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Abstract

Gaussian processes (GP) are widely used as a metamodel for em-
ulating time-consuming computer codes. We focus on problems in-
volving categorical inputs, with a potentially large number L of levels
(typically several tens), partitioned in G < L groups of various sizes.
Parsimonious covariance functions, or kernels, can then be defined by
block covariance matrices T with constant covariances between pairs
of blocks and within blocks. We study the positive definiteness of such
matrices to encourage their practical use. The hierarchical group/level
structure, equivalent to a nested Bayesian linear model, provides a pa-
rameterization of valid block matrices T. The same model can then
be used when the assumption within blocks is relaxed, giving a flex-
ible parametric family of valid covariance matrices with constant co-
variances between pairs of blocks. The positive definiteness of T is
equivalent to the positive definiteness of a smaller matrix of size G,
obtained by averaging each block. The model is applied to a problem
in nuclear waste analysis, where one of the categorical inputs is atomic
number, which has more than 90 levels.



1 Introduction

This research is motivated by the analysis of a time-consuming computer
code in nuclear engineering, depending on both continuous and categorical
inputs, one of them having more than 90 levels. The final motivation is an
inversion problem. However, due to the heavy computational cost, a direct
usage of the simulator is hardly possible. A realistic approach is to use a
statistical emulator or metamodel. Thus, as a first step, we investigate the
metamodelling of such computer code. More precisely, we consider Gaussian
process (GP) regression models, also called kriging models ([Sacks et al.,
1989], [Rasmussen and Williams, 2006]), which have been successfully used
in sequential metamodel-based strategies for uncertainty quantification (see
e.g. [Chevalier et al., 2014]).

Whereas there is a flourishing literature on GP regression, the part con-
cerned with categorical inputs remains quite limited. We refer to [Zhang and
Notz, 2015] for a review. As for continuous inputs, covariance functions or
kernels are usually built by combination of 1-dimensional ones, most often
by multiplication or, more rarely, by addition [Deng et al., 2017]. The ques-
tion then comes down to constructing a valid kernel on a finite set, which is a
positive semidefinite matrix. Some effort has been spent on parameterization
of general covariance matrices [Pinheiro and Bates, 1996] and parsimonious
parameterizations of smaller classes [Pinheiro and Bates, 2009]. Some block
forms have also been proposed [Qian et al., 2007], in order to deal with a
potential large number of levels. However, their validity (in terms of positive
definiteness) was not investigated. Furthermore, to the best of our knowl-
edge, applications in GP regression are limited to categorical inputs with
very few levels, typically less than 5.

Guided by the application, we investigate more deeply the so-called group
kernels cited in Qian et al. [2007], defined by block covariance matrices T
with constant covariances between pairs of blocks and within blocks. We ex-
ploit the hierarchy group/level by revisiting a nested Bayesian linear model
where the response term is a sum of a group effect and a level effect. The level
effects are assumed to sum to zero, which allows recovering negative within-
group correlations. This model leads to a parameterization of T which is au-
tomatically positive definite. Interestingly, the assumption on within blocks
can be relaxed, and we obtain a parameterization of a wider class of valid



group kernels. The positive definiteness condition of T is also explicited:
it is equivalent to the positive definiteness of the smaller covariance matrix
obtained by replacing each block by its average.

As mentioned above, this work has some connections with Bayesian lin-
ear models as well as linear mixed effect models (see e.g. Lindley and Smith
[1972], Smith [1973]) in a hierarchical view. Other related works concern hi-
erarchical GPs with a tree structure. For instance, particular forms of group
kernels are obtained in multiresolution GP models ([Fox and Dunson, 2012],
[Park and Choi, 2010]). Such models usually assume that children are condi-
tionally independent on the mother. This is not the case in our model, due
to the condition that the level effects sum to zero.

The paper is structured as follows. Section 2 gives some background
on GP regression with mixed categorical and continuous inputs. Section 3
presents new findings on group kernels. Section 4 illustrates on synthetic
examples. Section 5 is devoted to the application which motivated this work.
Section 6 gives some conclusions and perspectives for future research.

2 Background and notations

2.1 GPs with continuous and categorical variables

We consider a set of I continuous variables x1,...,X; defined on a hypercu-
bic domain A, and a set of J categorical variables uy,...,uy with Ly,..., L;
levels. Without loss of generality, we assume that A = [0,1]7 and that, for
each j = 1,...,J, the levels of u; are numbered 1,2,...,L;. We denote
X = (X1,...,X7), u=(ug,...,uy), and w = (x,u).

We consider GP regression models defined on the product space

J
D=1[0,1" x [[{1..... L;},
7j=1

and written as:

y; = p(w') + Z(w) + ¢, i=1,...,N. (1)



where p, Z and € are respectively the trend, the GP part and a noise term.
There exist a wide variety of trend functions, as in linear models. Our main
focus here is on the centered GP Z(w), characterized by its kernel

k:(w,w') — cov(Z(w), Z(w")).

Kernels on D can be obtained by combining kernels on [0, 1]’ and kernels
on szl{l, ..., L;}. Standard valid combinations are the product, sum or
ANOVA. Thus if k.n denotes a kernel for the continuous variables X, kcat
a kernel for the categorical ones u, examples of valid kernels for w = (x,u)
are written:

(Product) E(w, W) = keont (X, X )kcar (1, u')
(Sum) k(w, W) = keont(X,X') + kear(u, 1)
(ANOVA) k(w,w') = (14 keont(x, X)) (1 + kear(u, 1))

For consiseness, we will denote by * one of the operations: sum, product or
ANOVA. The three formula above can then be summarized by:

k(w, W) = keont (X, X) * keat (1, ') (2)

Then, in turn, k. and k.,; can be defined by applying these operations
to 1-dimensional kernels. For continuous variables, famous 1-dimensional
kernels include squared exponential or Matérn [Rasmussen and Williams,
2006]. We denote by k!, (z;, z}) such kernels (i = 1, ..., ). For a categorical
variable, notice that, as a positive semidefinite function on a finite space, a
kernel is a positive semidefinite matrix. We denote by T; the matrix of
size L; corresponding to kernels for u; (j = 1,...,J). Thus, examples of

expressions for kot and ke, are written:

kCOHt(Xv X/) = kiont(xh xll) ook kgont(xb CL’}) (3>
kea(w,0) = [T],, %% [T)] (4)

ug,uh g

The formulation given by Equations (2), (3), (4) is not the most general
one, since kernels are not always obtained by combining 1-dimensional ones.
Nevertheless, it encompasses the GP models used in the literature of com-
puter experiments with categorical inputs. It generalizes the tensor-product
kernels, very often used, and the sum used recently by [Deng et al., 2017]
on the categorical part. It also contains the heteroscedastic case, since the
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matrices T; are not assumed to have a constant diagonal, contrarily to most
existing works [Zhang and Notz, 2015]. This will be useful in the application
of Section 5, where the variance of the material is level dependent.

