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Abstract—Widely linear (WL) receivers have the capability to
perform single antenna interference cancellation (SAIC) of one
rectilinear (R) or quasi-rectilinear (QR) co-channel interference
(CCI), a function which is operational in global system for mobile
communications (GSM) handsets in particular. Moreover, SAIC
technology for QR signals is still required for voice services over
adaptive multi-user channels on one slot (VAMOS) standard,
a recent evolution of GSM/EDGE standard, to mitigate legacy
GSM CCI in particular. It is also required for filter bank
multi-carrier offset quadrature amplitude modulation (FBMC-
OQAM) networks, which are candidate for 5G mobile networks,
to mitigate inter-carrier interference (ICI) at reception for
frequency selective propagation channels in particular. In this
context, the purpose of this paper is twofold. The first one is
to get more insights into the existing SAIC technology, and
its extension to multiple antenna called MAIC, by showing
analytically that, contrary to what is accepted as true in the
literature, SAIC/MAIC implemented from standard WL filtering
may be less efficient for QR signals than for R ones. From
this result, the second purpose of the paper is to propose
and to analyze, for QR signals and frequency selective fading
channels, a SAIC/MAIC enhancement based on a three-input
WL frequency shift (FRESH) receiver, making QR signals always
almost equivalent to R ones for WL filtering in the presence of
CCI. The results of the paper, completely new, may contribute
to develop elsewhere new powerful WL receivers for QR signals
and for both VAMOS and FBMC-OQAM networks in particular.

Index Terms—Non-Circular, Widely Linear, Single Antenna
Interference Cancellation (SAIC), Rectilinear, Quasi-Rectilinear,
CCI, Continous-Time, Pseudo-MLSE, FRESH, MSK, GMSK,
OQAM, ASK, VAMOS, FBMC

I. INTRODUCTION

S INCE two decades and the pioneer works on the subject
[1–4], WL filtering has raised up a great interest for

second-order (SO) non-circular (or improper) signals [5],
in numerous areas. Nevertheless, the application which has
received the greatest interest is CCI mitigation in radiocom-
munication networks using R or QR modulations. Let us
recall that R modulations correspond to mono-dimensional
modulations such as amplitude modulation (AM), amplitude
shift keying (ASK) or binary phase shift keying (BPSK)
modulations, whereas QR modulations are complex modula-
tions corresponding, after a simple derotation operation [6],
to a complex filtering of a R modulation. Examples of QR
modulations are π/2-BPSK, minimum shift keying (MSK) or
OQAM modulations, while an example of approximated QR
modulation is the Gaussian MSK (GMSK) modulation. One of
the most important properties of WL filtering is its capability
to perform SAIC of one R or QR multi-user CCI, allowing
the separation of two users from only one receive antenna [7–
9]. The effectiveness of this technology jointly with its low

complexity explain why it is currently operational in most of
GSM handsets, allowing significant network’s capacity gains
for the GSM system [9], [10]. Extension of the SAIC concept
to a multi-antenna reception is called MAIC and has been
of great interest for GPRS networks in particular [11]. Other
works about the SAIC/MAIC concepts by WL filtering are
presented in [12–15].

Despite the important development of 3G and 4G mobile
cellular networks all over the world for data and video
traffic, there is still a significant development of GSM/EDGE
networks and their evolutions in emerging markets such as
China, India, Africa and Eastern Europe [16]. To accommo-
date the growing voice traffic and also to make room for
increasing data traffic, there is a necessity to increase the
spectral efficiency of speech services. For this reason, a new
technology, called VAMOS, has been recently standardized
[16]. The aim of VAMOS is to increase the capacity of GSM,
while maintaining backward compatibility with the legacy
system. VAMOS enables the transmission of two GSM voice
streams on the same TDMA slot at the same carrier frequency
through the so-called orthogonal sub channel (OSC) multiple
access technique which aims at doubling the number of users
served by a cell. The separation, at the handset level, of the
two streams, distorted by frequency selective channels and
potentially corrupted by co-channel OSC and/or legacy GMSK
interference, coming from out of cell OSC and/or legacy
base-stations, requires the implementation of enhanced SAIC
techniques for QR signals [16]. Such preliminary enhanced
techniques for VAMOS, based on standard WL filtering, have
been proposed recently in [17–19] for SAIC and in [20] for
SAIC/MAIC, for both OSC downlink and uplink transmissions
respectively.

Moreover, 4G networks using LTE [21] or LTE-Advanced
[22] technologies employ multiple input multiple output
(MIMO) orthogonal frequency division multiplex (OFDM) for
transmission in the downlink. In order to avoid frequency
planning, a frequency reuse factor of one may be possible,
which requires receivers robust to CCI. For this reason, two
adaptations of the SAIC/MAIC concept to OFDM transmis-
sions using R modulations have been presented in [23] and
[24] for SISO/SIMO and MISO/MIMO systems using the
Alamouti scheme respectively. However OFDM waveforms
are not well-localized in frequency and require strong time-
frequency synchronization constraints, which is not compatible
with the needs of the 5G wireless networks such as a high
density of device-to-device or machine-to-machine links [25].
For these reasons, filtered multi-carrier waveforms such as
FBMC waveforms [26], which are well localized in frequency
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and compatible with asynchronous links, are considered as
good candidates for 5G networks. The coupling of FBMC
waveforms with OQAM modulation, giving rise to FBMC-
OQAM waveforms [27], has been shown to maximize the
spectral efficiency while removing the ICI induced by the
filtering operation for SISO/SIMO links in flat fading chan-
nels [27]. However, for frequency-selective channels or for
MIMO links, FBMC-OQAM waveforms still generate ICI
at reception. As the ICI associated with a given subcarrier
is a frequency shifted QR interference, it may be removed
effectively by WL filtering. Besides, as an FBMC-OQAM
CCI is the sum of frequency shifted QR signals, it is a SO
non-circular CCI as shown in [28]. Enhanced SAIC/MAIC
techniques aiming at removing both inter-symbol interference
(ISI), ICI and potential CCI are thus also required for FBMC-
OQAM networks in particular. Preliminary standard WL based
solutions are presented in [29–31] for MIMO links using
spatial multiplexing at transmission and in [32], [33] for SISO
links. Reference [32] concerns CCI mitigation in flat fading
channels, while [33] deals with both ISI and ICI mitigation in
frequency selective channel.

Thus, as a summary, at least for VAMOS/OSC and FBMC-
OQAM networks, which both use QR modulations, enhanced
SAIC/MAIC techniques are still required. In this context,
the purpose of this paper is twofold. The first one is to
get more insights into the existing SAIC/MAIC technology
by proving analytically, which is completely original, that,
contrary to what is implicitly accepted as true in the literature
[6], [7], [9], [17–20], [29–31], [34–36], QR signals may be less
efficient than R ones for SAIC/MAIC implemented from some
standard WL filtering. Starting from this result, the second
purpose of the paper is to propose and to analyse, partially
analytically, which is also very original, for QR signals and
frequency selective fading channels, an enhanced SAIC/MAIC
technique based on a three-input WL FRESH receiver. This
new technique makes QR signals always almost equivalent to
R ones for WL filtering in the presence of CCI.

To compare QR and R signals for SAIC/MAIC from
standard WL filtering and to show the effectiveness of the
proposed enhanced SAIC/MAIC technique for QR signals, we
adopt a continuous-time (CT) approach. The choice of such
an approach here is justified by three reasons. The first one
is that the implementation issues are out of the scope of the
paper, which is mainly conceptual. The second one is that a
CT approach allows us to remove both the filtering structure
constraints imposed by a discrete-time (DT) approach and the
potential influence of the sample rate. The third one, is that
it allows us to obtain analytical and interpretable expressions
for the performance at the output of all the linear and WL re-
ceivers considered in this paper, which is completely original.
Besides, we choose a pseudo maximum likelihood sequence
estimation (pseudo-MLSE) approach, much more easy to
derive than an MLSE approach and much more powerful than
a minimum mean square error (MMSE) approach. Note that
the results of the paper may contribute to develop elsewhere
alternative powerful WL receivers for QR signals and for both
VAMOS and FBMC-OQAM networks in particular. Note that
preliminary results of the paper have been introduced briefly

in the conference papers [37] and [38].
Let us recall that WL FRESH filtering has already been

used these two last decades for applications such as MMSE
estimation [2], beamforming [39] or properization of improper
cyclostationary signals [40]. Moreover, WL FRESH filtering
for equalization/demodulation purposes in the presence of CCI
has been considered in [41–44] for R signals and in [45–
47] for QR signals. However, while [45] concerns DS-CDMA
systems, [47] considers a particular DT MMSE approach and
assumes different cyclostationarity properties of the signal of
interest (SOI) and CCI. Besides, [46] mentions the proposed
enhanced SAIC/MAIC technique for CCI cancellation in the
GSM context but through a DT approach at the symbol rate,
which finally reduces to the standard SAIC/MAIC approach.
Finally, to the best of our knowledge, analytical performance
at the output of a FRESH receiver in the presence of a CCI
have never been computed before.

The paper is organized as follows. Section II introduces
the observation model and the extended one for standard
WL processing of both R and QR signals, jointly with the
SO statistics of the total noise. Section III introduces the
conventional linear and standard WL pseudo-MLSE receivers
for the demodulation of R and QR signals in the presence of
multi-user CCI. Section IV presents, for several propagation
channels, in the presence of one CCI and in terms of output
signal to interference plus noise ratio (SINR) on the current
symbol, a comparative performance analysis of SAIC/MAIC
from standard WL pseudo-MLSE receivers for both R and
QR signals. Section V introduces, for QR signals, the en-
hanced SAIC/MAIC concept from the three-input WL FRESH
receiver and analyzes its performance, in terms of output SINR
on the current symbol, in the presence of one CCI. Section VI
analyzes some complexity issues of the two and three-input
pseudo-MLSE receivers for QR signals and shows that the
results obtained through the output SINR criterion are still
valid for the output symbol error rate (SER). Finally section
VII concludes this paper.

Notations: Before proceeding, we fix the notations used
throughout the paper. Non boldface symbols are scalar whereas
lower (upper) case boldface symbols denote column vectors
(matrices). (.)T , (.)H and (.)∗ means the transpose, conjugate
transpose and conjugate, respectively. 0K and IK are the zero
and the identity matrices of dimension K respectively. δ(x)
is the Kronecker symbol such that δ(x) = 1 for x = 0 and
δ(x) = 0 for x 6= 0. Moreover, all Fourier transforms of
vectors x and matrices X use the same notation where t or τ
is simply replaced by f .

