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Introduction

A class of distributed parameter systems including the shallow water equations as an important application is considered in this paper. There exists a large literature dealing with nonlinear equations, as those developing the analysis of characteristic curves or Lyapunov methods, see [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF] for a recent textbook on this subject. In the present paper, the system is described by a linear hyperbolic partial differential equation (PDE) which is assumed to be nonhomogeneous with a control acting on the boundary. This control problem arises in many different contexts such as gas transport [START_REF] Gugat | Gas flow in fan-shaped networks: classical solutions and feedback stabilization[END_REF], traffic control [START_REF] Garavello | Traffic flow on networks[END_REF] or flow dynamics in open-channels [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF]. For these kinds of infinite dimensional systems, many different techniques are available, such as an analysis of the time evolution of the characteristic curves (as done in e.g., [START_REF] Li | Global classical solutions for quasilinear hyperbolic systems[END_REF][START_REF] Prieur | Robust boundary control of systems of conservation laws[END_REF]), Lyapunov methods (see e.g. [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments[END_REF][START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF]) and abstract theory for linear systems (as considered in [START_REF] Phillips | Dissipative operators and hyperbolic systems of partial differential equations[END_REF][START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF][START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]). In this paper, we will develop some semigroup techniques for a control problem of a system of balance laws with an application to the dynamics of flow and sediments in an open channel, as considered in [START_REF] Diagne | Backstepping stabilization of the linearized Saint-Venant-Exner model[END_REF] where an exponentially stabilizing output feedback controller is computed, using a backstepping design. With respect to this recent reference, a fully different method is suggested, since we first solve a general boundary control problem, and then apply its solution to the particular linear hyperbolic system obtained by linearizing the Saint-Venant-Exner equation around a given equilibrium.

First the control problem is shown to be well-posed as a boundary control system in the sense of the book [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]. In particular, it is shown that the dynamics operator is the infinitesimal generator of a strongly continuous (C 0 ) semigroup of bounded linear operators, which is (exponentially) stable and that the unbounded control operator defining the boundary control action is admissible for this semigroup. Next the stability analysis is performed exploiting some sufficient conditions dealing with the source term of the hyperbolic PDE and with matrix inequalities combining the velocities matrix and the boundary conditions. The advantage of these conditions reside in the fact that they can be rewritten in a numerically tractable form allowing an optimization of the unknown variables. More precisely checking the assumptions of the main result is shown to be equivalent to solving Linear Matrix Inequalities (LMI's) which are numerically tractable conditions (see Remark 1 below just before the first main result, namely Theorem 1). Moreover the obtained sufficient condition is linked with classical Lyapunov function based sufficient conditions for stability analysis and boundary stabilization (as done in particular in [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF]).

The obtained sufficient exponential stability condition is used to design output feedback boundary controllers for hyperbolic systems of balance laws. Other techniques are available for the design of boundary controllers, as the backstepping techniques (see [START_REF] Vazquez | Boundary control of coupled reaction-advection-diffusion systems with spatially-varying coefficients[END_REF] and references therein). The design method is shown to be numeri-cally tractable and it is applied on the linearization of the Saint-Venant-Exner equation at an equilibrium. Using numerical values that are already considered in the literature [START_REF] Hudson | Formulations for numerically approximating hyperbolic systems governing sediment transport[END_REF][START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF][START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF] in a physical sense, we show how to solve our numerically tractable conditions and how to compute a stabilizing output feedback boundary controller. A numerical simulation is also performed to illustrate the obtained exponential stability by means of time-evolution of the three components of the state.

The paper is organized as follows. In Section 2 the model is introduced and some preliminary computations are performed. Section 3 contains the main results on the well-posedness of the control problem and on a sufficient condition for the stability of the open-loop system. Section 4 contains an application in hydraulics. The results are illustrated and some simulations are performed. Section 5 collects concluding remarks and points out some possible research lines.