Remark 1. Combining kernels needs some care to obtain identifiable models.
For instance, the product of kernels ky, ko with k;(x;,x}) = afe“xi_rfé' (i =

1,2), is a kernel depending on only one variance parameter o* = oios.
The GP model is identifiable for this new parameter, but not for the initial

parameters o2, 03.

2.2 1-dimensional kernels for categorical variables

We consider here a single categorical variable u with levels 1,..., L. We
recall that a kernel for u is then a L by L positive semidefinite matrix T.

2.2.1 Kernels for ordinal variables

A categorical variable with ordered levels is called ordinal. In this case, the
levels can be viewed as a discretization of a continuous variable. Thus a GP
Y on {1,...,L} can be obtained from a 1-dimensional GP Z on the interval
[0, 1] by using a non-decreasing transformation F' (also called warping):

Y(u) = Z(F(u)).
Consequently, the covariance matrix T can be written:
Tuw = kz(F(u), F(u)), u,u' =1,...,L. (5)

When kz(x,2") depends on the distance |z — 2’|, then T, ,» depends on the
distance between the levels u, u’, distorted by F.

In the general case, F' is piecewise-linear and defined by L — 1 parameters.
However, a parsimonious parameterization may be preferred, based on the
cdf of a flexible probability distribution such as the Normal or the Beta. We
refer to [McCullagh, 1980] for examples in regression and to [Qian et al.,
2007] for illustrations in computer experiments.

There is also some flexibility in the choice of the continuous kernel k. The
standard Squared-Exponential or Matérn kernels are admissible, but induce
positive correlation between levels. In order to allow negative correlations,
one may choose, for instance, the cosine correlation kernel on [0, «):

kz(z,2") = cos(x — ') (6)
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where o € (0, 7] is a fixed parameter tuning the minimal correlation value.
Indeed, (6) defines a decreasing function of |x—2a’| from [0, a] to [cos(a), 1]. Tt
is a valid covariance function obtained by choosing i as a Dirac non-negative
measure in Bochner theorem for real-valued stationary kernels: kz(x,z") =

[ cos(w(x — 2'))dp(w).

2.2.2 Kernels for nominal variables

For simplicity we present here the homoscedastic case, i.e. when T has
a constant diagonal. It is immediately extended to situations where the
variance depends on the level, by considering the correlation matrix.

General parametric covariance matrices. There are several parame-
terizations of positive-definite matrices based on the spectral and Choleky
decompositions. The spectral decomposition of T is written

T =PDP’ (7)

where D is diagonal and P orthogonal. Standard parameterizations of P
involve the Cayley transform, Eulerian angles, Householder transformations
or Givens rotations, as detailed in [Khuri and Good, 1989] and [Shepard et al.,
2015]. Another general parameterization of T is provided by the Cholesky
decomposition:

T=LL", (8)

where L is lower triangular. When the variance T,,, does not depend on
the level u, the columns of L have the same norm and represent points on
a sphere in RY. A spherical parameterization of L is then possible with one
variance term and L(L—1)/2 angles, representing correlations between levels
[see e.g. Pinheiro and Bates, 1996].

Parsimonious parameterizations. The general parametrizations of T
described above require O(L?) parameters. More parsimonious ones can be
used, up to additional model assumptions. Among the simplest forms, the
compound symmetry (CS) - often called exchangeable - covariance matrix
assumes a common correlation for all levels [see e.g. Pinheiro and Bates,
2009]. The CS matrix with variance v and covariance c is defined by:

Ty = {;’ e /v (CY(L-1,1), (9)



This generalizes the kernel obtained by substituting the Gower distance d
[Gower, 1982] into the exponential kernel, corresponding to ¢/v = e~ > 0.
The CS covariance matrix treats equally all pairs of levels, which is an im-
portant limitation, especially when L > 1. More flexibility is obtained by
considering groups of levels. Assume that the L levels of u are partitioned in
G groups Gy, ..., Ge and denote by g(u) the group number corresponding to
a level u. Then a desired parameterization of T is given by the block matrix
(see e.g. Qian et al. [2007]):

v ifu=n1
T = . 10
’ {Cg(uxg(u') if w7 o (10)

where for all 4, j € {1,..., G}, the terms ¢;;/v are within-group correlations,
and ¢;;/v (i # j) are between-group correlations. Notice that additional
conditions on the ¢; ;’s are necessary to ensure that T is a valid covariance
matrix, which is developed in the next section.

3 Generalized compound symmetry block co-
variance matrices

We consider the framework of Section 2.2.2 where u denotes a categorical
variable whose levels are partitioned in G groups Gy, ..., Gg of various sizes
ni,...,ng. Without loss of generality, we assume that G; = {1,...,n1},Gy =
{n1+1,...,n1 +ns},.... We are interested in parsimonious parameteriza-
tions of the covariance matrix T, written in block form:

Wl B1,2 e BLG
T = B?’l W (11)
; - Bgoig
Bec1 - Bge-1 Wge

where the diagonal blocks W, contain within-group covariances, and the
off-diagonal blocks B, , are constant matrices containing between-group co-
variances. We denote:

By = cogIngn g#4g € {1,...,G}
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where J;; is the s by ¢ matrix of ones. This means that the between-group
covariances only depends on groups (and not on levels).