II. MODELS AND TOTAL NOISE SECOND-ORDER
STATISTICS

A. Observation model and total noise SO statistics

We consider an array of N narrow-band antennas receiving
the contribution of a SOI, which may be R or QR, and a total
noise. The N × 1 vector of complex amplitudes of the data at
the output of these antennas after frequency synchronization
can then be written as

x(t) =
∑
k

akg(t− kT ) + n(t). (1)
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Here, ak = bk for R signals whereas ak = jkbk for
QR signals, where bk are real-valued zero-mean independent
identically distributed (i.i.d.) random variables, corresponding
to the SOI symbols for R signals and directly related to the SOI
symbols for QR signals [34], [48], [49], T is the symbol period
for R, π/2-BPSK, MSK and GMSK signals [48], [49] and half
the symbol period for OQAM signals [34], g(t) = v(t)⊗h(t)
is the N × 1 impulse response of the SOI global channel, ⊗
is the convolution operation, v(t) and h(t) are respectively
the scalar and N × 1 impulse responses of the SOI pulse
shaping filter and propagation channel respectively and n(t)
is the N × 1 zero-mean total noise vector. Note that model
(1) with ak = jkbk is exact for π/2-BPSK, MSK and OQAM
signals whereas it is only an approximated model for GMSK
signals [48].

The SO statistics of n(t) are characterized by the two
correlation matrices Rn(t, τ) and Cn(t, τ), defined by

Rn(t, τ) , E
[
n
(
t+

τ

2

)
nH
(
t− τ

2

)]
, (2)

Cn(t, τ) , E
[
n
(
t+

τ

2

)
nT
(
t− τ

2

)]
, (3)

We assume that n(t) is composed of circular, stationary,
temporally and spatially white background noise and multi-
user CCI coming from the same network, and then having
the same nature (R or QR), the same symbol period and the
same pulse-shaping filter as the SOI. Note that the analysis of
the impact of CCI having a symbol period or a pulse shaping
filter different from that of the SOI is out of the scope of
the paper. Under the previous assumptions, it is easy to verify
that Rn(t, τ) and Cn(t, τ) are periodic functions of t, whose
periods are equal to T and T respectively for R signals, and
to T and 2T respectively for QR signals. Matrices Rn(t, τ)
and Cn(t, τ) have then Fourier series expansions given by

Rn(t, τ) =
∑
αi

Rαi
n (τ)ej2παit, (4)

Cn(t, τ) =
∑
βi

Cβi
n (τ)ej2πβit. (5)

Here αi and βi are the so-called non-conjugate and conjugate
SO cyclic frequencies of n(t) such that αi = βi = i/T (i ∈ Z)
for R signals and αi = i/T and βi = (2i + 1)/2T (i ∈
Z) for QR signals [50–52], Rαi

n (τ) and Cβi
n (τ) are the first

and second cyclic correlation matrices of n(t) for the cyclic
frequencies αi and βi and the delay τ , defined by

Rαi
n (τ) ,

〈
Rn(t, τ)e−j2παit

〉
∞ , (6)

Cβi
n (τ) ,

〈
Cn(t, τ)e−j2πβit

〉
∞ , (7)

where 〈·〉∞ is the temporal mean operation in t over an
infinite observation duration. The Fourier transforms, Rαi

n (f)
and Cβi

n (f), of Rαi
n (τ) and Cβi

n (τ) respectively, are called
the first and second cyclospectrum of n(t) for the cyclic
frequencies αi and βi, respectively. Note that the first and
second cyclospectrum of the transmitted SOI,

s(t) ,
∑
k

akv(t− kT ), (8)

for the cyclic frequencies αi and βi, respectively, denoted by
rαis (f) and cβis (f) respectively, are given, after elementary

computations, for both R and QR SOI, by the expressions

rαis (f) =
πb
T
v
(
f +

αi
2

)
v∗
(
f − αi

2

)
, (9)

cβis (f) =
πb
T
v

(
f +

βi
2

)
v

(
βi
2
− f

)
, (10)

where πb , E[b2k].

B. Extended two-input models for standard WL processing

For both R and QR signals, a conventional linear processing
of x(t) only exploits the information contained at the zero
non-conjugate (α = 0) SO cyclic frequency of x(t), through
the exploitation of the temporal mean of the first correlation
matrix, Rx(t, τ) , E[x(t+ τ/2)xH(t− τ/2)], of x(t).

For R signals, a standard WL processing of x(t), i.e. a
linear processing of x̃(t) , [xT (t),xH(t)]T , only exploits the
information contained at the zero non-conjugate and conjugate
(α, β) = (0, 0) SO cyclic frequencies of x(t) through the
exploitation of the temporal mean of the first correlation
matrix, Rx̃(t, τ) , E[x̃(t+τ/2)x̃H(t−τ/2)], of the extended,
or two-input model

x̃(t) ,
[
xT (t),xH(t)

]T
=
∑
k

bkg̃(t− kT ) + ñ(t), (11)

where g̃(t) , [gT (t),gH(t)]T and ñ(t) , [nT (t),nH(t)]T .
For QR signals, as no information is contained at β = 0,

a derotation preprocessing of the data is required before
standard WL filtering. Using (1) for QR signals, the derotated
observation vector can be written as

xd(t) , j
− t
T x(t) =

∑
k

bkgd(t− kT ) + nd(t), (12)

where gd(t) , j−t/Tg(t) and nd(t) , j−t/Tn(t). Expression
(12) shows that the derotation operation makes a QR signal
looks like a R signal, with a non-zero information at the
zero conjugate SO cyclic frequency. Indeed, it is easy to
verify that the two correlation matrices, Rxd(t, τ) , E[xd(t+
τ/2)xHd (t−τ/2)] and Cxd(t, τ) , E[xd(t+τ/2)xTd (t−τ/2)]
of xd(t) are such that

Rxd(t, τ) = j−
τ
T Rx(t, τ), (13)

Cxd(t, τ) = j−
2t
T Cx(t, τ) , e−j

2πt
2T Cx(t, τ), (14)

where Cx(t, τ) , E[x(t + τ/2)xT (t − τ/2)]. These expres-
sions show that the non-conjugate, αdi , and conjugate, βdi ,
SO cyclic frequencies of xd(t) are such that αdi = αi = i/T
and βdi = βi − 1/2T = i/T , which proves the presence
of information at βd0 = 0. Thus standard WL processing
of QR signals, which corresponds to standard WL processing
of xd(t), exploits the information contained at (αd0 , βd0) =
(0, 0) through the exploitation of the temporal mean of the first
correlation matrix, Rx̃d(t, τ) , E[x̃d(t + τ/2)x̃Hd (t − τ/2)],
of the extended, or two-input, derotated model

x̃d(t) ,
[
xTd (t),xHd (t)

]T
=
∑
k

bkg̃d(t− kT ) + ñd(t), (15)

where g̃d(t) , [gTd (t),gHd (t)]T and ñd(t) , [nTd (t),nHd (t)]T .
Comparing (11) and (15), we deduce that x̃(t) for R signals
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and x̃d(t) for QR signals have similar forms, which explains
why similar standard WL processing may be used for R and
QR signals provided that the data vector x(t), used for R
signals, is replaced by xd(t) for QR signals. Due to the
similarity of (11) and (15), it is implicitly accepted as true in
the literature, that R and QR signals are equivalent, in terms
of processing and performance, for standard WL filtering in
the presence of CCI. We will show in section IV, for the first
time to the best of our knowledge, that this commonly shared
implicit assumption may not be true and that QR signals may
be intrinsically less efficient than R ones for some standard
WL filtering in the presence of CCI. The reasons explaining
this result will be given in section V jointly with the way to
make QR signals always almost equivalent to R ones for WL
filtering in the presence of CCI.

III. GENERIC PSEUDO-MLSE RECEIVER

To compare R and QR signals for SAIC/MAIC from
standard WL filtering, we need to introduce the receiver we
have chosen, which corresponds here to a CT pseudo-MLSE
receiver. Let us recall that the choice of a CT approach allows
us to remove, both the filtering structure constraints generally
imposed by a DT approach and the potential influence of the
sample rate. Moreover, contrary to a DT approach, it allows us
to obtain analytical interpretable performance computations at
the output of all the receivers considered in this paper, which
is completely original. On the other hand, the pseudo-MLSE
approach is chosen here, since it is much easier to manipulate
than an MLSE approach and it is generally much more
powerful than an MMSE approach for frequency selective
fading channels.

A. Pseudo-MLSE approach

In order to only exploit the information contained in the
SO statistics of the data, and for both R and QR signals,
the CT MLSE receiver for the detection of the symbols bk,
would assume a Gaussian total noise, despite the fact that
the CCI are non-Gaussian R or QR signals. Note that the
Gaussian assumption would nevertheless be approximately
verified in practice in the presence of a high number of
i.i.d. CCI. Moreover, to exploit the SO cyclostationarity and
the SO non-circularity properties of the CCI, the total noise
would be assumed to be SO cyclostationary and SO non-
circular. However, under these assumptions, the CT MLSE
receiver, which optimally exploits the CCI SO properties, is
very challenging to derive, and even probably impossible to
implement, at least for some pulse shaping filters v(t). Such
an MLSE receiver would optimally exploits the information
contained in all the SO cyclic frequencies (αi, βi) i ∈ Z of
the total noise through the implementation of a potentially
infinite number of time invariant (TI) filters acting on an
infinite number of FRESH versions of x(t) and x∗(t), at least
for some pulse shaping filters.

In this context, to overcome the difficulty to compute the
CT MLSE receiver, a standard CT WL approach consists in
only exploiting the non-circularity of the data, i.e. of x(t)
and xd(t) for R and QR signals, respectively, but not their
cyclostationarity. In other words, it consists in computing

the CT MLSE receiver from x(t) or xd(t), for R and QR
signals respectively, assuming a Gaussian non-circular but
stationary total noise n(t) or nd(t). It can be easily verified
[53] that this approach is equivalent to computing the CT
MLSE receiver from x̃(t) (R signals) or x̃d(t) (QR signals)
in Gaussian circular stationary extended total noise ñ(t) or
ñd(t), respectively. To approximate the CT MLSE receiver
in cyclostationary non-circular total noise, we adopt in the
following the previous sub-optimal approach and we call it a
CT two-input pseudo-MLSE approach. We will then compare
in the following the output performance of the two-input
pseudo-MLSE receivers computed from (11) and (15) for R
and QR signals, respectively, corrupted by CCI of the same
nature. Note that the conventional CT pseudo-MLSE receiver,
called CT one-input pseudo MLSE receiver, corresponds to the
CT MLSE receiver computed from x(t) (R signals) or xd(t)
(QR signals), assuming a Gaussian circular and stationary total
noise n(t) or nd(t), respectively.

