denotes the difference

of a quantity between the particles a and b (unless stated

otherwise). For instance uab ≡ ua − ub and rab ≡ ra − rb.

Some exceptions are made, including the following notations:

wab ≡ w (rab) and ∇wab ≡ ∇aw (rab). The symbol ∇a

denotes the gradient with respect to the position ra.

In addition, following the work of several authors [7], [10],

an additional field denoted by γa is used to take boundary

terms into account. This field measures the part of the kernel

support which is inside the computational domain and is

defined as:

γa ≡

∫

Ωa∩Ω

w (ra − r) dr. (2)

The field γa is computed from a dynamic governing

equation [7]. The discrete SPH operators presented in the

next section also require the computation of ∇γa, which is

performed by a decomposition onto the boundary segments.

Each segment contribution ∇γas is defined as:

∇γas ≡

(∫

s

w (r) dS

)
ns, (3)

where ns is the inward unit normal to the boundary segment

s. Now ∇γa is written as:

∇γa =
∑

s∈S

∇γas. (4)

This gradient can be calculated analytically, see [7].

B. Semi-Analytical boundary conditions

The Semi-Analytical boundary conditions were developped

by Ferrand et al. [7] as a way to properly impose Neumann and

Dirichlet boundary conditions. The vertices and segments are

used to impose the desired boundary conditions after Gauss’s

theorem is applied to rewrite the SPH integrals of gradient and

divergence operations, i.e.:

1

γa

∫

Ω

∇(Aa)wabdV =
1

γa

∫

Ω

Aa∇wabdV

−

∫

∂Ω

∇(Aa) · ndS (5)

This therefore leads space discretized differential operators.

Gγ,+
a {Ab} which is a boundary corrected gradient of the

discrete scalar field {Ab}, Dγ,−
a {Ab} which is a boundary

corrected divergence of the discrete vector field {Ab}, and

Lγ
a{Bb, Ab} which is a boundary corrected Laplacian of the

discrete scalar (or vector) field {Ab} with discrete diffusion

field {Bb}. They are defined by the following equations [7]:

Gγ,+
a {Ab} ≡

ρa
γa

∑

b∈P

mb

(
Aa

ρ2a
+
Ab

ρ2b

)
∇wab

−
ρa
γa

∑

s∈S

(
Aa

ρ2a
+
As

ρ2s

)
ρs∇γas, (6)

Dγ,−
a {ub} ≡ −

1

γaρa

∑

b∈P

mbuab ·∇wab

+
1

γa

∑

s∈S

uas ·∇γas, (7)

Lγ
a{Bb, Ab} ≡

1

γa

∑

b∈P

Vb2Bab

Aab

r2ab
rab ·∇wab

−
1

γa

∑

s∈S

(Bs∇As +Ba∇Aa) ·∇γas. (8)

The factor Bab is build with Ba and Bb. In most of the

SPH literature, it is taken as their arithmetic mean. However,

to ensure continuity of shear flux, i.e. Ba∇Aa ·rab = Bb∇Ab ·
rab, it is taken here as their harmonic mean:

Bab =
2BaBb

Ba +Bb

. (9)

C. Volume diffusion correction

Furthermore, it should be noted that a volumic diffusion

term is applied, as the pressure and velocities are collocated,

i.e. stored at the same points (the particle positions), and

therefore require stabilization. In the present work the stabi-

lization factor is derived from the pressure-velocity coupling

available in the literature for Finite Elements mesh-based

method, namely Brezzi and Pitkäranta [11], which was adapted

to Semi-Analytical SPH boundaries by Ghaitanellis et al. [12].

This volumic diffusion is weighed by a factor Λ.