Although block matrices of the form (11) may be covariance matrices,
they are not positive semidefinite in general. A necessary condition is that
all diagonal blocks W, are positive semidefinite. But it is not sufficient. In
order to provide a full characterization, we will ask a little more, namely that
they remain positive semidefinite when removing the mean:

W, - Wang is positive semidefinite, for all ¢g=1,...,G (12)

where J,, is matrix of ones of size n, and W, is the average of W coeffi-
cients. This condition will appear naturally in Subsection 3.3. Notice that
valid CS covariance matrices satisfy it. Indeed, if W is a positive semidefinite
matrix with variance v and covariance ¢, then W — WJ,, = (v — ¢)P where
P =1, — n'J, verifies P = PPT, which is positive semidefinite. For this
reason, we will call matrices with Generalized Compound Symmetry (GCS),
block matrices of the form (11) verifying (12). In particular, the class of GCS
block matrices contains block matrices of the form (10).

The rest of the section is organized as follows. Subsection 3.1 shows how
valid CS covariance matrices can be parameterized by a Gaussian model. The
correspondence is ensured, thanks to a centering condition on the effects of
the levels. Subsection 3.2 gives material on centered covariance matrices.
Subsection 3.3 contains the main results. It extends the model of Subsection
3.1 to a GCS block matrix. This gives a proper characterization of posi-
tive semidefinite GCS block matrices, as well as a parameterization which
automatically fulfills the positive semidefinite conditions. Subsection 3.4 in-
dicates connections with related works. Finally, in Subsection 3.5, we collect
together the details of our parameterization, for ease of reference.

3.1 A Gaussian model for CS covariance matrices

We first focus on the case of a CS matrix. The following additional notations
will be used: for a given integer L > 1, I is the identity matrix of size L,
1, is the vector of ones of size L. We denote by

' (v,¢) = (v—c)Ip +cJg (13)
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the CS matrix with a common variance term v and a common covariance
term c. It is well-known that T'® (v, ¢) is positive definite if and only if

—(L-1D)v<e<w. (14)

For instance, one can check that the eigenvalues of T'{® (v, ¢) are v + (L — 1)c
with multiplicity 1 (eigenvector 1) and v — ¢ with multiplicity L — 1 (eigen-
space 17 ). Notice that a CS matrix is positive definite for a range of negative
values of its correlation term.

Then we consider the following Gaussian model:
N = I+ Ay, u=1,...,L (15)

where 1 ~ N(0,v,) with v, > 0, and Ay,...,A; are i.i.d. random variables
from N(0, vy), with vy > 0, assumed to be independent of u.

A direct computation shows that the covariance matrix of n is the CS
covariance matrix I'Y® (v, + vy, v,). Clearly this characterizes the subclass
of positive definite CS covariance matrices T'¢S (v,¢) such that ¢ is non-
negative. The full parameterization, including negative values of ¢ in the
range (—(L — 1)7'v,0), can be obtained by restricting the average of level
effects to be zero, as detailed in the next proposition.

Proposition 1. When n and X are related as in (15), the covariance of
n conditional on zero average errors X = 0 is a CS matriz with variance
v = v, + [l —1/L] and covariance ¢ = v, — vy/L. Conversely, given a
CS covariance matriz C with variance v and covariance c, there exists a
representation (15) such that C is the covariance of m conditional on zero
average errors A = 0 where v, = v/L + [l — 1/L] and vy = v — c.

3.2 Parameterization of centered covariance matrices

The usage of Model (15) to describe CS covariance matrices involves Gaus-
sian vectors that sum to zero. This is linked to centered covariance matrices,
i.e. covariance matrices W* such that W* = 0, as detailed in the next propo-
sition. We further give a parameterization of centered covariance matrices.

Proposition 2. Let W* be a covariance matriz of size L > 2. Then, W*
is centered iff there exists a Gaussian vector z on RY such that W* =



cov(z|z =0). In that case, let A be a L x (L — 1) matriz whose columns
form an orthonormal basis of 13. Then W* is written in an unique way

W* = AMA' (16)

where M is a covariance matriz of size L — 1.
In particular if W* = v[I, — L™'J] is a centered CS covariance matriz, then
M = vl 4, and we can choose z ~ N (0,v1}).

The choice of A in Prop. 2 is free, and can be obtained by normalizing
the columns of a L x (L — 1) Helmert contrast matrix (Venables and Ripley
[2002], §6.2.):

[—1 -1 -1 --- -1 7
1 -1 -1 --- -1
0 2 -1 --- -1
0 3
: : . . —1
| 0 o --- 0 L-—1]

3.3 A hierarchical Gaussian model for GCS block co-
variance matrices

Let us now return to the general case, where the levels of u are partitioned
in G groups. It will be convenient to use the hierarchical notation g/u,
indicating that u belongs to the group G,. Then, we consider the following
hierarchical Gaussian model:

77g/u:/1g+)\g/ua g:1>-"7G: uegg (17>

where for each g the random variable i, represent the effect of the group
g, and the random variables Ay 1, ..., Ay/n, represent the effects of the levels
in this group. We assume that g is normal A/(0,B*), and all the X,/ are
normal N (0, W;) We also assume that A/, ..., Ag/. are independent, and
independent of p.

Notice that, up to centering conditions on Ay, that will be considered next,
ftg is the mean of group g. Hence, B* is interpreted as the between group
means covariance. Similarly, Ay is the within-group effect around the group
mean. This justifies the notations B* and W.

10



As an extension of Prop. 1, the next results show that (17) gives a one-
to-one parameterization of valid GCS block covariance matrices, under the
additional assumption that the average of level effects is zero in each group.

Theorem 1. The covariance matrix of m conditional on {V =0,g =
1,...,G} is a GCS block matriz with, for all g,q' € {1,...,G}:

W, = B; Jn, + W, a8)

Bg“g/ - B;,g"]ng,ng/?
where W7 is a centered positive semidefinite matriz equal to COV(Ag/_|V =
0). Conversely, let T be a positive semidefinite GCS block matriz. Then there
exists a representation (17) such that T is the covariance of m conditional
on zero average errors A\g). = 0,(g =1,...,G), with:

B* = T,
cov(Ag [ Ag. =0) = W, =Wl
where T is the G x G matriz obtained by averaging each block of T.