B. Generic pseudo-MLSE receiver

For the M -input pseudo-MLSE receivers (M = 1, 2),
we denote by x̃F(t) and ñF(t) the generic observation and
total noise vectors, respectively. For conventional receivers
(M = 1), x̃F(t) and ñF(t) reduce respectively to x(t) and
n(t), for R signals, and to xd(t) and nd(t), for QR signals. For
M = 2, these vectors correspond, for R signals, to x̃(t) and
ñ(t), respectively, defined by (11), and for QR signals, to x̃d(t)
and ñd(t) respectively, defined by (15). Assuming a stationary,
circular and Gaussian generic extended total noise ñF(t), it
is shown in [53], [54] that the sequence b̂ , (̂b1, ..., b̂K)
which maximizes its likelihood from x̃F(t), is the one which
minimizes the following criterion:

C(b)=

∫
[x̃F(f)− s̃F(f)]

H
R0
ñF

(f)−1 [x̃F(f)− s̃F(f)] df.

(16)
Here, R0

ñF
(f), the Fourier transform of R0

ñF
(τ), corresponds

to the power spectral density matrix of ñF(t). The signal
s̃F(f) is defined by s̃F(f) ,

∑K
k=1 bkg̃F(f)e−j2πfkT , where

g̃F(f) corresponds, for M = 1, to g(f) and gd(f) for R and
QR signals, respectively and for M = 2 to g̃(f) and g̃d(f)
for R and QR signals, respectively. Considering only terms
that depend on the symbols bk, the minimization of (16) is
equivalent to the minimization of the metric:

Λ(b) =

K∑
k=1

K∑
k′=1

bkbk′rk,k′ − 2

K∑
k=1

bkzF(k), (17)

where zF(k) = <[yF(k)] and where yF(k) and the coefficients
rk,k′ are defined by

yF(k) =

∫
g̃HF (f)[R0

ñF
(f)]−1x̃F(f)ej2πfkT df, (18)

rk,k′ =

∫
g̃HF (f)[R0

ñF
(f)]−1g̃F(f)ej2πf(k−k

′)T df. (19)

Let us note that while yF(k) is complex-valued for M = 1, it
becomes real-valued and corresponds to zF(k) for M = 2.

C. Interpretation of the generic pseudo-MLSE receiver

We deduce from (18) that yF(k) is the sampled output, at
time t = kT , of the TI filter whose frequency response is
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w̃H
F (f) ,

(
[R0

ñF
(f)]−1g̃F(f)

)H
, (20)

and whose input is x̃F(t). The structure of the generic M -input
pseudo-MLSE receiver (M = 1, 2) is then depicted at Figure
1. It is composed of the TI WL filter (20), which reduces
to a linear filter for M = 1, followed by a sampling at the
symbol rate, a real part capture (for M = 1) and a decision
box implementing the Viterbi algorithm, since r∗k,k′ = rk′,k.

x̃F(t)
w̃H

F (f) <[.] Decision
b̂yF(t)

t = kT

yF(k) zF(k)

(
rk,k′

)
k,k′=1,...,K

Fig. 1: Structure of the M -input (M = 1, 2) pseudo-MLSE
receiver

D. Implementation of the generic pseudo-MLSE receiver

The implementation of the generic M -input (M = 1, 2)
pseudo-MLSE receiver requires the knowledge or the esti-
mation of g̃F(f) and R0

ñF
(f) for each frequency f . This

implementation is out of the scope of the paper but it requires
the estimation of the channel impulse response of both the
SOI and the CCI and the estimation of the background noise
power spectral density.

E. SINR at the output of the generic pseudo-MLSE receiver

For real-valued symbols bk, the SER at the output of the
generic M -input (M = 1, 2) pseudo-MLSE receiver is directly
linked to the SINRs on the current symbol n before decision,
i.e. at the output zF(n) [49, Sec 10.1.4], without taking into
account the ISI which is processed by the decision box. For
this reason, we compute the general expression of the output
SINRs hereafter and we will analyze their variations for both R
and QR signals in particular situations in section IV. As ñF(t)
is SO cyclostationary and SO non-circular in the presence of
CCI, the filter (20) does not maximize the output SINRs and
can only be considered as a generic M -input pseudo-matched
filter. It is easy to verify from (1), (11), (12), (15), (18) and
(19), that zF(n) can be written as

zF(n) = bnrn,n +
∑
k 6=n

bk<[rn,k] + zn,F(n), (21)

where zn,F(n) = <[yn,F(n)] and where yn,F(n) is defined by
(18) for k = n with ñF(f) instead of x̃F(f). The output SINR
on the current symbol n is then defined by

SINRF(n),
πbr

2
n,n

E[z2n,F(n)]
=

2πbr
2
n,n

E[|yn,F(n)|2]+<(E[y2n,F(n)])
. (22)

In the presence of R or QR CCI, the total noise, yn,F(t), at
the output of (20) is SO cyclostationary, which implies that
E[|yn,F(n)|2] and E[y2n,F(n)] have Fourier series expansions
given by [2]

E
[
|yn,F(n)|2

]
=
∑
γi

ej2πγinT
∫

rγiyn,F(f)df, (23)

E
[
y2n,F(n)

]
=
∑
δi

ej2πδinT
∫

cδiyn,F(f)df. (24)

Here, the quantities γi and δi denote the non-conjugate
and conjugate SO cyclic frequencies of yn,F(t), respectively,
whereas rγiyn,F(f) and cδiyn,F(f) are the Fourier transforms of
the first, rγiyn,F(τ), and second, cδiyn,F(τ), cyclic correlation
functions of yn,F(t) for the delay τ and the cyclic frequencies
γi and δi respectively. Moreover, as yn,F(t) is the output of
the TI filter (20) whose input is ñF(t), we can write

rγiyn,F(f) = w̃H
F

(
f +

γi
2

)
Rγi
ñF

(f)w̃F

(
f − γi

2

)
, (25)

cδiyn,F(f) = w̃H
F

(
f +

δi
2

)
Cδi
ñF

(f)w̃∗F

(
δi
2
− f

)
, (26)

where Rγi
ñF

(f) and Cδi
ñF

(f) are the Fourier transforms of the
first, Rγi

ñF
(τ), and second, Cδi

ñF
(τ) cyclic correlation matrices

of ñF(t) for the delay τ and the cyclic frequencies γi and δi
respectively. Using (19) and (23) to (26) into (22), we obtain
an alternative expression of (22) given by

SINRF(n) = (27)
2πb[

∫
g̃HF (f)R0

ñF
(f)−1g̃F(f)df ]2{∑

γi
ej2πγinT

∫
w̃H

F

(
f+ γi

2

)
Rγi
ñF

(f)w̃F

(
f− γi

2

)
df

+<(
∑
δi
ej2πδinT

∫
w̃H

F

(
f+ δi

2

)
Cδi
ñF

(f)w∗F
(
δi
2 −f

)
df)

.

In the presence of CCI having same nature (R or QR), symbol
period and carrier frequency as the SOI, for M = 1, 2 and for
both R and QR signals, the non-conjugate γi and conjugate
δi SO cyclic frequencies of the output yn,F(t) of the filter
w̃F(f) are those of the input ñF(t), which are from (13) and
(14) γi = δi = αi = i/T , i ∈ Z. This implies that SINRF(n)
given by (27) does not depend on n and is simply denoted by
SINRF, whose expression is given by

SINRF =
2πb[

∫
g̃HF (f)R0

ñF
(f)−1g̃F(f)df ]2{∑

αi

∫
[w̃H

F

(
f+ αi

2

)
Rαi
ñF

(f)w̃F

(
f− αi

2

)
+<(w̃H

F

(
f+ αi

2

)
Cαi
ñF

(f)w̃∗F
(
αi
2 −f

)
)]df

. (28)

As yn,F(n) is real-valued for the extended models (11) and
(15), SINRF reduces, for M = 2, to

SINRF =
πb
[∫

g̃HF (f)R0
ñF

(f)−1g̃F(f)df
]2∑

αi

∫
w̃H

F

(
f+ αi

2

)
Rαi
ñF

(f)w̃F

(
f− αi

2

)
df

; (M = 2).

(29)
IV. SINR ANALYSIS FOR ONE CCI

A. Total noise model and statistics

We assume in this section IV that the total noise n(t) is
composed of a background noise and one multi-user CCI,
having the same nature, symbol period and carrier frequency
as the SOI. In this context, the first purpose of this section
is to verify, for both R and QR signals, the effectiveness
of the two-input pseudo-MLSE receiver with respect to the
conventional one for CCI mitigation for most of frequency
selective propagation channels, even for N = 1. The second
purpose of this section is then to prove the lower efficiency
of the two-input pseudo-MLSE receiver for QR signals with
respect to R ones. Under the previous assumption, n(t) can
be written as

n(t) =
∑
k

ckgI(t− kT ) + u(t). (30)
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Here, ck = dk for R signals whereas ck = jkdk for QR
signals, where dk are real-valued zero-mean i.i.d. random vari-
ables, corresponding to the CCI symbols for an R interference
and directly related to the CCI symbols for a QR interference,
gI(t) , v(t)⊗hI(t), hI(t) is the N × 1 impulse response of
the propagation channel of the CCI and u(t) is the N × 1
background noise vector, assumed stationary, temporally and
spatially white. From (30), it is proved in Appendix A, that
for both a R and a QR CCI and for M = 1, 2, the matrices
Rαi
ñF

(f) and Cαi
ñF

(f) appearing in (28) can be written as

Rαi
ñF

(f) =
πd
T
g̃IF

(
f +

αi
2

)
g̃HIF

(
f − αi

2

)
+N0δ(αi)IMN ,

(31)

Cαi
ñF

(f)=
πd
T
g̃IF

(
f+
αi
2

)
g̃TIF

(αi
2
−f
)

+N0δ(αi)δ(M−2)J2N.