D. Treating open boundaries

The work by Kassiotis et al. [1] extended these boundary

conditions to deal with open boundaries. The first step was to

properly solve the continuity equation. The continuity equation

will be solved as a summation of the densities, as presented

by Villa [13], but where particular care is given to ensure

that the time integration of Eulerian fields takes into account
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the Lagrangian fields. This gives the following equation for

continuity:

ρn+1
a =

1

γn+1
a

(
γna ρ

n
a + di/o

a

)
. (10)

Where di/o
a represents the added terms in the continuity

equation, i.e.:

di/o
a =

∑

b∈Pn

mn
b

(
wn+1

ab − wn
ab

)

+
ρna
2

∑

s∈S i/o

[
∇γas

(
r
n
as + δri/o

s

)
+∇γas (r

n
as)

]
· δri/o

s

+
∑

v∈V i/o

mn
v

[
wn

av − w
(
r
n
av + δri/o

v

)]
(11)

Where the virtual displacements, δri/o
v and δri/o

s are defined

by:

δri/o
v =∆t (un

v − v
n
v ) (12)

δri/o
s =∆t(un

s − v
n
s ) (13)

To allow inflows and outflows, the masses of the vertices is

allowed to vary. The mass variations are calculated using the

following equation:

mn+1
v = mn

v +∆tṁn
v + δmn

v , ∀v ∈ V i/o, (14)

Where the mass flux ṁn
v is calculated using the following

equation:

ṁv =
1

2

∑

s∈N
i/o
sv

ρsSs(us − vs) · ns, ∀v ∈ V i/o, (15)

The symbol δmn
v represents the mass variations that cor-

responds to particle creation/deletion. Particles are created

whenever the masses of a vertex particle exceeds a threshold,

and they are deleted whenever fluid particles cross an open

boundary. More details are given in Kassiotis et al. [1].

III. IMPOSING COMPATIBLE PRESSURE AND VELOCITY

FIELDS ALONG THE OPEN BOUNDARIES

In the previous sections, the basis to properly allow particles

to enter and leave a domain has been defined. However, when

dealing with open boundaries compatible boundary conditions

need to be imposed. To do so, a linearised Riemann problem

will be solved.

This methodology is widely used in the literature for Finite

Volumes, and the approach chosen here follows the work

of Blondel et al. [14], here with simplifying assumptions of

barotropic fluid and subsonic flow. The latter assumption is

justified by the fact that weakly compressible SPH assumes

the speed of sound to be significantly larger than the flow

velocity.

Let us consider a segment s on an open boundary and work

in the local reference frame of space dimension d relative to s,
denoted by (n, t1, · · · , td−1), n being the local normal unit

vector and tk the tangential unit vectors. In this section, for

simplicity we will drop the label s relative to all fields. Let us

start from the Euler equations, and neglect variations along the

tangents of s, to write the linearised Riemann problem (LRP):

∂Y

∂t
+B (Y )

∂Y

∂n
= 0, (16)

where the unknown vector is defined as:

Y ≡




ρ
un
ut1

...

utd−1




=




ρ
u · n
u · t1

...

u · td−1



, (17)

and the matrix B as:

B (Y ) ≡




un ρ 0 · · · 0
c2

ρ
un 0 · · · 0

0 0 un 0 · · ·
...

... 0
. . . 0

0 0 · · · 0 un




. (18)

Furthermore the speed of sound c is defined from the state

Equation (1) as:

c ≡

√
∂p

∂ρ
= c0

(
ρ

ρ0

) ξ−1

2

. (19)

The eigenvalues of B are λ−1 ≡ un − c, λ0 ≡ un (with a

multiplicity d− 1) and λ+1 ≡ un + c.
The Eigenvalues and Eigenvectors will be used to calculate

compatible fields. Along an open boundary there is a dis-

continuity between the exterior state (upon which we want

to impose our values) and the interior state (i.e. the fluid

domain). The eigenvalues of the problem, λi, represent the

slope of the characteristic curves of the Riemann problem

(see Fig. 2). These curves represent discontinuities between

the states on their right and left sides (for example the wave

λ0 is a discontinuity between the data state Y1 and Y2). The

Generalized Riemann Invariants (GRI) define quantities that

are conserved across certain characteristic curves (we will see

which ones afterwards), and therefore can help link the exterior

and interior state. The GRIs are calculated from the relations

defined by Jeffrey [15]:

Rλ ≡
dY1
V λ
r,1

=
dY2
V λ
r,2

= ... =
dYd
V λ
r,d

, (20)

where Yi is a components of vector Y, V λ
r,i is a components

of the right eigenvector of B associated to the eigenvalue λ
and Rλ is its corresponding GRI.