Description and analysis of the model

Let us consider a distributed parameter system that is described by the following linear partial differential equation (PDE) model:

ξ t + Λξ x = M ξ , x ∈ (0, 1), t ≥ 0 , (1) 
where Λ is a constant diagonal matrix in R n×n of the following form Λ = Λ + 0 0 -Λ - , where

Λ + = diag(λ i ) m i=1 ∈ R m×m and Λ -= diag(-λ i ) n i=m+1 ∈ R (n-m)×(n-m) are positive defi- nite, i.e. λ i > 0 for i = 1, • • • , m and λ i < 0 for i = m + 1, • • • , n, where M is a constant matrix in R n×n and ξ = ξ(x, t) = ξ + (x, t) ξ -(x, t) where ξ + ∈ R m and ξ -∈ R n-m (2) 
stands for the state. This model is complemented by the boundary condition:

ξ + (0, t) ξ -(1, t) = K ξ + (1, t) ξ -(0, t) + N u(t) , (3) 
where K is a constant matrix in R n×n of the following

form K = 0 K 0 K 1 0 , where K 0 ∈ R m×(n-m) and K 1 ∈ R (n-m)×m and N is a full rank matrix in R n×p of the following form N = [N 0 N 1 ] , where p ≤ n, N 0 ∈ R m×p , N 1 ∈ R (n-m
)×p and u(t) ∈ R p is the control at time t ≥ 0, to be designed.

With a view to studying the well-posedness of system (1)-( 3), let us introduce the following operator:

Lξ = -Λξ + M ξ ,
where stands for the space derivative. Consider also the complex Hilbert spaces Z = H 1 ((0, 1); C n ) and X = L 2 ((0, 1); C n ). Recall that Z ⊂ X with continuous embedding. Observe that L is a bounded linear operator from Z to X, i.e. L ∈ L(Z, X). In addition, consider the time-invariant operator G ∈ L(Z, C n ) given by, for all ξ ∈ Z,

Gξ = ξ + (0) ξ - (1) 
-K ξ + (1) ξ -(0)
and the Hilbert subspace X 1 of Z which is defined by

X 1 := ker G = ξ ∈ Z : ξ + (0) ξ -(1) = K ξ + (1) ξ -(0)
.

Finally, in the analysis below, we will also need the restriction of the operator L to X 1 , denoted by A:

A := L |X1 . (4) 
Observe that A ∈ L(X 1 , X).

Preliminary remark: The stationary solution of the PDE (1) with initial condition ξ(0), i.e. the solution of the ordinary differential equation

-Λ dξ dx + M ξ = 0 , x ∈ [0, 1] (5) 
is given by ξ(x) = exp(Λ -1 M x) ξ(0), for all x in [0, 1]. With this computation in mind, we may rewrite the boundary condition [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF]. To be more specific, given c =

c + c - in C n , the boundary condition ξ + (0) ξ - (1) 
-K ξ + (1) ξ -(0) = c (6) 
is satisfied if and only if

ξ + (0) (exp(Λ -1 M ) ξ(0)) - - 0 K 0 K 1 0 (exp(Λ -1 M ) ξ(0)) + ξ -(0) = c + c - ,
or equivalently

I m -K 0 [-K 1 I n-m ] • exp(Λ -1 M ) • ξ(0) = c .
In order that the initial state ξ(0) be uniquely determined by the latter equation, i.e. in order to convert the two-point boundary value problem ( 5)-( 6) into a Cauchy problem, the following auxiliary result is useful, resulting from a direct application of Schur complement:

Lemma 1 The matrix

I m -K 0 [-K 1 I n-m ] • exp(Λ -1 M )
is invertible [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF] if and only if so is the matrix

-K 1 I n-m • exp(Λ -1 M ) • K 0 I m . ( 8 
)
3 Well-posedness and stabilization

Well-posedness

As an intermediary step towards the well-posedness property, let us consider the following auxiliary boundary condition:

ξ + (0, t) ξ -(1, t) = K ξ + (1, t) ξ -(0, t) + Ñ ũ(t) , (9) 
where the matrix Ñ := [N V ] ∈ R n×n and the submatrix V ∈ R n×(n-m) is chosen such that Ñ is nonsingular and where ũ(t) ∈ R n is an auxiliary input. The wellposedness of the control problem is solved in the next proposition.