(32)
Here πd , E[d2k], N0 is the power spectral density of each
component of the background noise u(t), g̃IF(f) is defined
as g̃F(f) but with gI(f) instead of g(f) and J2N is the (2N×
2N ) matrix defined by

J2N ,

[
0N IN
IN 0N

]
. (33)

B. SINR computation and analysis for M = 2 and a strong
interference

Let us assume in this section that M = 2 and let us define
the quantity ε̃IF(f) by

ε̃IF(f) ,
πd
N0T

g̃HIF(f)g̃IF(f). (34)

We denote by B0
F the set of frequencies f such that g̃F(f)

is non-zero. Assuming a strong CCI for which ε̃IF(f) � 1
when ε̃IF(f) 6= 0 for f ∈ B0

F, it is proved in Appendix B that
SINRF can be approximated, for both R and QR strong CCI,
by

SINRF ≈
πb
N0

∫
B0

F

g̃HF (f)g̃F(f)
[
1− |α̃SIF(f)|2

]
df, (35)

as long as SINRF is non-zero. Here, α̃SIF(f), such that 0 ≤
|α̃SIF(f)| ≤ 1, is the extended spatial correlation coefficient
between the SOI and the CCI for the frequency f and the
observation model x̃F(t), defined by

α̃SIF(f) ,
g̃HF (f)g̃IF(f)√

g̃HF (f)g̃F(f)
√
g̃HIF(f)g̃IF(f)

. (36)

For N = 1, a receiver performs SAIC as the CCI becomes
infinitely strong if the associated SINRF does not converge to-
ward zero. Expression (35) then shows that for M = 2 and for
both R and QR signals, the WL filter (20) performs SAIC for
SOI and CCI propagation channels such that |α̃ISF

(f)| is not
constant and equal to 1 over B0

F, i.e. for most of propagation
channels. This result, which, to the best of our knowledge,
has never been published in the literature, enlightens, for
both R and QR signals, the interest and the effectiveness of
the associated two-input pseudo-MLSE receivers for most of
frequency selective SOI and CCI propagation channels.

C. SINR computation and analysis for M = 1, 2 and channels
with no delay spread

1) Propagation channel model: To get more insights into
the comparative behavior of the M -input pseudo-MLSE re-
ceivers (M = 1, 2) for R and QR signals, we assume in
this section IV-C a square root raised cosine (SRRC) pulse
shaping filter (1/2 Nyquist filter) v(t) with a roll off ω
and, to simplify the analysis and the analytical computations,
propagation channels with no delay spread such that

h(t) = µδ(t)h and hI(t) = µIδ(t− τI)hI . (37)

Here, µ and µI control the amplitude of the SOI and CCI
respectively and τI is the delay of the CCI with respect to
the SOI. The vectors h and hI , random or deterministic, with
components h(i) and hI(i) (1 ≤ i ≤ N ), respectively and such
that E[|h(i)|2] = E[|hI(i)|2] = 1 (1 ≤ i ≤ N ), correspond to
the channel vectors of the SOI and CCI, respectively. The
mean powers of the SOI and CCI at the output of each
antenna are given by Ps , 〈E[|µs(t)h(i)|2]〉 = µ2πb/T and
Pj , 〈E[|µIj(t)hI(i)|2]〉 = µ2

Iπd/T respectively, where j(t)
is defined by (8) with ck instead of ak.

2) Deterministic channels and zero roll-off: Under the
previous assumptions, analytical interpretable expressions of
SINRF defined by (28) are only possible for a zero roll-
off ω, which is assumed in this sub-section. Otherwise,
the computation of (28) can only be done numerically by
computer simulations and will be discussed in the following
sub-section. For a zero roll-off, the quantities πs , µ2πb,
πI , µ2

Iπd and N0 correspond to the mean power of the
SOI, the CCI and the background noise per antenna at the
output of the pulse shaping matched filter respectively. We
then denote by εs and εI the quantities εs , πshHh/N0 and
εI , πIhHI hI/N0 and by SINRRM and SINRQRM the SINR
(28) at the output of the M -input pseudo-MLSE receiver for
R and QR signals respectively. Moreover, we assume in this
sub-section deterministic channels and we denote by αsI the
spatial correlation coefficient between the SOI and the CCI,
such that (0 ≤ |αsI | ≤ 1), and defined by

αsI ,
hHhI

√
hHh

√
hHI hI

, |αsI |ejφsI . (38)

Note that (36) reduces to (38) for M = 1 and propagation
channels (37).

When |αsI | 6= 1, i.e. when there exists a spatial discrimi-
nation between the SOI and the CCI (which requires N > 1),
assuming a strong CCI (εI � 1), we obtain from (20), (28),
(31), (32), (37), (38), and after straightforward derivations, the
following expressions:

SINRR1 ≈ SINRQR1
≈ 2εs

[
1− |αsI |2

]
, (39)

SINRR2 ≈ 2εs
[
1− |αsI |2 cos2(φsI)

]
, (40)

SINRQR2
≈ 2εs

[
1− |αsI |

2

2

{
1 + cos2 (ψsI)

}]
, (41)

where ψsI , φsI − πτI/2T . However, when |αsI | = 1, i.e.
when there is no spatial discrimination between the SOI and
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the CCI, which is in particular the case for N = 1, after simple
computations, SINRR1 and SINRQR1

can be written as

SINRR1
=

2εs
1 + 2εI cos2(φsI)

, (42)

SINRQR1
=

2εs

1+εI
[
1−cos

(
πτI
T

)
+2 cos

(
πτI
T ) cos2(φsI)

)] ,
(43)

whereas, assuming a strong CCI (εI � 1), SINRR2
and

SINRQR2
can be written as

SINRR2 ≈ 2εs
[
1− cos2(φsI)

]
, φsI 6= kπ, (44)

SINRQR2
≈ 2εs

[
1− 1 + cos2(ψsI)

2

]
, ψsI 6= kπ. (45)

Finally, for R signals such that |αsI | = 1 and φsI = kπ and
for QR signals such that |αsI | = 1 and ψsI = kπ, we obtain

SINRR2
=

2εs
1 + 2εI

, φsI = kπ, (46)

SINRQR2
=

9εs
2εI [3 + 2 cos(4φsI)]

, ψsI = kπ. (47)

Note that (39), (40), (42), (44) and (46), i.e. output SINR
for R signals, have been obtained in [8] but from a DT
MMSE approach. However, concerning the output SINR of
QR signals, (45) and (47) have been given in [37], [38] but
without any proof, whereas (41) and (43) have never been
presented and are completely new. A receiver performs MAIC
(for N > 1) or SAIC (for N = 1) as εI → ∞, if the
associated SINR does not converge toward zero. We deduce
from (39), (42) and (43) that, for both R and QR signals, the
conventional receivers perform MAIC as soon as |αsI | 6= 1,
but perform SAIC very scarcely, only when φsI = (2k+1)π/2
for R signals and when (τI/T, φsI) = (2k1, (2k2 + 1)π/2)
or (2k1 + 1, k2π) for QR signals, where k, k1 and k2 are
integers. Moreover, we deduce from (40), (41), (44) and (45)
that, for both R and QR signals, the two-input pseudo-MLSE
receivers perform MAIC as soon as |αsI | 6= 1, but perform
SAIC as long as φsI 6= kπ for R signals and ψsI 6= kπ
for QR signals, enlightening the great interest of the two-
input WL filtering (20) in both cases. However, despite similar
processing (20) and similar extended models (11) and (15) for
R and QR signals respectively, the output SINRs (40) and (41),
for |αsI | 6= 1, and (44) and (45), for |αsI | = 1, correspond
to different expressions. This proves the non equivalence of R
and derotated QR signals for the efficient WL filtering (20) in
the presence of CCI, result which may be surprising for most
of researchers on WL filtering. In particular, for a zero roll-
off ω, while (40) only depends on 2εs, the maximum output
SINR obtained without interference, and the parameters αsI
and φsI , (41) depends not only on the previous parameters but
also on τI/T .

Figure 2 and 3 show the variations of SINRRM and
SINRQRM (M = 1, 2) as a function of φsI for N = 1,
εs = 10 dB, εI = 20 dB for synchronous (τI = 0) and
asynchronous (τI = T ) SOI and CCI, respectively. Let us
note that for τI = T , the curves related to QR signals are
simply shifted of −π/2 with respect to those obtained for
τI = 0. Contrary to the conventional receiver, we note a SAIC

capability of the two-input pseudo-MLSE receiver for both R
and QR signals as soon as there is a phase discrimination
between the sources. For τI = 0, we note better performance
obtained for R signals with respect to QR signals and, for
QR signals, the surprising better performance obtained with a
1-input instead of a 2-input pseudo-MLSE receiver for the
very particular case φsI = π/2. This surprising result for
this very specific case is nothing else than an artefact due
to the sub-optimality of the pseudo-MLSE approach for a
SO cyclostationary and non-circular total noise. For τI = T ,
the same very specific artefact holds for φsI = 0 (i.e. for
ψsI = π/2) for the same reasons and the performance
obtained for QR signals may be either better or worse than
those obtained with R signals, depending on the value of φsI .
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Fig. 2: SINRRM and SINRQRM (M = 1, 2) as a function of
φsI (N = 1, τI = 0, εs = 10 dB, εI = 20 dB, deterministic
one tap channels)
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Fig. 3: SINRRM and SINRQRM (M = 1, 2) as a function of
φsI (N = 1, τI = T , εs = 10 dB, εI = 20 dB, deterministic
one tap channels)

For this reason, to compare SINRR2
and SINRQR2

for
ω = 0 and εI � 1 whatever the value of τI , we must
adopt a statistical perspective. Consequently, we now assume
that εI → ∞ and φsI and πτI/2T are independent random
variables uniformly distributed on [0, 2π]. Under these assump-
tions, we easily deduce from (40), (41), (44) and (45) the
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expectation value of the output SINRs given by

E [SINRR2
] ≈ 2εs

[
1− |αsI |

2

2

]
, (48)

E
[
SINRQR2

]
≈ 2εs

[
1− 3|αsI |2

4

]
, (49)

which reduce, for N = 1, to

E [SINRR2 ] ≈ εs and E
[
SINRQR2

]
≈ εs

2
. (50)

We clearly observe that E[SINRQR2
] < E[SINRR2

] for
|αsI | 6= 0, which definitely proves, at least for a zero roll-
off, that QR signals are less efficient that R ones for the
WL receiver (20) in the presence of one CCI, result which
is unknown by most of the researchers. As, for τI 6= 0, the
curve showing the variations of SINRQR2

as a function of
φsI is a shifted version, by the value −πτI/2T , of the same
curve for τI = 0, E[SINRQR2

] would be the same as (49) and
(50) for a fixed value of τI , assuming that φsI is uniformly
distributed on [0, 2π]. This proves that the delay τI does not
impact the average value of SINRQR2

.
3) Deterministic channels and arbitrary roll-off: To extend

the previous results for arbitrary values of the roll-off ω, we
still assume that φsI and πτI/2T are independent random
variables uniformly distributed on [0, 2π]. Under these assump-
tions, choosing εs = 10 dB and εI = 20 dB, Figure 4 shows,
for R and QR signals, for N = 1, M = 1, 2 and ω = 0, 0.5,
the variations of Pr[(SINRF/2εs) dB ≥ x dB] , PF(x)
as a function of x (dB). Note that the curves appearing in
this Figure are obtained from Monte-Carlo simulations where
SINRF has been computed from the general expressions (28)
and (29).
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Fig. 4: PFM (x) as a function of x (N = 1, εs = 10 dB,
εI = 20 dB, ω = 0, 0.5, deterministic one-tap channels, R
and QR signals)

Note, for both R and QR signals, poor performance what-
ever ω for M = 1, i.e. for the conventional receiver. Note
for M = 2, increasing and constant performance with ω
for QR and R signals respectively, and the best performance
of the receiver implemented from (11) with respect to (15)
whatever ω. This confirms, for arbitrary values of ω, the lowest

efficiency of QR signals with respect to R ones for SAIC from
the two-input pseudo MLSE receiver. Note in particular, for
ω = 0.5 and x = −3 dB, that PQR1

(x) = PR1(x) = 0%,
PQR2

(x) = 26% and PR2
(x) = 50%, proving the much

better performance of the receiver implemented from (11) with
respect to (15).