The GRI corresponding to the celerities λ−1, λ0 and λ+1

are respectively denoted by R−1, R0 and R+1:
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Fig. 2. Sketches of the Riemann problems.

R−1 ≡ un + ψ, (21)

R0 ≡ un, (22)

R+1 ≡ un − ψ, (23)

where:

ψ ≡

∫ ρ

ρ0

c

ρ̃
dρ̃, (24)

i.e.:

ψ =





2c0
ξ − 1

(
ρ

ρ0

) ξ−1

2

if ξ > 1

c0 ln
ρ

ρ0
if ξ = 1:

(25)

Going back to the problem at hand, the state of the segment

value Ys is either defined by the first state (see Fig. 2a) or by

the second state (see Fig. 2b) which respectively correspond to

λ0 = un ≥ 0 (ingoing mass flux) and λ0 = un < 0 (outgoing

mass flux). One should bear in mind that λ−1 will always be

negative and λ+1 always positive as the flow is assumed to be

subsonic.

Wave λ0 is known as a contact discontinuity, i.e. λ0 in state

1 is equal to λ0 in state 2 (λ0,1 = λ0,2) [16]. This implies that

un,1 = un,2, which is consistent with the GRI relations defined

in equation (20). Through these relations it is also considered

that dρ = 0 across λ0. Therefore ρ1 = ρ2, but also p1 = p2
as the pressure is defined by Equation (1).

Therefore to link the fluid velocity along the normal of

the segment and the pressure, one needs only to find a

relation between state 2 and the interior state; i.e. across the

characteristc wave λ+1 (the tangential velocities will be dealt

with later on). As defined by Toro [16] the characteristic wave

λ+1 can belong to three possible type of discontinuity:

1) Contact wave

In this case the characteristics are parallel in both states,

this means that the following condition is true:

λ+1,2 = λ+1,int, (26)

and the GRI relations hold across the characteristic

wave:

R+1,2 = R+1,int. (27)

2) Expansion (or rarefaction) wave

In this case the characteristics are diverging, and the two

data states are connected through a smooth transition.

This case is defined by the following condition:

λ+1,2 < λ+1,int, (28)

and the GRI relations hold across the characteristic

wave:

R+1,2 = R+1,int. (29)

3) Shock wave

In this case the characteristics are converging towards

the wave λ+1, meaning that this case is defined by the

following condition:

λ+1,2 > λ+1,int. (30)

In this case the GRI relations do not hold across the

characteristic wave, and therefore the Rankine-Hugoniot

relationships have to be used:

Conservation of mass:

ρ2un,2 = ρintun,int, (31)

Conservation of momentum:

p2 + ρ2u
2
n,2 = pint + ρintu

2
n,int. (32)

For the case of the tangential velocities the Riemann invari-

ants relations make it possible to write dut1 = ... = dutd−1
=

0 across the wave λ+1 (we will assume these relations still

hold in the case of a shock). Therefore the tangential velocities

are equal between state 2 and the interior state. However, the

wave λ0 acts as a discontinuity.

Therefore if the problem is that of an inlet then the dis-

continuity prevents a relationship between state 2 and state

1 to be defined for these velocities, all that is known is that

dut1 = ... = dutd−1
= Const. This means that these veloci-

ties need to be defined by the user for inlet open boundaries.

However for the case of an outlet then the λ0 will be assumed

to be a “ghost” wave and the exterior tangential velocities will

be assumed to be equal to the tangential velocities of state 1

and 2, and therefore equal to the velocities of the interior state.