Proposition 1 If the matrix given by ( 8) is invertible, then the system described by the PDE (1) with the boundary condition ( 9) is a boundary control system, in the sense of [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Chap. 10], which is described by the pair of operators (L, G), where G := Ñ -1 G, or equivalently by the abstract differential equation ξ t = Lξ with Gξ = ũ.

Proof. First observe that without loss of generality Ñ is the identity matrix, whence G = G. Now recall that L ∈ L(Z, X) and observe that G ∈ L(Z, C n ). Moreover these operators satisfy the properties characterizing a boundary control system (see [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF]Definition 10.1.1] where the constant β is set to zero). Indeed: a) By Lemma 1, thanks to invertibility of the matrix in [START_REF] Diagne | Backstepping stabilization of the linearized Saint-Venant-Exner model[END_REF], for every c in C n the equation Gξ = c admits a (unique) solution ξ ∈ Z. It follows that G is onto.

b) It follows also from condition [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF] that the operator L restricted to X 1 = ker G is onto, since for every f ∈ X, the equation Lξ = f, ξ ∈ X 1 is equivalent to an ordinary differential equation having a solution ξ which is uniquely determined by ξ(0) and f . c) Moreover ker L ∩ ker G = {0} (this follows from the arguments used in the previous item with f = 0).

d) Finally, X 1 = ker G is dense in X, since it con- tains a dense subspace of X = L 2 ((0, 1); C n ), namely H 1 0 ((0, 1); C n ).
To get that the PDE (1) with the boundary condition ( 3) is well-posed, recalling the definition (4) of A, it remains to check that the control operator defined in the boundary condition (3) defines an operator B which is an admissible control operator (following the terminology of [25, Definition 10.1.1]). To do that, let us first compute B . For all z in Z and for all Ψ in 

D(B ), it holds Lz, Ψ -z, A Ψ = Gz, N B Ψ . Thus z(0) -Kz(1), N B Ψ = -Λz + M z, Ψ -z, ΛΨ + M Ψ = -Λz , Ψ -z, ΛΨ + M z, Ψ -z, M Ψ = -Λz(1), Ψ(1) + Λz(0), Ψ(0) = Kz(1), KΛΨ(0) + z(0), ΛΨ (0) 

Stability analysis

In the sequel, it will be assumed that the following two conditions hold and it will be shown that they ensure the stability of the boundary control system introduced in Proposition 1 above. Each of these conditions is twofold, involving a "primal" condition on (the parameters defining) the operator A and a "dual" condition on the adjoint operator A * . It turns out that the two parts of each of these conditions are actually equivalent: see Remark 1c below.

Assumption 1 There exists a diagonal positive definite matrix P in R n×n such that

P M + M * P ≤ 0 , (10) 
where M * := M denotes the Hermitian conjugate of the matrix M , and equivalently there exists a diagonal positive definite matrix Q in R n×n such that

QM * + M Q ≤ 0 . ( 11 
)
Assumption 2 The matrices Λ and K are such that

(|Λ|P ) 1/2 K (|Λ|P ) -1/2 < 1 ( 12 
)
and

Q|Λ| -1 -1/2 K Q|Λ| -1 1/2 0 I m I n-m 0 < 1 , (13) 
where P is a diagonal positive definite matrix which satisfies inequality [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments[END_REF], Q is a diagonal positive definite matrix which satisfies inequality [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF], . denotes the matrix norm induced by the usual euclidean vector norm, |M| denotes the absolute value of the matrix M, i.e. its entries are the absolute values of those of M and, in par-

ticular, |Λ| = Λ + 0 0 Λ - .
Remark 1 a) Conditions ( 12) and ( 13) are trivially satisfied whenever the boundary feedback gain matrix K is the null matrix. However this choice is clearly not always feasible in applications: this is the case notably for the application that is studied in Section 4.