V. ENHANCED SAIC/MAIC RECEIVER FOR QR SIGNALS

We describe in this section the reasons why QR signals
may be less efficient than R ones for standard WL filtering in
the presence of CCI and we propose, for QR signals, a WL
filtering enhancement to make them always almost equivalent
to R signals.

A. The lower efficiency of QR signals

The lower efficiency of QR signals with respect to R ones
for SAIC/MAIC from the two-input pseudo-MLSE receiver
is directly related to the different SO non-circularity and SO
cyclostationarity properties of QR and R signals. Indeed, the
main information about the SO non-circularity of R signals
is contained in the conjugate SO cyclic frequency β0 = 0
whatever the real-valued filter v(t), and this is all the more
true as the filter roll-off ω decreases. As the two-input pseudo-
MLSE receiver applied to the model (11) exploits the infor-
mation contained in (α0, β0) = (0, 0), it always exploits most
of the SO non-circularity information of R signals, hence its
very good performance. On the contrary, the main information
about the SO non-circularity of QR signals is always symmet-
rically contained in the two conjugate SO cyclic frequencies
(β0, β−1) = (1/2T,−1/2T ), as illustrated in [51], [52], or
equivalently in (βd0 , βd−1) = (0,−1/T ) for derotated QR
signals. As a consequence, as the two-input pseudo-MLSE
receiver applied to the model (15) exploits the information
contained in (αd0 , βd0) = (0, 0), or in (α0, β0) = (0, 1/2T ),
it only exploits half of the main SO non-circularity information
of QR signals, hence its sub-optimality.

B. Three-input FRESH model

To overcome, for QR signals, the limitations of the two-
input pseudo-MLSE receiver implemented from model (15),
it is necessary to implement a WL receiver which is able to
take full account of the main SO non-circularity information of
QR signals. Such a receiver can be obtained by implementing
the pseudo-MLSE receiver from the three-input FRESH model
defined by

xF3
(t) , [xT (t), ej2πt/2TxH(t), e−j2πt/2TxH(t)]T

= jt/T [x̃Td (t), e−j2πt/TxHd (t)]T , jt/TxdF3(t)

=
∑
k

jkbkgF3
(t− kT ) + nF3

(t), (51)

or equivalently from xdF3(t). Here, nF3(t) corresponds
to xF3

(t) with n(t) instead of x(t) whereas gF3
(t) ,

[gT (t), ej2πt/2TgH(t), e−j2πt/2TgH(t)]T . It is straightfor-
ward to verify that the temporal mean of the first correlation
matrices, RxF3

(t, τ) , E[xF3(t + τ/2)xHF3
(t − τ/2)] and

RxdF3
(t, τ) , E[xdF3

(t + τ/2)xHdF3
(t − τ/2)], of xF3

(t)
and xdF3

(t) respectively exploit the information contained
in (α0, α−1, α1, β0, β−1) = (0,−1/T, 1/T, 1/2T,−1/2T ),
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which allows us to exploit almost exhaustively both the SO
cyclostationarity and the SO non-circularity properties of QR
signals. Note that a TI linear processing of xF3(t) (resp.
xdF3

(t)) becomes now a time variant (TV) WL processing
of x(t) (resp. xd(t)), called here three-input WL FRESH
processing of x(t) (resp. xd(t)). Note finally that, since model
(51) allows us to take into account, at least for SRRC filters,
the main information about SO cyclostationarity and SO non-
circularity of QR signals, there is little interest to consider
M -input FRESH models with M > 3 for SAIC/MAIC.

C. Three-input pseudo-MLSE receiver

Applying the generic pseudo-MLSE approach described
in section III-B to model (51) gives rise, for QR signals,
to the three-input pseudo-MLSE receiver. This receiver still
generates the sequence b̂ , (̂b1, ..., b̂K) which minimizes
(17) but where zF(k), now denoted by zF3

(k), is defined by
zF3(k) , <[j−kyF3(k)], where yF3(k) is given by

yF3(k) =

∫
gHF3

(f)[R0
nF3

(f)]−1xF3(f)ej2πfkT df. (52)

Here, R0
nF3

(f) is the power spectral density matrix of nF3
(t),

while rk,k′ is now defined by

rk,k′=jk
′−k
∫
gHF3

(f)[R0
nF3

(f)]−1gF3
(f)ej2πf(k−k

′)Tdf. (53)

Noting that yF3
(k) is the sampled version, at time t = kT , of

the output of the TI filter whose frequency response is

wH
F3

(f) ,
(
[R0

nF3
(f)]−1gF3

(f)
)H
, (54)

and whose input is xF3(t), the structure of the three-input
pseudo-MLSE receiver is then depicted at Figure 5. It is
composed of the TI WL filter (54), followed by a sampling
at the symbol rate, a derotation operation, a real part capture
and a decision box implementing the Viterbi algorithm since
r∗k,k′ = rk′,k.

xF3(t)
wH

F3
(f) j−k <[.] Decision

b̂

t = kT

yF3
(k) zF3

(k)

(
rk,k′

)
k,k′=1,...,K

Fig. 5: Structure of the three-input pseudo-MLSE receiver for
QR signals

Note that the implementation of the three-input pseudo-
MLSE receiver requires the knowledge or the estimation of
gF3

(f) and R0
nF3

(f) for each frequency f . This implementa-
tion is again out of the scope of the paper but it requires the
estimation of the channel impulse response of both the SOI
and the CCI and the estimation of the background noise power
spectral density.

D. SINR at the output of the three-input pseudo-MLSE re-
ceiver

It is easy to verify from (51), (52) and (53) that zF3(n) can
be written as (21) where zn,F(n) is replaced by zn,F3(n) =
<[j−nyn,F3

(n)] and where yn,F3
(n) is defined by (52) for

k = n with nF3
(f) instead of xF3

(f). The SINR on the

current symbol n at the output of the three-input pseudo-
MLSE receiver is then defined by

SINRF3(n) ,
πbr

2
n,n

E
[
z2n,F3

(n)
] (55)

=
2πbr

2
n,n

E
[
|yn,F3

(n)|2
]

+ (−1)n<
(

E
[
y2n,F3

(n)
]) .

In the presence of QR CCI, the total noise, yn,F3(t), at
the output of (54) is SO cyclostationary, which implies that
E[|yn,F3

(n)|2] and E[y2n,F3
(n)] have Fourier series expan-

sions given by (23) and (24) respectively, where rγiynF
(f) and

cδiynF
(f) are replaced by rγiynF3

(f) and cδiynF3

(f) respectively.
Here, the quantities γi and δi now denote the non-conjugate
and conjugate SO cyclic frequencies of yn,F3(t) respectively,
whereas rγiynF3

(f) and cδiynF3

(f) are the Fourier transforms of

the first, rγiynF3

(τ), and second, cδiynF3

(τ), cyclic correlation
functions of yn,F3

(t) for the delay τ , and the cyclic frequencies
γi and δi respectively. Moreover, as yn,F3

(t) is the output of
the TI filter (54), whose input is nF3

(t), we can write

rγiyn,F3
(f) = wH

F3

(
f +

γi
2

)
Rγi
nF3

(f)wF3

(
f − γi

2

)
, (56)

cδiyn,F3
(f) = wH

F3

(
f +

δi
2

)
Cδi
nF3

(f)w∗F3

(
δi
2
− f

)
, (57)

where Rγi
nF3

(f) and Cδi
nF3

(f) are the Fourier transforms of
the first, Rγi

nF3
(τ), and second, Cδi

nF3
(τ), cyclic correlation

matrices of nF3(t) for the delay τ and the cyclic frequency γi
and δi, respectively. Using (53), (23), (24), (56) and (57) into
(55), we obtain an alternative expression of (55) given by

SINRF3
(n) = (58)

2πb[
∫
gHF3

(f)R0
nF3

(f)−1gF3(f)df ]2{ ∑
γi
ej2πγinT

∫
wH

F3

(
f+ γi

2

)
Rγi
nF3

(f)wF3

(
f− γi

2

)
df

+(−1)n<[
∑
δi
ej2πδinT

∫
wH

F3

(
f+ δi

2

)
Cδi
nF3

(f)w∗F3

(
δi
2 −f

)
df ]

.

In the presence of CCI having same nature (QR), symbol
period and carrier frequency as the SOI, the non-conjugate γi
and conjugate δi SO cyclic frequencies at the output yn,F3(t)
of the filter wF3

(f) are those of the input nF3
(t) which are

from (13) and (14) γi = αi = i/T and δi = βi = (2i+1)/2T ,
i ∈ Z. This implies that SINRF3

(n), given by (58) does not
depend on n and is simply denoted by SINRF3 , given by

SINRF3
=

2πb[
∫
gHF3

(f)R0
nF3

(f)−1gF3
(f)df ]2{∑

αi

∫
wH

F3

(
f+ αi

2

)
Rαi
nF3

(f)wF3

(
f− αi

2

)
df

+<[
∑
βi

∫
wH

F3

(
f+ βi

2

)
Cβi
nF3

(f)w∗F3

(
βi
2 −f

)
df ]

.(59)

E. SINR at the output of the three-input pseudo-MLSE receiver
for one CCI

1) Observation model and statistics: Using again the model
(30) with ck = jkdk, where the total noise n(t) is composed
of a background noise and one multi-user QR CCI having
the same symbol period and carrier frequency as the SOI, we
have proved with the same approach as in Appendix A, that
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the matrices Rαi
nF3

(f) and Cβi
nF3

(f) appearing in (59) can be
written as

Rαi
nF3

(f) =
πd
T
gIF3

(
f +

αi
2

)
gHIF3

(
f − αi

2

)
(60)

+N0δ(αi)I3N +N0δ

(
αi −

1

T

)
J1 +N0δ

(
αi +

1

T

)
JT1 ,

Cβi
nF3

(f) =
πd
T
gIF3

(
f +

βi
2

)
gTIF3

(
βi
2
− f

)
(61)

+N0δ

(
βi −

1

2T

)
J2 +N0δ

(
βi +

1

2T

)
J3.