In mesh-based methods, such as Finite Volumes, knowing

the interior state data is simple as boundary segments are only

connected to one element. However in the SPH formulation
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there is more than one fluid particle connected to a boundary

segment. Therefore defining the interior state is non-trivial.

The method chosen is to use the SPH interpolations as defined

by Ferrand et al. [7]:

ps,int =
1

αs

∑

b∈F

Vbpbwbs, (33)

where, as a reminder, F contains only fluid particles and αs

is the Shepard filter defined for a segment s by:

αs =
∑

b∈F

Vbwbs. (34)

Similarly, the interior velocity is defined as:

us,int =
1

αs

∑

b∈F

Vbubwbs. (35)

Finally, the density will be calculated using Equation (1).

Therefore, along open boundaries, once one of the fields

(velocity or pressure) has been imposed it is possible to

estimate the type of discontinuity of the characteristic wave

λ+1, and calculate the corresponding field (pressure or ve-

locity respectively) using either the GRI or Rankine-Hugoniot

relationships.

IV. VALIDATION CASES

A. Rapidly expanding pipe
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Fig. 3. Configuration of the rapidly expanding pipe. The origin is placed at
the beginning of the second pipe, and on the central axis of the pipes.

For the first validation case, the flow from a small pipe

(named pipe 1) will enter a large pipe (named pipe 2), creating

a sudden expansion of the flow. See Fig. 3 for details on

the geometry. Far from the expansion, the flow should follow

the Hagen-Poiseuille equations, which for a flow between two

infinite plates is given by:

ux = Umax

(
1−

z2

R2

)
, (36)

dP

dx
= −

2ρ0νUmax

R2
. (37)

Where the origin of z is on the center pipe axis, R is the radius

of the pipe and Umax is the maximum velocity. To ensure that

the flow stays laminar, this maximum velocity will be defined

according to a Reynolds number Re:

Umax =
νRe

2R
. (38)

A Poiseuille flow velocity profile will therefore be imposed

on the inlet, and a constant pressure will be imposed on the

outlet. The geometrical parameters are chosen to correspond

to one of the experiments presented by Hammad et al. [17]:

R1 = 0.13 m, L1 = 3R1, R2 = 2R1 and L2 = 4R2. The

particle spacing ∆r = R1/26 and the physical parameters

chosen are ρ0 = 1190 kg.m-3, ν = 3.19 × 10−5 m2.s-1 and

Re = 20.6. The numerical parameters are c0 = 0.03 m.s-1

and Λ = 0.1. A background pressure is used to help the flow

stabilize.
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Fig. 4. The three regions in the rapidly expanding pipe that can be defined
to claculate the head loss from the simulated flow.

Looking at the streamlines of the flow, it can be separated

into 3 regions: a Poiseuille flow inside pipe 1, a recirculation

zone created by the sudden expansion and a Poiseuille flow

inside pipe 2 (see Fig. 4). One can estimate the head loss

in each section using the same method as Hérard and Martin

[18], i.e the expected head loss is therefore equal to the sum

of head loss of the Poiseuille flows, and Borda-Carnot head

loss in the recirculation zone.

Defining the head of the flow by:

H =
Û2

2g
+

P

gρ2
. (39)

Where Û2 = 1/(2R)
∫ R

−R
U2dz̃, P = 1/(2R)

∫ R

−R
pdz̃. The

theoretical head loss between the inlet and the outlet is thus

equal to:

H1 −H2 =
1

2g

(
Û1 − Û2

)2

+
1

gρ2
(P1 − P1′) +

1

gρ2
(P2 − P2′) (40)

Where the subscript represent the interface between differ-

ent zones of the flow, see Fig. 4.