b) In Assumption 1, the existence of a diagonal positive definite matrix P satisfying inequality ( 10) is guaranteed whenever the matrix M is Lyapunov stable with entries having the same sign. This is the case for the application that is studied in Section 4. In addition, the matrix Q satisfying inequality [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF] can be selected to be Q = P -1 . However (many) other choices are possible. See also Section 4.

c) Conditions ( 10) and ( 12) are equivalent to the following one:

ρ(K) := inf D∈D (|Λ|D) 1/2 K (|Λ|D) -1/2 < 1 , ( 14 
)
where D is the set of all diagonal positive definite matrices D such that DM + M * D ≤ 0. This condition is exactly the same as the one that is used in [7, Theorem 2, p.111] and that is obtained by means of a Lyapunov function. Similarly, conditions [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF] and ( 13) are equivalent to ρ(K) := inf

D∈ D D|Λ| -1 -1/2 K D|Λ| -1 1/2 0 I m I n-m 0 < 1 , ( 15 
)
where D is the set of all diagonal positive definite matrices D such that DM * + M D ≤ 0.

Conditions ( 14) and ( 15) can be seen as sub-optimization problems, that can be solved numerically for D and D, with a given fixed gain K, by using algorithmic methods for the resolution of LMIs (as introduced e.g. in [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF][START_REF] Scherer | Linear matrix inequalities in control[END_REF]).

As shown in the proof of the next theorem, these conditions can be stated under the form of LMI's. More precisely, condition ( 12) is equivalent to

K|Λ| -1 W K * < |Λ| -1 W , (16) 
where W = P -1 , and condition ( 13) is equivalent to

KQ|Λ| -1 K * < Q|Λ| -1 . (17) 
From the previous discussion, one may conclude that the existence of a diagonal positive definite matrix P such that conditions [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments[END_REF] and ( 16) hold is equivalent to the existence of a diagonal positive definite matrix Q such that conditions [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF] and ( 17) hold. In other words, Assumptions 1 and 2 are equivalent to any of the following assumptions.

Assumption 3 There exists a diagonal positive definite matrix P such that (10) and ( 16) hold.

Assumption 4 There exists a diagonal positive definite matrix Q such that ( 11) and ( 17) hold.

Note that computing diagonal positive definite matrices P and Q, such that Assumptions 3 or 4 hold, are two convex conditions in the unknown variables P and Q which can be solved e.g. on Matlab using YALMIP [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF]. This convex problem in solved when designing a stabilizing feedback in Section 4.3 below.

Theorem 1 If the matrix in ( 8) is invertible and under Assumption 3 (or equivalently under Assumption 4), the operator A generates an exponentially stable C 0semigroup T (t) of bounded linear operators on X, and there exists ν > 0 such that, for all t ≥ 0, T (t) ≤ exp(-νt).

Before proving Theorem 1, let us connect this result with [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF] as done in the following remark. . Therefore we recover the stability conditions of A using a completely different approach (namely a dissipativity approach versus a Lyapunov function approach in [START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF]), which generalizes the conditions of [START_REF] Russell | Controllability and stabilizability theory for linear partial differential equations: recent progress and open questions[END_REF]Section 3].

Proof. The proof of Theorem 1 is split into 4 steps.

1) Closedness of the operator A.

First observe that, by the proof of Proposition 1, the linear operator A, whose domain is X 1 = ker G, is densely defined on X, onto and invertible with a bounded linear inverse A -1 , which is given for every f ∈ X by

A -1 f = exp(Λ -1 M x) I m -K 0 [-K 1 I n-m ] • exp(Λ -1 M ) -1 0 I(1) --K 1 I(1) + -I(x) (18) 
where

I(x) = x 0 exp(Λ -1 M (x -z))Λ -1 f (z)dz , (19) 
i.e. 0 is in the resolvent set ρ(A) of A. It follows by [ 