Here, gIF3
(f) , [gTI (f),gHI (1/2T − f),gHI (−1/2T − f)]T

whereas J1, J2 and J3 are the (3N × 3N ) matrices defined
by

J1,

0N 0N 0N
0N 0N IN
0N 0N 0N

; J2,

0N IN 0N
IN 0N 0N
0N 0N 0N

; J3,

0N 0N IN
0N 0N 0N
IN 0N 0N

.
(62)

2) Deterministic channels and zero roll-off: Assuming a
SRRC pulse shaping filter v(t) with a zero roll-off, determin-
istic propagation channels with no delay spread such that (37)
holds, and denoting by SINRQR3

the SINR at the output of
the 3-input pseudo-MLSE receiver for QR signals, SINRQR3

can be computed from (37), (38), (54), (58), (59), (60), (61).
When |αsI | 6= 1, assuming a strong CCI (εI � 1), we

obtain the following expression whose main steps of the proof
are given in Appendix C

SINRQR3
≈2εs

[
1−|αsI |2

(
(1−|αsI |2)(1+Γ)2 + (2− Γ)Γ

(1−|αsI |2)(5+2Γ) + 2(2−Γ)

)]
,

(63)
where Γ , cos2(ψsI)+cos2(ζsI), where we recall that ψsI ,
φsI − πτI/2T whereas ζsI , φsI + πτI/2T .

When |αsI | = 1 and εI � 1, (63) reduces to

SINRQR3
≈ 2εs

{
1−

[
cos2(ψsI) + cos2(ζsI)

]
2

}
(ψsI , ζsI) 6= (kπ, kπ), (64)

SINRQR3
≈ εs
εj

(ψsI , ζsI) = (kπ, kπ). (65)

Note that the value of SINRQR3
for |αsI | 6= 1 (63) reduces

to its value for |αsI | = 1 (64) except for ψsI = ζsI = kπ. We
deduce from (63) that the three-input pseudo-MLSE receiver
for QR signals performs MAIC as soon as |αsI | 6= 1, while
(64) and (65) show that for |αsI | = 1, it performs SAIC
as long as (ψsI , ζsI) 6= (kπ, kπ), enlightening its interest.
Moreover, comparing (45) and (64), we see that SINRQR3

≥
SINRQR2

for |αsI | = 1, proving the best performance of the
three-input pseudo MLSE receiver with respect to the two-
input one. In particular, for |αsI | = 1 and synchronous signals
(τI = 0), (44) and (64) show that SINRQR3

≈ SINRR2
,

proving that the three-input receiver for QR signals behaves
similarly as the two-input receiver for R signals.

To compare, for ω = 0 and εI � 1, SINRQR3
with

SINRQR2
and SINRR2 whatever the value of τI , we must

again adopt a statistical perspective. Consequently, we now
assume that |αsI | = 1, εI → ∞ and φsI and πτI/2T are

independent random variables uniformly distributed on [0, 2π].
Under these assumptions, we easily deduce from (64) the
expectation of SINRQR3

given by

E[SINRQR3
] ≈ εs, (66)

and we deduce from (50) and (66) that E[SINRQR2
] <

E[SINRQR3
] ≈ E[SINRR2

] for |αsI | = 1, which definitely
proves, at least for a zero roll-off, that the three-input pseudo-
MLSE receiver for QR signals gives similar performance, in
the mean, than the two-input pseudo-MLSE receiver for R
signals, hence the great interest of the three-input receiver.

3) Deterministic channels and arbitrary roll-off: To extend
the previous results for arbitrary values of both the roll-off ω
and εI , we still assume that φsI and πτI/2T are independent
random variables uniformly distributed on [0, 2π]. Under these
assumptions, choosing εs = 10 dB, Figure 6 shows, for R
and QR signals, for N = 1, M = 1, 2 for R signals and
M = 1, 2, 3 for QR signals, and for ω = 0, 0.5, 1 the variations
of PF(x) as a function of x (dB) for εI = 20 dB. To complete
these results, Figure 7 shows the same variations in the same
context but for ω = 0 and several values of εI corresponding
to εI = 10 dB, 20 dB and 30 dB, respectively.
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ω = 1
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PQR1
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PR2(x)

PQR2
(x)

PQR3
(x)

Fig. 6: PFM (x) as a function of x (N = 1, εs = 10 dB,
εI = 20 dB, ω = 0, 0.5, 1, deterministic one-tap channels, R
and QR signals)

Note, for QR signals, increasing performance with ω for
M = 2, 3 and the best performance of the three-input
receiver with respect to the two-input one whatever ω. Note
in particular, for ω = 0.5, εI = 20 dB and x = −3 dB, that
PQR1

(x) = PR1
(x) = 0%, PQR2

(x) = 26%, PR2
(x) = 50%

and PQR3
(x) = 63%, proving, for QR signals, the much better

performance obtained with M = 3, instead of M = 2 and the
even better performance obtained, for x = −3 dB, for M = 3
with QR signals, than for M = 2 with R signals. Note finally
the different distributions of SINRR2 and SINRQR3

despite
the same expected value for ω = 0 and the best performance,
whatever the value of εI , for M = 2 and R signals with respect
to M = 3 and QR signals when x is close to zero.

4) Rayleigh channels and arbitrary roll-off: The analysis
done in sub-section V-E3 for arbitrary values of both the
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Fig. 7: PFM (x) as a function of x (N = 1, εs = 10 dB,
ω = 0, εI = 10, 20, 30 dB, deterministic one-tap channels, R
and QR signals)

roll-off ω and εI , is applied in this sub-section, and under
the same assumptions, to Rayleigh fading channels instead
of deterministic channels and for R and QR signals. In this
case, each component of h and hI are i.i.d. random variables
and follows a circular complex Gaussian distribution such that
εs , πsE[hHh]/N0 = Nπs/N0 and εI , πIE[hHI hI ]/N0 =
NπI/N0. Under these assumptions, Figure 8 shows the same
variations as Figure 6 but for Rayleigh fading channels while
Figure 9 reports results analogous to Figure 7 for Rayleigh
fading channels and εI = 10 dB and 30 dB. Again these
figures show the better performance obtained, for QR signals,
with M = 3 with respect to M = 2 whatever the value of
both the roll-off ω and εI and the even better performance
obtained with M = 3 for QR signals with respect to M = 2
for R ones in most cases.
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Fig. 8: PFM (x) as a function of x (N = 1, εs = 10 dB,
εI = 20 dB, ω = 0, 0.5, 1, Rayleigh one-tap channels, R and
QR signals)
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(a) εI = 10 dB
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(b) εI = 30 dB

Fig. 9: PFM (x) as a function of x (N = 1, εs = 10 dB,
ω = 0, εI = 10, 30 dB, Rayleigh one-tap channels, R and QR
signals)

VI. COMPLEXITY ELEMENTS AND OUTPUT SER OF THE
PSEUDO-MLSE RECEIVERS FOR ONE CCI

We give in this section some complexity elements of the
M -input pseudo-MLSE receiver and we verify that, in the
presence of one CCI, the results obtained in section V through
the output SINR criterion are still valid for the output symbol
error rate (SER) criterion. To this aim, after giving some
insights into the global complexity of the M -input pseudo-
MLSE receiver, we analyse, for both R and QR signals, the
ISI length the Viterbi algorithm has to take into account at
the output of the M -input pseudo-MLSE receiver. Finally
we present some comparative performance in terms of output
SER.

A. Complexity elements of the M -input pseudo-MLSE receiver
for one CCI

The complexity of the M -input pseudo-MLSE receiver for
one CCI is the sum of three terms. The first one is the
complexity required to estimate the global channel impulse
responses, g(t) and gI(t), of the SOI and CCI respectively,
jointly with the estimation of the background noise power
spectral density. This first term is not dependent on M , is
the same for all the receivers for R and QR signals and its
computation is out of the scope of the paper. The second term
is the complexity required to compute the output of the M -
input pseudo-matched filter defined by (20) for M = 1, 2 (R
and QR signals) and by (54) for M = 3 (QR signals). This
complexity, which depends on M , is briefly discussed in this
sub-section. The third term is the complexity of the Viterbi
algorithm which a priori depends on the signal nature (R or
QR) and on M and which is analyzed in the next sub-section.
Nevertheless if we take the same Viterbi algorithm for all the
receivers, the differential complexity of the receivers is only
due to the second term, hence its brief analysis hereafter.

We deduce from (31) and (60) that, for given values of
f and M (M = 1, 2, 3), the computation of the power
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spectral density matrix of the extended total noise requires
(MN)2 + MN complex operations (cops), whereas its in-
version requires 8(MN)3/3 cops. The product of this matrix
inverse with a vector of the same size requires MN(2MN−1)
cops. Thus, for a given value of f , the M -input pseudo-
matched filter (20) or (54) requires (MN)2(3 + 8MN/3)
cops. In practice (20) and (54) are computed for a given
number, Nfft, of frequency bins and the associated temporal
coefficients are obtained from an inverse FFT. The compu-
tation of the M -input pseudo-matched filter then requires
Nfft[(MN)2(3+8MN/3)]+MN×O(MN log(MN)) cops.
Finally if we only keep Ns temporal samples of this filter,
each output of the filter requires Ns(2Ns−1) additional cops.
This result shows that the complexity of the M -input pseudo-
MLSE receiver has an order O(8(MN)3/3), without taking
into account the Viterbi part.