Corollary 1. Positive semidefinite GCS block matrices with CS diagonal
blocks exactly correspond to covariance matrices of n in (17) conditional on
the G constraints \g; = 0 when cov(Ay,.) o< L, .

As a by-product, we obtain a simple condition for checking the positive
definiteness of GCS block matrices. Interestingly, it only involves a small
matrix whose size is the number of groups.

Theorem 2. Let T be a GCS block matriz. Then
(i) T is positive semidefinite if and only Zf’f is positive semidefinite.

(i1) T is positive definite if and only z'f’i‘ is positive definite and the diagonal
blocks W, are positive definite for all g =1,...,G.

Furthermore, we have

T = XTX' + diagW1 —WiJ,,,..., Wg — WaJ,.) (19)
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where X is the n X G matrix

1, 0 ... 0
X := 0 Ln,
S
0 0 1,

Remark 2. All the results depend on the conditional distribution Xy, \V =0.
Thus there is some flexibility in the choice of W7, since several matrices W
can lead to the same conditional covariance matriz cov()\g/,|m =0).

Remark 3 (Groups of size 1)._Theorem 1 is still valid for groups of size 1.
Indeed if n, = 1, then (Ag/|Ay. = 0) is degenerate and equal to 0. Thus
Wi =W, —W,J, =0 is positive semidefinite.

We end this section with an “exclusion property” for groups with strong
negative correlation. A positive semidefinite GCS covariance matrix can
exhibit negative within-group correlations, but this induces limitations on
the between-group correlations. More precisely, the following result shows
that if a group has the strongest possible negative within-group correlations,
then it must be independent of the others.

Proposition 3 (Exclusion property for groups with minimal correlation).
Let T a GCS covariance matriz, and let y be a centered Gaussian vector
such that cov(y) = T. Let g be a group number, and denote by y, (resp.
y_g) the subvector extracted from'y whose coordinates are (resp. are not) in
group G,. Assume that W is such that Wg = 0. Theny, is independent of

Y-g-

The condition W, = 0 is linked to minimal correlations. Indeed, since
W, is positive semidefinite, W, > 0. The limit case W, = 0 is obtained when
negative terms of W are large enough to compensate positive ones. As an

example, if W, is a positive semidefinite CS covariance matrix with variance
. . . . _ . 71 Tr7 _
v, and minimal negative covariance ¢, = —(n, — 1)~ 'v,, then W, = 0.

3.4 Related works

The hierarchical model (17) shares similarities with two-way Bayesian mod-
els and linear mixed effect models (see e.g. Lindley and Smith [1972]), with
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Gaussian priors for the effects p and A;/. The centering constraints V =0
are also standard identifiability conditions in such models. Furthermore, the
particular case of CS covariance matrices corresponds to the exchangeable
assumption of the corresponding random variables. Typically, in the frame-
work of linear modelling, Model (17) could be written as

Ygu =M + Mg + )‘g,u + Eg.u)

with additionals grand mean m and errors €g,,.

However, if the framework is similar, the goal is different. In linear mod-
elling, the aim is to quantify the effects by estimating their posterior dis-
tribution (g, A)|y. On the other hand, we aim at investigating the form of
the covariance matrix of the response part py + Ay, or, equivalently, the
covariance matrix of the likelihood y|pg 4+ Ag/u-

3.5 Guideline for practical usage

The results of the previous sections show that valid GCS block covariance
matrices can be parameterized by a family of covariance matrices of smaller
sizes. It contains the case where diagonal blocks are CS covariance matrices.
The algorithm is summarized below.

1. Generate a covariance matrix B* of size G.

2. Forallg=1,...,G,
It ny =1, set W7 =0, else:

e Generate a covariance matrix M, of size ny — 1.
e Compute a centered matrix W} = Agl\/IgAgT, where A, is a ng4 by

ng — 1 matrix whose columns form an orthonormal basis of lig.

3. For all 1 < g < ¢’ < G, compute the within-group blocks W, and
between-group blocks B, , by Eq. (18).

In steps 1 and 2, the generator covariance matrices B* and M, can be
general, and obtained by one of the parameterizations of §2.2.2. A direct
application of Theorem 2 also shows that T is invertible if and only if B*
and the M,’s are invertible (cf. Appendix for details).

13



Furthermore, some specific form, such as CS matrices, can be chosen. De-
pending on the number of groups and their sizes, different levels of parsimony
can be obtained. Table 1 summarizes some possibilities.

Note that the parameterization is for a general covariance matrix, but
not for additional constraint, as for a correlation matrix. In these situations,
one can take advantage of the economic condition of Theorem 2: positive
semidefiniteness on T is always equivalent to positive semidefiniteness of the
small matrix T of size G. This can be handled more easily by non-linear or
semidefinite programming algorithms.

Parametric setting Resulting form of T Number of parameters
M, B* W, B,
U Ing—1 TP (vu,cu) | T (vg,¢9)  cgg = cu 2G +1
UxgIng—1 General | TS (v, ¢ ) Cqq' G(%Jrg)
General TS (v,,c,) General ¢4 4 =c, 2+ 25:1 W
General General General Cqq' @ + Zle M

Table 1: Parameterization details for some valid GCS block covariance ma-
trices T.

4 Example

Example 1

Counsider the deterministic function

x u
) = 7 a - _>
f(z,u) cos( T + p(u)m 50
with z € [0,1], w € {1,...,13} and p(u) = (0.4 4 %) L,>9. As visible in
Figure 1, there are two groups of curves corresponding to levels {1,...,9}
and {10, ...,13} with strong within-group correlations, and strong negative
between-group correlations.
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1.0

0.0 0.5

f(x,u)

-0.5
1

Figure 1: Test function of Example 1. Bullets represent design points.