2) Adjoint A of the operator A

The adjoint A is given for all ψ in its domain

D(A ) = ψ ∈ Z : K * |Λ| ψ + (0) ψ -(1) = |Λ| ψ + (1) ψ -(0) , ( 20 
) by A ψ = Λψ + M * ψ . (21) 
Indeed, it suffices to observe that the usual pairing identity A ψ, z = ψ, Az holds for all z ∈ D(A) and for all ψ ∈ D(A ). To check this, let us consider the operator A given by ( 21) on its domain [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF] and observe that, for all z ∈ D(A) and for all ψ ∈ D(A ),

A ψ, z = 1 0 ψ Λ zdx + 1 0 (M ψ) zdx = 1 0 ψ + Λ + z + dx - 1 0 ψ -Λ -z -dx + 1 0 ψ M zdx = - 1 0 ψ + Λ + z + dx + ψ + Λ + z + 1 0 + 1 0 ψ -Λ -z -dx -ψ -Λ -z - 1 0 + 1 0 ψ M zdx (22) 
where an integration by part has been performed in the first two integrals. Now, using the definitions of D(A ) and K, we get, for all ψ ∈ D(A ),

0 K 1 K 0 0 Λ + ψ + (0) Λ -ψ -(1) = Λ + ψ + (1) Λ -ψ -(0)
, which is equivalent to

K 1 Λ -ψ - (1) 
K 0 Λ + ψ + (0) = Λ + ψ + (1) Λ -ψ -(0) . ( 23 
)
Combining the boundary conditions ( 23) with ( 22) and the definitions of A and its domain D(A) yields the following identity, for all z ∈ D(A) and for all ψ ∈ D(A ):

A ψ, z = ψ, Az + ψ + (1)Λ + z + (1) -ψ + (0)Λ + K 0 z -(0) -ψ + (1)Λ + z + (1) +ψ + (0)Λ + K 0 z -(0) = ψ, Az .
Thus the adjoint of A is given by ( 20) and ( 21).

In addition, let us now check that it follows from Assumptions 1 and 2, i.e. from the inequalities ( 10), ( 11), ( 12) and [START_REF] Graf | Hydraulics of sediment transport[END_REF], that (i) there exists ν 1 > 0, such that, for all z in X 1 , Az, P z ≤ -ν 1 |z| 2 X , hence the operator A is dissipative, and (ii) the operator A is also dissipative, such that there exists ν 2 > 0 satisfying, for all ψ in D(A ), A ψ, Qψ ≤ -ν 2 |ψ| 2 X .

3) Dissipativity of the operator A

In order to check the fact (i), note that, for all z in X 1 ,

Az, P z = 1 0 -(Λz ) P zdx + 1 0 (M z) P zdx ≤ 1 0 -z ΛP zdx ,
where [START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF] from Assumption 1 has been used. Observe that, thanks to the fact that the matrices Λ and P are diagonal, ΛP = P Λ and

d dx (z ΛP z) = 2z ΛP z. It fol- lows that Az, P z ≤ - 1 2 z ΛP z| 1 0 ≤ - 1 2 z + (1)Λ + P + z + (1)-z * -(1)Λ -P -z -(1) -z * + (0)Λ + P + z + (0)+z * -(0)Λ -P -z -(0) .
By using the definition of D(A), we obtain that, for all

z in D(A), z + (0) = K 0 z -(0) and z -(1) = K 1 z + (1)
. By plugging these boundary conditions in the second and third terms of the right-hand side of the inequality above, we get

Az, P z ≤ - 1 2 z + (1)Λ + P + z + (1) -z + (1)K * 1 Λ -P -K 1 z + (1) -z -(0) * K * 0 Λ + P + K 0 z -(0) + z * -(0)Λ -P -z -(0)
and thus Az, P z ≤ 1 2 v Ev with v = [z + (1), z -(0)] and the matrix

E = -Λ + P + + K 1 Λ -P -K 1 0 0 K 0 Λ + P + K 0 -Λ -P - . Now note that (12) in Assumption 2 is equivalent to the LMI K|Λ| -1 P -1 K < |Λ| -1 P -1 (24) 
and using the definition of K and the coordinate decomposition (2), it is also equivalent to