B. Complexity elements of the Viterbi algorithm for the M -
input pseudo-MLSE receivers for one CCI

It is well-known [54] that the complexity of the Viterbi
algorithm is directly linked to both the number of symbols
of the constellation and the number of non-zero coefficients
rk,k′ = rk−k′ ((19) and (53)) appearing in the pseudo-
MLSE metric (17), which both determine the number of states
of the algorithm. To compute analytically these coefficients
at the output of the M -input (M = 1, 2, 3) pseudo-MLSE
receivers considered in this paper, we consider the total noise
model (30), we assume a SRRC pulse shaping filter v(t) with
a zero roll-off, deterministic propagation channels with no
delay spread such that (37) holds and we denote by rAMk
the coefficient rk at the output of the M -input pseudo-MLSE
receiver for A (R or QR) signals. Under these assumptions,
we obtain the following expressions proved in Appendix D:

rR1

k = r
QR1

k =
µ2 ‖h‖2

N0

(
1− |αsI |2

εI
1 + εI

)
δ(k), (67)

rR2

k =
µ2 ‖h‖2

N0

(
1−|αsI |2

εI
1+2εI

[1+cos(2φsI)]

)
δ(k), (68)

r
QR2

k =
µ2 ‖h‖2

N0

[
2δ(k)− |αsI |2sinc

(
kπ

2

)(
(−1)kεI
1 + εI

+
εI (1 + cos (2ψsI))

1 + 2εI

)]
, (69)

r
QR3

k =
µ2‖h‖2

N0

[
3δ(k)− |αsI |

2

2
sinc

(
kπ

2

)(
εI(1+(−1)k)

1 + εI

+
2εI

{
(1+cos (2ψsI))+(−1)k(1+cos (2ζsI))

}
1 + 2εI

)]
. (70)

where sinc(x) , sin(x)/x. Expression (67) indicates that
rR1

k = r
QR1

k = 0 for k 6= 0, which means that for both R and
QR signals, no ISI is present at the output of the associated
conventional receiver. In this case, no Viterbi algorithm is
required and the decision is done symbol by symbol. This
situation also occurs at the output of the two-input pseudo-
MLSE receiver for R signals as shown by (68), hence its very
simple implementation. However expressions (69) and (70)
show that rQR2

2k = r
QR3

2k = 0 for k 6= 0 but, for αsI 6= 0, we

obtain in the general case rQR2

2k+1 6= 0 and r
QR3

2k+1 6= 0, which
shows that ISI is generally present at the output of the M -input
pseudo-MLSE receiver (M = 2, 3) for QR signals and which
means that a Viterbi algorithm is required for demodulation.
This proves the higher complexity of the two and three-input
pseudo-MLSE receiver for QR signals with respect to the two-
input receiver for R signals and this gives an additional proof
of the non-equivalence of R and QR signals for the two-input
pseudo-MLSE receivers. Moreover, assuming |αsI | = 1, a
strong interference (εI � 1) and (ψsI , ζsI) 6= (kπ, kπ), we
obtain from (69) and (70)∣∣∣∣∣r

QR3

2k+1/r
QR3
0

r
QR2

2k+1/r
QR2
0

∣∣∣∣∣ ≈
∣∣∣∣ sin2 ψsI − sin2 ζsI

sin2 ψsI + sin2 ζsI

∣∣∣∣ ≤ 1, (71)

which shows, for QR signals, a lower power of ISI in general
for the three-input pseudo-MLSE receiver with respect to the
two-input pseudo-MLSE receiver, hence the great interest of
the former also from a complexity point of view. In particular,
in the case of synchronous sources (τI = 0), we obtain ψsI =
ζsI and rQR3

2k+1 = 0 whatever the value of φsI , whereas rQR2

2k+1 6=
0 for φsI 6= kπ. In this latter case, for QR signals, a Viterbi
algorithm is required for M = 2, but not for M = 3.

Note that expressions (69) and (70), obtained for a zero
roll-off, correspond to a worst case for the coefficients rQR2

k

and r
QR3

k for k 6= 0. In practice the roll-off of the SRRC
pulse shaping filter is greater than zero and the latter values
are lower.

For the computer simulations of the following sub-section,
we have constrained the memory of the Viterbi algorithm to
be equal to 16 symbols, i.e. we have assumed that rQR2

k =

r
QR3

k = 0 for |k| > 8.

C. Symbol Error Rate at the output of the M -input pseudo-
MLSE receivers for one CCI

1) One Tap deterministic channels: To compare the M -
input (M = 1, 2) pseudo-MLSE receivers for R signals and
the M -input (M = 1, 2, 3) pseudo-MLSE receivers for QR
signals, from a SER criterion, we consider the transmission
of 1000 frames of 184 symbols and we assume, in this sub-
section, one tap deterministic channels which are constant
over a frame and random from a frame to another. For each
frame, we assume that φsI and πτI/2T are independent
random variables uniformly distributed on [0, 2π]. Under these
assumptions, Figure 10 shows the variations of the SER at the
output of the considered receivers for both R and QR signals,
as a function of εs, for N = 1, ω = 0.5 and εI/εs = 10
dB. Note the poor performance of the conventional receivers
(M = 1) and the much better performance of the M -input
receivers for M > 1. Note also the best performance obtained
for M = 3 for QR signals, which even outperform the results
obtained with M = 2 for R signals. This is due to more SO
informations exploited by the 3-input pseudo-MLSE receiver
for QR signals with respect to the 2-input pseudo-MLSE
receiver for R signals, jointly with the different distributions
of SINRQR3

and SINRR2 .
2) One Tap Rayleigh channels: To complete the previous

results and under the assumptions of Figure 10, Figure 11
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Fig. 10: SER as a function of εs (N = 1, εI/εs = 10 dB,
ω = 0.5, deterministic one tap channels, R and QR signals)

shows the same variations as Figure 10, but as a function of
E[εs] = 10 dB for Rayleigh fading channels for which h and
hI are circular Gaussian channels, such that E[εI ]/E[εs] = 10
dB. The conclusions of Figure 10 hold for Figure 11.
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Fig. 11: SER as a function of E[εs] (N = 1, E[εI ]/E[εs] = 10
dB, ω = 0.5, Rayleigh fading one tap channels, R and QR
signals)

3) Two-Tap Deterministic channels: Finally, we consider
in this sub-section a one-tap deterministic channel for the SOI
and a two-tap frequency selective deterministic channel for the
CCI such that

h(t) = µδ(t)h

hI(t) = µI1δ(t− τI1)hI1 + µI2δ(t− τI1 − T )hI2 , (72)

where µI1 and µI2 control the amplitudes of the first and
second paths of the CCI, whereas hI1 and hI2 correspond to
the channel vectors of the latter, such that hHI1hI1 = hHI2hI2 =
N . Under these assumptions and for SRRC pulse shaping
filters, it is straightforward to verify that πI = (µ2

I1
+µ2

I2
)πd.

We consider again the transmission of 1000 frames of 184

symbols, constant channels per frame, random channels from a
frame to another, and we assume, for each frame, that φs, φI1 ,
φI2 and πτI/2T are independent random variables uniformly
distributed on [0, 2π], where φI1 and φI2 are the phases
of hI1(1) and hI2(1) respectively. Under these assumptions,
Figure 12 shows the variations of the SER at the output of the
considered receivers for both R and QR signals, as a function
of εs, for N = 1, ω = 0.5, εI/εs = 10 dB and µI1 = µI2 .
The conclusions of Figure 10 hold for Figure 12.
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Fig. 12: SER as a function of εs (N = 1, εI/εs = 10 dB,
ω = 0.5, µI1 = µI2 , deterministic two-tap channels, R and
QR signals)

VII. CONCLUSION

We have shown in this paper, both analytically and by
computer simulations, that contrary to what is accepted as
true in the literature, standard (or two-input) WL filtering in
the presence of CCI may be less efficient for QR signals,
omnipresent in radiocommunications networks such as GSM,
VAMOS or FBMC-OQAM networks, than R ones. This result,
which is directly linked to the different SO non-circularity
and cyclostationarity properties of these signals, has been
proved in this paper using a CT pseudo-MLSE approach for
propagation channels with or without delay spread. Such an
approach is much more powerful than an MMSE approach,
is not dependent of the sample rate of a DT implementation
and allows us to develop original analytical performance
computations, hence its choice here. Moreover, for both R
and QR signals, the capability of two-input pseudo-MLSE
receivers to perform SAIC has been proved for most of
frequency selective propagation channels. To improve the
standard WL filtering of QR signals in the presence of CCI
and to make QR signals at least almost equivalent to R ones
for WL filtering in such contexts, an enhanced WL receiver
has been proposed and analyzed in this paper for arbitrary
propagation channels. This enhanced WL receiver is a WL
FRESH receiver corresponding to the three-input WL pseudo-
MLSE receiver. This new receiver has been shown, both
analytically and by computer simulations, to be much more
powerful than the standard WL receiver for SAIC/MAIC of



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH YEAR 14

QR signals. Note that these receivers are able to process up
to 2N − 1 CCI from an array of N antennas, hence their
interest for many kinds of networks for which the number of
CCI may exceed one. The results of the paper, completely
new, should open new perspectives and should contribute to
develop new powerful WL receivers for CCI mitigation in
radiocommunication networks using QR signals. The main
reason for this is that the results of the paper should remain
valid not only for other CT approaches, such as MMSE ones,
but also for DT approaches. Indeed, as explained in the paper,
the reason for the non-equivalence between R and QR signals
for standard WL filtering is directly related to their different
SO cyclostationarity and non-circularity properties and this
difference gets beyond the chosen optimization criterion or
the kind of implementation (CT or DT). The comparison of R
and QR signals for DT WL filtering using MMSE or MLSE
criteria, jointly with implementation issues and the role of the
oversampling rate, is currently under investigation and will
be considered elsewhere. Nevertheless note that preliminary
results about the non equivalence between R and QR signals
for DT WL filtering has already been pointed out in [8]
through an MMSE approach.