Fig. 5 shows the head along the x-axis. Extracting the

simulated head loss and calculating the theoretical head loss

gives:

• Head loss from simulations = 5.04× 10−7 m

• Theoretical head loss = 5.00× 10−7 m
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Fig. 5. Head profile plotted along the x-axis of the rapidly expanding pipe.
The blue line is the computed head, the dashed lines show the theoretical head
gradient of the Poisseuille flows (from Equations 37 and 38) and the arrows
around the dotted line shows the head loss from the Borda-Carnot equation.

Therefore, the simulated head loss has less than a 1%

difference with the theoretical head loss.

B. 2-D periodic free-surface water wave

−0.5 0 0.5
0
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x/L
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x/L

−0.12 −0.05 0.03 0.105 0.18

Horizontal velocity (m/s):

(a) t = 0.73 s (b) t = 1.35 s

Fig. 6. Propagation of a regular waves on a flat bottom with open boundaries
given at 2 instances. A time varying velocity profile is prescribed on both
vertical boundaries so they alternate between inlets and outlets.

The next test case shows that these new open boundary

conditions can be used for both inflows and outflows, and that

open boundaries can alternate between the two without any

difficulties, even with a free surface. To do so periodic water

waves propagating on a flat bed will be imposed. The waves

imposed are calculated from the 5th order solution to Stokes

wave theory given by Fenton [19].

The following symbols will be used: η is the free surface

elevation (with the water depth h = D + η), A is the wave

amplitude (i.e. half of the wave height), D is the mean water

depth, g is the acceleration due to gravity, k is the wave

number (defined as k = 2π/L, where L is the wave length),

c is the wave velocity. The wave period T can be calculated

from the wave number and wave velocity, i.e. T = 2π/(kc).
Furthermore the z-axis has its origin at the bed.

For the present test case a depth of 0.5 m, an amplitude

of 0.05 m and a wave length of 2.5 m have been chosen.

Furthermore there will be no mean current in the flow. The

Ursell number for this case is 2AL2/d3 = 5 ≪ 32π2/3, which

would mean that linear wave theory is applicable. However,

a higher order solution is used, as phase difference can occur

after several time period. Finally, in the simulation the fluid

viscosity ν is set to 10−6 m2s-1, the particle spacing ∆r is set

to one tenth of the amplitude and the numerical parameters

are c0 = 20 m.s-1 and Λ = 0.1. An illustration of this test

case can be found in Fig. 6 where it is shown that the open

boundaries alternate between inlets and outlets.

A simulation with periodic boundary conditions will be first

be run (i.e. when particles exit the boundary on one side

they enter on the other). These results will then compared

to a simulation where the fluid velocities calculated from the

analytical solution [19] will be imposed along the normal of

the open boundaries, and Riemann invariants will be used

to calculate the pressure. It should be noted that if both

the pressure and the velocities would be imposed, then the

problem would be overconstrained and particles would exit

the domain.
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Fig. 7. Free surface particles for simulations using different boundary
conditions compared to the analytical solution by Fenton [19].

Plots of the free surface are then presented in Fig. 7. The

first conclusion is that even after several wave periods the free

surface stays very close to the analytical solution for all type

of boundaries. With periodic boundary conditions, the wave

seems to be slightly slower than the analytical solution and it

forces the domain to be a multiple of the wave length. This

is not the case with the open boundary conditions (as can be

seen from the fact that the green free surface particles extend

over a longer range than the blue free surface particles).

Furthermore, let us define the error on the free surface using

the following equation:
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εη =

√
1

NFS

∑

a∈FS

(ηsim − η)2

A2
, (41)

where FS represents the free surface particles, NFS is the

number of free surface particles, ηsim is the free surface

elevation of the simulations and η is the analytical solution

by Fenton [19].

1 2 3 4 5 6 7

10−1

100

t/T

ε η

0.1

0.4

∆r/A = 0.1 ∆r/A = 0.4

Fig. 8. Errors on the free surface for simulations with an imposed velocity
profile on the open boundaries for two particle spacing ∆r. The dashed line
show the two values ∆r/A.