K * 1 Λ -P -K 1 < Λ + P + K * 0 Λ + P + K 0 < Λ -P -.
Therefore, under [START_REF] Garavello | Traffic flow on networks[END_REF] in Assumption 2, reinterpreted as [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF], there exists a positive value ν 1 such that, for all z in D(A), Az, P z ≤ -ν

1 (|z + (1)| 2 + |z -(0)| 2
) and, by the boundedness of the trace operator from Z to R with norm equal to 1, it follows that, for all z in D(A), Az, P z ≤ -ν 1 |z| 2 X . Moreover, since P is symmetric positive definite, there exists ν1 > 0 such that, for all z in D(A), Az, z ≤ ν1 Az, P z . Thus, with a suitable ν1 > 0, for all z in D(A),

Az, z ≤ -ν 1 |z| 2 X . (25) 
In other words, A is a dissipative operator.

4) Dissipativity of the operator A

To check the fact (ii), let us compute, for all ψ in D(A ),

A ψ, Qψ = 1 0 (Λψ ) Qψdx + 1 0 (M ψ) Qψ ≤ 1 0 ψ ΛQψdx ,
where [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments[END_REF] from Assumption 1 has been used. Note that, thanks to the commutativity property ΛQ = QΛ, there holds d dx (ψ ΛQψ) = 2ψ ΛQψ and thus

A ψ, Qψ ≤ 1 2 ψ ΛQψ| 1 0 ≤ 1 2 ψ + (1)Λ + Q + ψ + (1) -ψ -(1)Λ -Q -ψ -(1) -ψ + (0)Λ + Q + ψ + (0) + ψ -(0)Λ -Q -ψ -(0) ≤ 1 2 ψ -(1)Λ -K 1 Q + Λ -1 + K 1 Λ -ψ -(1) -ψ -(1)Λ -Q -ψ -(1) -ψ + (0)Λ + Q + ψ + (0) +ψ + (0)Λ + K 0 Q -Λ -1 -K 0 Λ + ψ + (0)
where [START_REF] Scherer | Linear matrix inequalities in control[END_REF] has been used in the first and the last terms. Therefore A ψ, Qψ ≤ 1 2 w F w [START_REF] Vazquez | Boundary control of coupled reaction-advection-diffusion systems with spatially-varying coefficients[END_REF] with w = [ψ + (0), ψ -(1)] and the matrix

F = Λ + K 0 Q -Λ -1 -K 0 Λ + -Λ + Q + 0 0 Λ -K 1 Q + Λ -1 + K 1 Λ --Λ -Q - .
Now note that (13) in Assumption 2 is equivalent to

Q|Λ| -1 -1/2 K Q|Λ| -1 1/2 0 I m I n-m 0 0 I m I n-m 0 Q|Λ| -1 1/2 K Q|Λ| -1 -1/2 < I n
and, by using the commutativity of Λ and Q, it is also equivalent to

Q|Λ| -1 -1/2 KQ|Λ| -1 K Q|Λ| -1 -1/2 < I n .
Finally by pre-and post-multiplying the last inequality by (Q|Λ|) 1/2 , one gets the LMI: |Λ|KQ|Λ| -1 K |Λ| < Q|Λ|, i.e., by using the definition of K and the coordinate decomposition (2),

Λ + K 0 Q -Λ -1 -K 0 Λ + < Λ + Q + Λ -K 1 Q + Λ -1 + K 1 Λ -< Λ -Q -.
Therefore, under [START_REF] Graf | Hydraulics of sediment transport[END_REF] in Assumption 2, reinterpreted as [START_REF] Vazquez | Boundary control of coupled reaction-advection-diffusion systems with spatially-varying coefficients[END_REF], the following inequality holds, for all ψ in D(A ):

A ψ, Qψ ≤ -ν 2 (|ψ + (0)| 2 + |ψ -(1)| 2
), for some positive constant ν 2 , and, by the continuity of the trace operator from Z to R, it follows that, for all ψ in D(A ),

A ψ, Qψ ≤ -ν 2 |ψ| 2 X . Moreover, since Q is symmetric positive definite, there exists ν2 > 0 such that, for all ψ in D(A ), A ψ, ψ ≤ ν2 A ψ, Qψ . Thus, with a suitable ν2 > 0, for all ψ in D(A ),

A ψ, ψ ≤ -ν 2 |ψ| 2 X . (27) 
Then one can conclude that A is a dissipative operator.