We aim at reconstructing g with five GP models based on levels grouping.
The first one uses a CS covariance matrix, corresponding to a single group.
The second one considers the two groups {1,...,9} and {10,...,13}. The
third model, based on the five groups {1,...,9}, {10}, {11}, {12}, {13}, has
two variants: (a) when the inter-groups correlation is constant and (b) in
the general case. The fourth model uses the spherical parameterization of T,
leading to 13 groups, and the last one considers an ordinal paramaterization
for T. We also compare the result with an ordinal kernel obtained by map-
ping a piecewise linear cdf F' into the cosine kernel kz of Eq. 6 with a = 7.
(see Section 2.2.1). Notice that the choice of kz is motivated by recovering
negative correlations, and has no link with the sinusoidal form of the curves
of the example.

In order to benefit from the strong link between levels, we use a design
that spreads out the points between levels. For instance, the information
given by ¢(0,1) may be useful to estimate g(z,u) at 0 for a different level
u > 2, without computing ¢g(0,u). More precisely, we have used a (random)
sliced Latin hypercube design (SLHD) [Qian, 2012] with 3 points by level,
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Figure 2: Estimated correlation kernel k.., based on a representative design
of experiments (design with median Q?).

for a total budget of 39 points.

All parameters are estimated by maximum likelihood. As the likelihood
surface may be multimodal, we have launched several optimizations with
different starting points chosen at random in the domain.

Model accuracy is measured over a test set formed by a regular grid of size
1000, in terms of QQ? criterion. The (? criterion has a similar expression than
R?, but is computed on the test set:

Zi(yi - ﬂ)Q 7

where the y; denote the observations (on the test set), y their mean, ¥;
the predictions. It is negative if the model performs worst than the mean,
positive otherwise, and tends to 1 when predictions are close to true values.
Finally, the process is repeated 100 times, in order to assess the sensitivity
of the result to the design.

Q*=1- (20)
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Results. The estimated correlation parameters are shown in Figure 2. In-
formation about the plots used is given in a last section. The correlation
structure that can be intuited from Figure 1 is well recovered with two groups
and five groups, with different between-groups correlations. The model with
thirteen groups involves the estimation of 90 parameters, which is hard to
achieve, especially with 39 points. This is visible in the erratic values of the
estimated correlations values, which seem not meaningful. On the opposite,
considering only one group or five groups with a common between-group
correlation oversimplifies the correlation structure. Finally, the model using
an ordinal kernel recovers the two groups of curves, as well as the strong
negative correlation between them, which is made possible by the choice of
the 1-dimensional kernel used in the warping.

In Figure 3, we can see that the best tradeoff between prediction accuracy
and parsimony is obtained with two groups. whereas it reduces the number
of observations by group. Notice the rather good performance of the ordinal
model, at the cost of a larger number of parameters.

1.0-
D T $
0.8- : | d
Q% 06-

0.4- ’

1 gr'oup 2 grc')ups 5 grodps (@ 5 grou'ps (b) 13 grloups Ordinal

Figure 3: Q? of six GP models, based on 100 repetitions of the design.
From left to right: 1 group (CS structure), 2 groups, 5 groups (a : com-
mon between-group covariance), 5 groups (b : general), 13 groups, ordinal.
Number of parameters used (bloxplot order): 5, 7, 10, 19, 90, 16.
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Example 2

We now provide a second example, in order to illustrate the ability of the
hierarchical model (17) to deal with negative within-group correlations. We
consider the deterministic function given by:

(x4 0.01(x — 1/2)?) x u/10 ifu=1,2,3,4
flz,u) = € 0.9cos(2m(z + (u—4)/20)) x exp(—z) fu=5,6,7
—0.7cos(2m(z + (u — 7)/20)) X exp(—z) if u=28,9,10

with z € [0,1], w € {1,...,10}. As visible in Figure 4, the levels can be split
in two groups: a group of almost linear functions (levels 1 — 4), and a group
of damped sinusoidal functions (levels 5—10). Within the latter group, there
are strong negative correlations between levels 5 — 7 and 8 — 10. Hence, the
levels could also be split into three groups.

0.5

f(x,u)

0.0

Figure 4: Test function of Example 2. Bullets represent design points.

In this section, we briefly compare the corresponding GP models:

e The first model considers the two groups {1,...,4} and {5,...,10}.
The within-group structure is CS for the first group (linear functions).

18



But a general structure is chosen for the second one (sinusoids), in
order to capture its complex covariance structure.

e The second model is based on the three groups {1,...,4}, {5,...,7}
and {8,...,10}. The within-group structure is CS, and the between-
group covariance is general.

For simplicity, we consider a single stratified design of experiments extracted
from a sequence of regularly spaced points, with m = 3 points per level. The
other settings are the same as in Example 1.

The estimated correlation parameters are shown in Figure 5. The correla-
tion structure that can be intuited from Figure 4 is well recovered by the two
models. However, in the case of two groups, the estimated between-group
correlation is nearly zero. This is an illustration of the exclusion property
(Prop. 3). Indeed, due to the strong negative (estimated) correlations within
the second group, we have W, & 0, which induces a small correlation between
the other group. In this example, the model with three groups may be more
appropriate, which seems confirmed by the larger Q? value of 0.94 (compared
to 0.88 for two groups). Nevertheless, it is nice to see that, starting from a
smaller number of groups, the correlation plot detects the two subgroups of
sinusoids.

/0080 00
o 00 T 4 4
00. 0 . L4 4
000 . T4 4 V4
/7 NN\ /@ PNNN\| ||
/ONN\\||, & FNN\\||
QNN #0 N\\|
N\ /0. N\NN\\"//\.
N\\&/ /1. N\N\\/ /1.
\\W// 1. N\\\// 1.
2 groups 3 groups

Figure 5: Estimated correlation kernel k.,; for the two GP models.
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Discussion

It is remarkable that complex correlation structures can be recovered with
few data points per level. Indeed, even if the correlation structure can be
intuited from the whole curves f(z,u), this complete information is of course
not available, and the estimation is done with only three points per level in
the previous examples. The reasons may be twofold. Firstly, the model is
parametric, which may provide more accurate estimation for few data, pro-
vided that the model is relevant (in particular if the correct groups are given).
Secondly, the global amount of information available may be large enough,
since the small number of points per levels is compensated by the quite large
number of levels. Consequently, when there are few levels, one may need to
increase the number of points per level in order to reach an acceptable level
of accuracy.