These errors are plotted over time in figure 8, which shows

that for these discretisation the error (the solid line) is of the

order of the particle spacing (the dashed line). Unfortunatly,

this is not the case for smaller particle size as an unstability

develops, increasing the error. These instabilities appear as

a checkerboarding effect close to the inlets, and work on

the volumic diffusion term close to open boundaries will be

neccesary in the future to reduce those errors for very refined

simulations.

C. 3D solitary wave

The Riemann invariants become particularly useful when

the boundary conditions are not well known, or not easy

to predict. To illustrate this concept, a test case for the

propagation of a solitary wave on a bed with a step, that will

cause it to break will be presented.

Imposed Velocity Imposed Pressure

D

L L 3L

0.7D

A

C

Fig. 9. Side view of the 3D solitary wave on a sloped domain configuration.

At the inlet a wave front calculated from the 2D Korteveg-

De Vries solitary wave equation [20] will enter the domain at

an angle θ:

η(x, y, t) =A sech2
(
k [x cos θ + y sin θ

−ct− x0]
)
, (42)

h(x, y, t) =D + η(t), (43)

p(x, y, z, t) =ρg(z − h(t)), (44)

ux(x, y, z, t) =c
η(t)

h(t)
cos(θ), (45)

uy(x, y, z, t) =c
η(t)

h(t)
sin(θ), (46)

uz(x, y, z, t) =
z

h(t)

∂η

∂t
(t). (47)

where A is the amplitude and x0 is wave shifting length. The

wave number and celerity are computed as k =
√
3A/4D3,

c =
√
g(A+D).

At the outlet a hydrostatic pressure corresponding to the

reference level D will be imposed and the velocities will be

calculated using Riemann invariants.

The geometry chosen for the test case illustrated in Fig. 9

is a the reference depth D = 0.6m, wave amplitude A = D/2
and characteristic length L = 2.5D. The wave shifting length

is set to ensure that the waves are not in the domain at the

initialisation, i.e. x0 = −4k.

The fluid viscosity ν is set to 10−6 m2s-1, the particle spac-

ing will be set to one thirtieth of the amplitude (∆r = A/30)

and the numerical parameters are c0 = 20 m.s-1 and Λ = 0.1.

The evolution of the solitary wave within the domain at

different instances is shown in figure 10. It shows that the

step causes the wave to break, creating a highly disturbed flow

to exit the domain. Nonetheless, through the use of Riemann

invariants (and imposing a hydrostatic pressure) the wave exits

the domain without any reflections showing the high flexibility

of these new open boundary conditions.

V. CONCLUSION

In a previous article, Kassiotis et al. [1], the Unified Semi-

Analytical boundary conditions have been extended to treat

complex inlets and outlets without spurious shocks. The work

presented here has improved on the method by allowing

compatible pressure and velocity fields to be imposed on the

open boundaries. This was done through the use of Riemann

invariants.

This work has been validated on three test cases; a rapidely

expanding pipe flow, periodic waves and a breaking solitary

wave. The first test case showed that the fields calculated

using the Riemann invariants were indeed compatible. The

second test case showed that unsteady boundary conditions

were effectively imposed. Finally, the last test case showed that

these open boundary conditions can be used to allow complex

flows to exit the domain.



11th international SPHERIC workshop Munich, Germany, June, 14-16 2016

t = 1.20 s

t = 2.46 s

t = 3.31 s

t = 4.03 s

t = 4.79 s

t = 6.00 s

Fig. 10. Propagation of a solitary wave on a bed with a step. The fields
plotted represent the velocity magnitude. The velocities range from 0 to 3

m/s.

In all cases this formulation of open boundaries in a

Smoothed Particle Hydrodynamics framework have proved to

be very adaptative to complex confined and free-surface flows.

Furthermore, since these boundary conditions produce smooth

fields near the open boundaries, these boundary conditions will

be particularly suited for coupling, as small perturbations near

the shared boundary can lead to instabilities [21].
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