In view of the facts (i) and (ii), applying Lumer-Phillips Theorem, the operator A is the infinitesimal generator of an C 0 -semigroup T (t) on X. Moreover, by ( 25) and ( 27),

, there exists ν > 0 satisfying, for all t ≥ 0, T (t) ≤ exp(-νt).

Corollary 1 Under the conditions of Theorem 1, the operator A has a pure point spectrum σ(A) = σ p (A) that is included in the closed left half-plane C ω0-:= {s ∈ C : s ≤ ω 0 } contained in the open left half-plane, where the spectral bound ω 0 := sup σ(A) < 0 is the growth constant of the C 0 -semigroup generated by A. Moreover, any complex number λ is an eigenvalue of A iff it is a solution of the characteristic equation:

χ(λ) := det I m -K 0 [-K 1 I n-m ] • exp(Λ -1 (M -λI)) = 0. (28) 
Proof. It suffices to observe that any complex number λ is in the resolvent set ρ(A) of the operator A iff the matrix

I m -K 0 [-K 1 I n-m ] • exp(Λ -1 (M -λI))
is invertible. In addition, in this case, the resolvent operator is given by

(A -λI) -1 f = exp(Λ -1 (M -λI)x) I m -K 0 [-K 1 I n-m ] • exp(Λ -1 (M -λI)) -1 0 I(1, λ) --K 1 I(1, λ) + -I(x, λ)
where

I(x, λ) = x 0 exp(Λ -1 (M -λI)(x -z))Λ -1 f (z)dz , (29) 
and is therefore compact. The pure point spectrum property follows by [START_REF] Curtain | An introduction to infinite-dimensional linear systems theory[END_REF]Lemma A.4.19,p. 616].

Moreover, observe that, for every λ = s + ω, where ω > ω 0 , (A -λI) -1 is in the Hardy space H ∞ (L(X)). Recall also that A is the generator of an exponentially stable C 0 -semigroup, hence, by [5, Theorem 5.1.6, p. 223], A satisfies the spectrum determined growth assumption with ω 0 < 0.

Design of a stabilizing controller

Theorem 1 is instrumental to design stabilizing output feedback laws. To be more precise define the output observations as the following part of the state, for all t ≥ 0,

y(t) = [ξ + (1, t), ξ -(0, t)] .
Then the next corollary follows readily from Proposition 2 and Theorem 1:

Corollary 2 For any matrix O = [O 0 , O 1 ] in C p×n such that Im O 0 ⊂ Ker N 0 and Im O 1 ⊂ Ker N 1 ,
define the following output feedback controller by, for all t ≥ 0, u(t) = Oy(t) .

If the matrix in ( 8) is invertible, and under Assumptions 1 and 2, where the matrix K has been replaced by K +N O in (8), ( 12) and ( 13), there exist a positive value ν such that it holds, for all t ≥ 0, ξ(t) X ≤ exp(-νt) ξ(0) X along the solutions to (1) with the boundary condition (3).