The sinusoidal form of the toy functions x — f(z,u) has been chosen to
illustrate the power of GP models in modelling complex functions. Other
complex forms could have been used. An alternative would have been to
use sample paths of GP models with group kernels rather than deterministic
functions. Finally, notice that correlation plots may be used with care in
general, since they do not account for estimation error on correlations.

5 Application in nuclear engineering

5.1 Position of the problem

As presented in Introduction, this research is originally motivated by the solv-
ing of an inverse problem confronting experimental measurements in nuclear
engineering and time-consuming numerical simulation. More precisely, this
analysis concerns the identification of the mass m of 2*Pu that is present in
a particular waste container using a non-destructive nuclear detection tech-
nique such as the gamma spectrometry [Knoll, 2010]. In that case, at each
energy level F,

m X e(E;E) = ySG(E), (21)

where 459(E) is the quantity of interest provided by the gamma transmitter,
and €(E; £) is the attenuation coefficient, which depends on the source envi-
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ronment denoted by £. In practice, only discrete values of E are of interest,
corresponding to the natural energy levels of 29Pu:

E € {94.66,129.3,203.6,345.0,375.1,413.7} (keV). (22)

Then, based on previous studies [Guillot, 2015], the real source environ-
ment is parameterized by the following input variables:

e An equivalent geometric shape for the nuclear waste: sphere (‘sph’),
cylinder (‘cyl’) or parallelepiped (‘par’).

e An equivalent material for this waste, characterized by its chemical
element with atomic number in {1, ..., 94},

e The bulk density of the waste, in [0, 1],

e The distance of measurement between the container and the measure-
ment device, in [80,140] (cm),

e The mean width and lateral surfaces (in logarithmic scale) crossed by
a gamma ray during the rotation of the object.

After normalization, the characteristics of the input space can be summed
up in Table 2.

Name of the input Variation domain

Distance [0,1]
Density 0,1]
Width 0,1]
Surface [0,1]
Energy {1,2,3,4,5,6}
Shape {sph, cyl, par}

Chemical element {1,...,94}

Table 2: Description of the input variables for the nuclear application.

To recapture the notation of the previous sections, let x and u be the
vectors gathering respectively the continuous and categorical inputs, and
w = (x,u). For a given value of w, Monte Carlo simulation codes as MCNP
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[Goorley et al., 2013] can be used to model the measured scene and approach
the value of e(w) = €(E, ). The mass m can eventually be searched as the
solution of the following optimization problem:

(m*, ") = argmin [y — m x e(w)]| (23
where || - || is the classical Euclidian norm, e(w) and y°" respectively gather
the values of € and 3¢ at the six values of E that are used for the mea-
surements. To solve (23), it is therefore necessary to compute € at a high
number of points. However, each evaluation of the MCNP code can be ex-
tremely demanding (between several minutes to several hours CPU for one
evaluation). Thus, surrogate models have to be introduced to emulate the
function w — ¢(w), which is now investigated in the frame of Gaussian pro-
cess regression. We refer to Clement et al. [2018] for the second step, namely
the treatment of the inversion problem.

5.2 Model settings

For pedagogical purpose, a dataset of large size N = 5076 has been computed
with the MNCP code. The construction of the design of experiments was
guided by the categorical inputs, such that each of the 6 x 3 x 94 = N/3
combinations of levels appears 3 times. It was completed by a Latin hyper-
cube of size N to define the values of the four continuous inputs.

From this full dataset, a training set of size n = 3 x 94 = 282 is extracted
by selecting at random 3 observations by chemical element. The remaining
N — n points serve as test set.

-12- -12- ‘
-14- -14-
Y

-16- -16-

El E2 E3 E4 E5 E6 Sph Cyl Par

Figure 6: Y in function of the energy (left) and geometric shape (right).
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Model settings are now motivated by a graphical analysis. In Figure 6,

the output is displayed in function of the energy and the geometric shape.
We observe that successive energy levels correspond to close values. This fact
confirms that the energy is ordinal and we use the warped kernel defined by
Eq. (5). The influence of the geometric shape is less obvious, and we have
chosen an exchangeable (CS) covariance structure for it.
In Figure 7, Y is displayed in function of the 94 chemical elements, ordered by
atomic number. Two important facts are the high number of levels and het-
eroscedasticity. For this purpose, the 94 chemical elements are divided into 5
groups, provided by expert knowledge and represented by colors. This parti-
tion suggests to use a group kernel of the form (11), where the within-group
blocks W, are CS covariance matrices. In order to handle heteroscedasticity,
the variance of W, is assumed to depend on the group number g.

-12- =
-14 % et
_161

i 10 20 36 61 94

Figure 7: Y in function of chemical elements, ordered by atomic number.

The influence of continuous variables can be observed by panels (not
represented), and does not reveal useful information for our purpose. A
Matérn 5/2 kernel is set for all continuous inputs, as we expect the output
to be a regular function of the continuous inputs. Indeed, for this kernel, the
corresponding Gaussian process is two times mean-square differentiable.
Finally, three candidate kernels for w are obtained by combining the kernels
of input variables defined above, by sum, product or ANOVA (see Section 2).

5.3 Results

Following the model settings detailed above, Figure 8, Panel 3, presents the
results obtained with 60 random designs of size n and three operations on ker-
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nels. Furthermore, we have implemented three other kernels for the chemical
element, in order to compare other model choices for this categorical input.
In the first panel, we grouped all the 94 levels in a single group. In the second
one, we kept the 5-group kernel but forced the between-group covariances to
have a common value. Finally, in the fourth panel, we considered that the
levels were ordered by their atomic number, and used the warped kernel of
Eq. (5) with a Normal transform.