APPENDIX

A. Proof of (31) and (32)

Consider the case of a QR CCI for M = 2. The other cases
are proved similarly. Applying the definitions (2) and (3) to
ñF(t) , [nT (t)e−j2πt/4T ,nH(t)ej2πt/4T ]T , we get:

RñF
(t, τ) =

[
Rn(t, τ)e−j2πτ/4T Cn(t, τ)e−j2πt/2T

C∗n(t, τ)ej2πt/2T R∗n(t, τ)ej2πτ/4T

]
, (73)

CñF
(t, τ) =

[
Cn(t, τ)e−j2πt/2T Rn(t, τ)e−j2πτ/4T

R∗n(t, τ)ej2πτ/4T C∗n(t, τ)ej2πt/2T

]
. (74)

Replacing (4) and (5) into (73) and (74), we derive:

RñF
(t, τ) =[∑

αi
Rαi
n (τ)e−j2π

τ
4T ej2παit

∑
βi
Cβi
n (τ)ej2π(βi−

1
2T )t∑

βi
Cβi

∗

n (τ)ej2π(−βi+
1

2T )t
∑
αi
Rαi

∗

n (τ)ej2π
τ
4T e−j2παit

]
,(75)

CñF
(t, τ) =[ ∑

βi
Cβi
n (τ)ej2π(βi−

1
2T )t

∑
αi
Rαi
n (τ)e−j2π

τ
4T ej2παit∑

αi
Rαi

∗

n (τ)ej2π
τ
4T e−j2παit

∑
βi
Cβi

∗

n (τ)ej2π(−βi+
1

2T )t

]
,(76)

with αi = i/T and βi = (2i + 1)/2T , i ∈ Z. Noting that
βi − 1/2T = i/T = αi, (75) and (76) can be rewritten as:

RñF
(t, τ) =

∑
αi

[
Rαi
n (τ)e−j2π

τ
4T C

αi+
1

2T
n (τ)

(C
−αi+ 1

2T
n (τ))∗ (R−αin (τ))∗ej2π

τ
4T

]
ej2παit

=
∑
αi

Rαi
ñF

(τ)ej2παit (77)

CñF
(t, τ) =

∑
αi

[
C
αi+

1
2T

n (τ) Rαi
n (τ)e−j2π

τ
4T

(R−αin (τ))∗ej2π
τ
4T (C

−αi+ 1
2T

n (τ))∗

]
ej2παit

=
∑
αi

Cαi
ñF

(τ)ej2παit. (78)

Consequently the Fourier transforms Rαi
ñF

(f) and Cαi
ñF

(f) of
Rαi
ñF

(τ) and Cαi
ñF

(τ), respectively, are given by:

Rαi
ñF

(f) =

[
Rαi
n (f+ 1

4T ) C
αi+1/2T
n (f)

(C
−αi+1/2T
n (−f))∗ (R−αin ( 1

4T −f))∗

]
(79)

Cαi
ñF

(f) =

[
C
αi+1/2T
n (f) Rαi

n (f+ 1
4T )

(R−αin ( 1
4T −f))∗ (C

−αi+1/2T
n (−f))∗

]
. (80)

Under the assumption (30), where the first and second cy-
clospectrum of n(t), appearing in (79) and (80), are respec-
tively:

Rαi
n (f)=

πd
T
gI

(
f+

αi
2

)
gHI

(
f−αi

2

)
+N0δ(αi)IN , (81)

Cβi
n (f)=

πd
T
gI

(
f +

βi
2

)
gTI

(
βi
2
− f

)
, (82)

(79) and (80) reduce to (31) and (32), respectively, where
g̃IF(f) = [gTI (f + 1

4T ),gHI ( 1
4T − f)]T . �

B. Proof of (35)
Applying the matrix inversion lemma to R0

ñF
(f) deduced

from (31):

R0
ñF

(f)−1 =
1

N0

[
I2N −

g̃IF(f)g̃HIF(f)

‖g̃IF(f)‖2 + N0T
πd

]
, (83)

we straightforwardly get for f ∈ B0
F.

g̃HF (f)R0
ñF

(f)−1g̃F(f)=
‖g̃F(f)‖2

N0

(
1− |α̃SIF(f)|2

1+ 1
ε̃IF (f)

)
. (84)

Then, using (20), (83) and (31), we get after some algebra
manipulations for αi 6= 0 and f ∈ BαiF ∩ B

−αi
F (where BαiF

denotes the set of frequencies f such that g̃F(f + αi
2 ) is non-

zero):

w̃H
F

(
f +

αi
2

)
Rαi
ñF

(f)w̃F

(
f − αi

2

)
=

1

N0

α̃SIF(f + αi
2 )‖g̃F(f + αi

2 )‖√
ε̃IF(f + αi

2 )
(

1 + 1
ε̃IF (f+

αi
2 )

)
×

α̃∗SIF(f − αi
2 )‖g̃F(f − αi

2 )‖√
ε̃IF(f − αi

2 )
(

1 + 1
ε̃IF (f−αi2 )

) , (85)

whereas from (20)

w̃H
F (f)R0

ñF
(f)w̃F(f) = g̃HF (f)R0

ñF
(f)−1g̃F(f). (86)

For strong CCI and for which ε̃IF(f)� 1, ε̃IF(f + αi
2 )� 1

and ε̃IF(f − αi
2 ) � 1 for f ∈ B0

F ∩ B
αi
F ∩ B

−αi
F and for

frequencies for which g̃IF(f) is not proportional to g̃F(f),
i.e., such that |α̃SIF(f)| 6= 1, the following approximation is
deduced from the comparison between (84) and (85):∣∣∣w̃H

F

(
f+

αi
2

)
Rαi
ñF

(f)w̃F

(
f−αi

2

)∣∣∣� w̃H
F (f)R0

ñF
(f)w̃F(f).

(87)
Furthermore for f ∈ B0

F and f /∈ BαiF ∩ B
−αi
F , w̃H

F (f +
αi
2 )Rαi

ñF
(f)w̃F(f− αi

2 ) = 0. Consequently as the number of
cyclic frequencies αi is finite, due to the limited bandwidth of
v(f), (29) reduces to

SINRF ≈ πb
∫

g̃HF (f)R0
ñF

(f)−1g̃F(f)df. (88)
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It is easy to verify that for flat fading CCI propagation channels
and non-zero CCI, g̃IF(f) 6= 0 for f ∈ B0

F whereas for
frequency selective CCI propagation channels, g̃IF(f) may be
0 inside B0

F only for discrete values of f . Consequently, using
(84) into (88), assuming a strong CCI for which ε̃IF(f)� 1
when ε̃IF(f) 6= 0 for f ∈ B0

f , we obtain the approximation
(35) for both R and QR strong CCI. �

C. Proof of (63)

For v(f) =
√
T1[−1/2T,+1/2T ](f), the cyclic frequencies

reduce to αi ∈ {0,−1/T,+1/T} and βi ∈ {−1/2T,+1/2T}
and (59) can be written as:

SINRF3
=

2πb[
∫
A0(f)df ]2∫

[A0(f)+A−1
T

(f)+A 1
T
(f)]df+<{

∫
[B−1

2T
(f)+B 1

2T
(f)]df}

(89)

with

Aαi(f) , wH
F3

(
f +

αi
2

)
Rαi
nF3

(f)wF3

(
f − αi

2

)
(90)

Bβi(f) , wH
F3

(
f +

βi
2

)
Cβi
nF3

(f)w∗F3

(
βi
2
− f

)
. (91)

Applying the matrix inversion lemma to R0
nF3

(f) deduced
from (60), we straightforwardly get:

A0(f) =
1

N0

(
‖gF3

(f)‖2 −
|gHF3

(f)gIF3
(f)|2

‖gIF3
(f)‖2 + TN0

πd

)
, (92)

with ‖gF3
(f)‖2

µ2‖h‖2 =
‖gIF3

(f)‖2

µ2
I‖hI‖2

= v2(f) + v2
(
f− 1

2T

)
+

v2
(
f+ 1

2T

)
and |gHF3

(f)gIF3
(f)|2 = µ2µ2

I |hHhI |2∣∣∣v2(f) + [v2
(
f− 1

2T

)
ej2π

τI
2T + v2

(
f+ 1

2T

)
e−j2π

τI
2T ]e−j2φsI

∣∣∣2.
By integrating A0(f) on [− 1

T ,−
1
2T ] ∪ [− 1

2T , 0] ∪ [0, 1
2T ] ∪

[ 1
2T ,

1
T ], we obtain after tedious computations:∫
A0(f)df = εs

[
3− |αsI |2

(
1

1 + 1
εI

+
2Γ

2 + 1
εI

)]
, (93)

which gives the approximation∫
A0(f)df ≈ εs

[
3− |αsI |2(1 + Γ)

]
. (94)

for strong CCI.
Using (60) into (90), the terms Aαi(f) for αi = − 1

T and
αi = 1

T can be written as

Aαi(f) =
1

N2
0

gHF3

(
f+

αi
2

)[
IN−

gIF3

(
f+ αi

2

)
gHIF3

(
f+ αi

2

)
‖gIF3

(f+ αi
2 )‖2 + TN0

πd

]
×
[πd
T
gjF3

(
f +

αi
2

)
gHIF3

(
f − αi

2

)
+N0J(αi)

]
×

[
IN−

gIF3

(
f−αi2

)
gHIF3

(
f−αi2

)
‖gIF3

(f− αi
2 )‖2 + TN0

πd

]
gF3

(
f−αi

2

)
. (95)

where J( 1
T ) , J1 and J(− 1

T ) , JT1 .
Then using gHIF3

(f+ αi
2 )J(αi)gIF3

(f− αi
2 ) = ‖gI(−f)‖2,

gHF3
(f + αi

2 )J(αi)gF3
(f − αi

2 ) = ‖g(−f)‖2 and gHIF3
(f +

αi
2 )J(αi)gF3

(f − αi
2 ) = [gHF3

(f + αi
2 )J(αi)gIF3

(f − αi
2 )]∗ =

gH(−f)gI(−f) in (95), we obtain for strong CCI with similar
tedious computations as for the derivation of (94):∫ [

A−1
T

(f) +A 1
T

(f)
]
df ≈ 2εs(1− |αsI |). (96)

Then using (61) into (91), for βi = − 1
2T and βi = 1

2T we
prove similarly to the approximation (96):∫ [

B−1
2T

(f) +B 1
2T

(f)
]
df ≈ εs

[
4− |αsI |2(2 + Γ)

]
. (97)

Plugging the approximations (94), (96) and (97) into (89)
completes the proof. �

D. Proof of (67) to (70)
The coefficients rk are deduced from the expressions of

rk′,k′+k given by (19) for M = 1, 2, for both R and QR
signals, and by (53) for M = 3 for QR signals.

Noting that for v(f) =
√
T1[−1/2T,+1/2T ](f) the differ-

ent terms ‖g̃F(f)‖2, ‖g̃IF(f)‖2 and |g̃HF (f)g̃IF(f)|2 [resp.,
‖gF3

(f)‖2, ‖gIF3
(f)‖2 and |gHF3

(f)gIF3
(f)|2] for M = 1, 2

[resp., M = 3] are constant piecewise functions on intervals
[c/2T, (c+1)/2T ], c ∈ {−2−1, 0, 1} and zero elsewhere, for
which∫ (c+1)/2T

c/2T

Tej2πfkT df =
1

2
ejπk(c+

1
2 )sinc

(
πk

2

)
,

the different coefficients rk (67) to (70) are deduced by
straightforward computations. �
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