CS Groups (a) Groups (b) Ordinal

+ =

1.00-

0.95- %l I$I == T
Q? 0.85: |%| |$| s

T : T
TR = $

0.75-

Figure 8: Q? of several GP models, based on 60 random designs, correspond-
ing to different model choices for the chemical element. First panel: Single
group. Second panel: 5 groups, with a common between-group covariance.
Third panel: 5 groups. Fourth panel: Ordered levels. For each panel, three
combinations of kernel are tested: sum (S), product (P) or ANOVA (A).
Total number of parameters used (panel order): ‘prod’ = (12, 21, 30, 14),
‘sum’ = ‘prod’ + 6, ‘anova’ = ‘prod’ + 7.

First, comparing the three operations on kernels, we remark that in all
the panels, additive kernels provide the worst results. This suggests the ex-
istence of interactions between different inputs of the simulator. Second, the
ANOVA combination produces slight improvements, compared to the stan-
dard tensor-product, both in terms of accuracy and stability with respect to
design choice.

Now, comparing the four panels, we see that gathering the levels in a sin-
gle group is the least efficient strategy. The 5-group kernel gives very good
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5 groups (a) 5 groups (b)

Figure 9: Estimated correlation kernel for the chemical element, with a com-
mon between-group covariance parameter (left) or different ones (right).

performances, especially when the between-group covariances vary freely:
constraining them to be equal degrades the result. Surprisingly here, the
ordinal kernel gives the best performance. Indeed, for this application it was
not intuitive to the experts that the chemical element can be viewed as an
ordinal variable, simply sorted by its atomic number. This is confirmed by
the correlation plots of Figure 9, corresponding to a model with a median
Q? score. We can see that the estimated correlations between levels seems
to decrease as the difference between levels increases, an indication that the
levels may be ordered by their atomic number.

Finally, we report several post-processing results. First, the estimated trans-
formation of energy levels (Figure 10, left) is concave and flat near high
values, which corresponds to the behaviour observed in Figure 6 (left panel).
In addition, the last three levels lead to similar results (Figure 10, right).
This corresponds to the fact that when the energy is high, the gamma ray
almost always crosses the nuclear waste, leading to a high value for the out-
put. Second, the estimated correlation among the sphere, the cylinder and
the parallelepiped is very high (¢ = 0.9, Figure 11). This justifies consider-
ing a covariance structure for that categorical input, rather than using three
independent GP models for all the three levels.
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Figure 10: Estimated correlation kernel for the energy: estimated warping
F (left) and correlation structure (right).
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Figure 11: Estimated correlation kernel for the geometric shape.

6 Conclusion

In the framework of GP regression with both continuous and categorical in-
puts, we focus on problems where categorical inputs may have a potentially
large number of levels L, partitioned in G < L groups of various sizes. We
provide new results about parsimonious block covariance matrices, defined
by a few within- and between-group covariance parameters.

We revisit a two-way nested Bayesian linear model, where the response
term is defined as a sum of a group effect and a level effect. We obtain a
flexible parameterization of block covariance matrices which automatically
satisfy the positive definiteness conditions. As a particular case, we recover
situations where the within-group covariance structures are compound sym-
metry, with possible negative correlations. Furthermore, we show that the
positive definiteness of a given block covariance matrix can be checked by
verifying that the small matrix of size G obtained by averaging each block

26



is positive definite. This criterion can be useful if the proposed block matrix
has a desirable constraint, such as homoscedasticity, which is not directly
handled by the proposed parameterization.

We apply these findings on several toy functions as well as an application
in nuclear engineering, with 4 continuous inputs, 3 categorical inputs, one
of them having 94 levels corresponding to chemical numbers in Mendeleev’s
table. In this application, 5 groups were defined by experts. The results,
measured in terms of prediction accuracy, outperform those obtained with
simpler assumptions, such as gathering all levels into a single group. It is
gratifying that our nominal method performs almost as well as using the
appropriate order with a warped kernel.

There are several perspectives for this work. First, one future direction
is to find a data-driven technique to recover groups of levels, made more
difficult when a small number of observations is available. Similarly, if there
is an order between levels, can we infer it from the data? Second, the trend of
the GP models with mixed continuous and categorical inputs could be made
more complex, in the same vein as works on GP models with continuous
inputs.
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Appendix

Proof of Proposition 1. The vector (A, A1 +---+ Ar) is a centered Gaussian
vector with covariance matrix

IL ]-L

Hence the conditional distribution of A knowing A = 0 is a centered Gaussian
vector with covariance matrix

coviIA | A =0) = o[l — 1,L711] ] = oI — L7J;].
Then, by using the independence between i and the \,’s, we deduce

covin| A =0) = v+ oI — L1J;)
= U)\IL + [UH — Lil?))\]JL.

We recognize the CS covariance matrix T'¢® (v, ¢) with v = v, + (1 — L™1)vy,
and ¢ = v, — L™'uy. As a covariance matrix, it is positive semidefinite.
Furthemore, we have ¢ < v and ¢+ (L — 1) v = v,[14+ (L —1)7'] > 0, and
the conditions of positive definiteness (14) are satisfied.

Conversely, let C be a positive definite CS matrix T'¢S (v, ¢). Then we have
—(L—1)"" < ¢ < v, and we can define v, = L™ [v+(L—1)c] and vy = v—c.
From the direct sense, we then obtain that the covariance matrix of n| X = 0
is T'9S (v, ¢) = C. O

Proof of Proposition 2. The first part of the proposition is obtained by re-
marking that if W* = cov(z), then W* = var(z). Thus, assuming that z is
centered, W* = 0 is equivalent to z = 0 with probability 1.

For the second part, notice that Z = 0 means that z is orthogonal to 1;.
Thus, one can write the expansion of z in the orthonormal basis 17 defined
by A. Denoting by t the (L — 1)-vector of coordinates, we have z = At.
This gives W* = cov(At) = A cov(t)A T, and (16) follows with M = cov(t).
To prove unicity, observe that, by definition, ATA =1;_;,AT1; = 0. Start-
ing from W* = AMAT, and multiplying by A" on the left and by A on the
right, we get M = ATW*A | showing that M is unique.

Now, let W* = o[l — L™1J]. Since J;, = 1,1], we obtain

M=A"TW*A =v[ATA - L' (AT1)(1[A)] = vI;_,.
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As a by-product, notice that resubstituting M into W* = AMAT gives
AAT = I, — L_IJL.

Finally, if z ~ A(0,vIy), then the properties of conditional Gaussian vectors
lead immediately to cov(z|z = 0) = W*. O

Proof of Theorem 1. The expressions of W, and B, are obtained directly
by using the independence assumptions about g and the A’s. Notice that
W7, the covariance matrix of Ay, knowing V = 0, is centered by Proposi-
tion 2. This gives W, — WQJ ng = Wy, which is positive semidefinite. Hence
T is a GCS block matrix. B

Conversely, let T be a positive semidefinite GCS block matrix. Let T
be the matrix obtained from T by averaging each block. Then T is also a
positive semidefinite matrix. Indeed, since T is positive semidefinite, it is the
covariance matrix of some vector z. Then T is the covariance matrix of z,
the vector obtained from z by averaging by group: z, = n_* ZueGq Zy. Thus

9
there exists a centered Gaussian vector (p,)1<4<p Whose covariance matrix is

B*=T.
Now, for g = 1,..., G, define
W: =W, - B J, =W, — Wyd, .

Observe that Wg* = 0, and by assumption W7 is positive semidefinite. Hence,
from Proposition 2, there exists a centered Gaussian vector (Ay/;)1<u<n, such
that

W; = COV()\g/.’)\g/. = 0).
We can assume that Aj/,...,Ag/. are independent, and g and X are inde-
pendent. Finally, we set g/, = py + Ag/u. By the direct sense and (18), we

obtain that T is the covariance matrix of 1 conditional on {V =0,g9 =
1,...,G}. O]

Proof of Corollary 1. Let T be a positive semidefinite GCS block matrix with
CS diagonal blocks. Then the diagonal CS matrices are positive semidefinite,
leading to vy — ¢4 > 0. Thus,

W, —WQJ% = (vg — ¢g) (I, — ng_lJng)

is a positive semidefinite CS matrix. Hence, by Theorem 1, T is obtained
from Model (17), with cov(Ag/.|Ag. = 0) = (vy — ¢g)(In, — n,'Jy,). By
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Prop. 2 (last part), we can choose Wi =, 1, with vy, = v, — ¢, > 0.
Conversely, if W} = vy 1,,,, then by Prop. 2, W = cov(Ay/ [Ny = 0) is a
CS covariance matrix. The result follows by Theorem 1. O]

Proof of Theorem 2. First observe that Eq. (19) is straightforward.

The direct sense of (i) has already been derived in the proof of Prop. 1: T is
the covariance matrix of z. B

Conversely, inspecting that proof, we see that if T is positive semidefinite,
then T admits the representation (17). Thus T is a covariance matrix, and
positive semidefinite. This can be also proved from Eq. (19): the two terms
of the right-hand side are positive semidefinite, thus so is their sum.

Now consider (ii). If T is positive definite, then its diagonal blocks W,
are all positive definite. Furthermore, by (i), T is positive semidefinite. It if
were singular, there would exist a non-zero vector « such that 4"z = 0 with
probability 1. This gives a non-trivial linear combination of z which is equal
to zero, and T would not be positive definite. Thus T is positive definite.

Conversely, let us assume that T and all W’s are positive definite. We
will need the following Lemma:

Lemma 1. Let F be a centered covariance matrix of size n, with rank n — 1.
If for some vector B, we have B'FB3 =0, then 3 is a constant vector.

Proof. A symmetric square root L with L? = F has also rank n—1, hence the
nullspace of L is one-dimensional. Since F is centered, we have 1, F1, = 0.
Thus L1,, = 0. Similarly, L3 = 0. The result follows. m

Now, let 3 be a vector of length Zg n, such that 3" TB = 0. Eq. (19) gives
B'TB=U+V

where U and V are obtained from each term in (19) by left-multiplying by
B" and right-multiplying by 3. Since U and V are non-negative, we must
have U =V = 0.

e VV = 0 implies that all subvectors 3, corresponding to groups g verify
BgT (W,—W,J ny)Bg = 0. This implies that they are all constant vectors.
Indeed, since (by assumption) W, has rang n, and Wang has rank 1,
the centered matrix Fy := W, — Wang must have rank n, — 1, and
the result is given by the lemma.
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e U = 0 gives X' = 0 by positive definiteness of T. Now, X3 is a
vector of length G whose component ¢ is the sum of 3, coefficients.

Gathering the conclusions of the two items gives 3 = 0. Finally T is positive
definite.

Remark. Notice that for (ii) we needed to add the condition that W is
positive definite for all g = 1, ..., G. However, adding an equivalent condition
for (i), namely that W, is positive semidefinite, was not necessary. Indeed,
it is a consequence of the fact that W, — WQJ n, 18 positive semidefinite and

that T is positive semidefinite, which implies T , = Wg > 0. O]

Proof of Proposition 3. By assumption, fg,g = Wg = (0. Now by Theorem 2,
T is positive semidefinite. As its diagonal term T}, is zero, it implies that

all the terms on the same row are zero. Hence for all ¢ # g : T, 4 = 0.
As T is a GCS covariance matrix, its off-diagonal blocks are constant, and
thus, T, y = T, 4 = 0, which proves that y, and y_, are non correlated. The
result follows by Gaussianity of y. O]

Proof of the assertion of Section 5.5. We claim that T is invertible iff B*
and all the M,’s are invertible. Indeed, from Theorem 2, T is invertible iff

T and all the W,’s are invertible. Now, from Theorem 1, T= B*, and
W, =B, ,Jn, + AM,A ],

where A, is a ng by ny — 1 matrix whose colums vectors are an orthonormal
basis of ltg. Left multiplying by A; and right multiplying by A,, and
remarking that J,, = 1,,1, , we obtain: AjW A, = M. It is now clear

that W, is invertible iff Mg is. OJ
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