Application in hydraulics

Nonlinear and linearized dynamics

In this section, we are using a system of balance laws by taking into account the potential distributed loss/increase of energy, of momentum... Several examples may come in mind such as the Euler equations. Here we consider the shallow water equations describing the dynamics of the water level, of the water flow and of the sediment inside of a channel. The effect of the friction and of the slope modifies the dynamics and makes a system of balance laws (instead of a system of conservation laws without friction and slope). In this paper we focus on space-invariant equilibrium of Saint-Venant-Exner model. For further results on non-constant stationary state of the Saint-Venant-Exner model, see [START_REF] Gugat | Global boundary controllability of the saint-venant system for sloped canals with friction[END_REF]. More specifically, following [START_REF] Graf | Hydraulics of sediment transport[END_REF][START_REF] Hudson | Formulations for numerically approximating hyperbolic systems governing sediment transport[END_REF] (see also [START_REF] Diagne | Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws[END_REF][START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF][START_REF] Diagne | Backstepping stabilization of the linearized Saint-Venant-Exner model[END_REF]), a linearization around a space invariant equilibrium could be performed to obtain the following model in Riemann coordinates

ξ t + Λξ x = M ξ (30) 
where ξ = (ξ 1 , ξ 2 , ξ 3 ) , Λ(x) = diag(λ 1 , λ 2 , λ 3 ), and, for all x ∈ [0, 1], t ≥ 0,

M (x) =     α 1 α 2 α 3 α 1 α 2 α 3 α 1 α 2 α 3     , (31) 
with

α k = (3V -2λ k )θ k for suitable θ k ∈ R, k = 1, 2, 3.
It is proved in [START_REF] Hudson | Formulations for numerically approximating hyperbolic systems governing sediment transport[END_REF] that, for all k = 1, 2, 3, α k < 0 (and thus the matrix in (31) is stable, and a possible diagonal definite positive matrix P such that M P + P M < 0 is P = diag(-α 1 , -α 2 , -α 3 )). Therefore Assumption 1 holds.

Moreover in the same references, assuming positive flow, it is noted the three eigenvalues of Λ satisfy

0 < λ 1 < λ 2 , λ 3 < 0, (32) 
Our approach could be adapted to the case of a negative flow.

Boundary conditions

The boundary conditions of (30) are defined by hydraulic control devices such as pumps and valves. Here it is assumed that the water levels are measured at both ends of the open channel, and that the control action can be directly prescribed by the control devices. More precisely, in the Riemann coordinates, we consider the following set of boundary conditions, given three tuning parameters k 13 , k 31 , k 32 to be defined (they are tuning control variables)

    ξ 1 (0, t) ξ 2 (0, t) ξ 3 (1, t)     = K     ξ 1 (1, t) ξ 2 (1, t) ξ 3 (0, t)     (33) 
where

K =     0 0 k 13 0 0 η(k 13 ) k 31 k 32 0     ,
and η is a nonlinear function, depending on the equilibrium under consideration, see [START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF] for an expression. See the same reference to check that these controllers depend only on the outputs that are observed.

Design of a stabilizing feedback

Following the notations of Section 2, we let m = 2, n = 3, K 0 = (k 13 η(k 13 )) and K 1 = (k 31 k 32 ). In the boundary conditions, we do not consider any control actions (thus the control operator is admissible), but we now aim at computing the tuning gains k 13 , k 31 and k 32 so that Corollary 2 applies, yielding a boundary controller such that the closed-loop system is exponentially convergent.

To do that, let us consider the following numerical values λ 1 = 7.72 × 10 -4 , λ 2 = 13 and λ 3 = -10 with the equilibrium considered in [START_REF] Hudson | Formulations for numerically approximating hyperbolic systems governing sediment transport[END_REF][START_REF] Prieur | ISS-Lyapunov functions for time-varying hyperbolic systems of balance laws[END_REF][START_REF] Santos | Boundary control of open channels with numerical and experimental validations[END_REF].

We may check that by letting k 13 = 0.05, k 31 = 0 and k 32 = -0.8, P = diag(-α 1 , -α 2 , -α 3 ), and

Q = diag(α 2 α 3 , α 1 α 3 , α 1 α 2 ) it holds det[(-K 1 1) exp(Λ -1 M )(K 0 1)] = 0, (34) 
and Equations ( 12) and ( 13) hold where |Λ| = diag(λ 1 , λ 2 , |λ 3 |). Moreover it holds P M + M P ≤ 0 and M Q + QM ≤ 0. Thus, the matrix given by ( 8) is invertible and Assumptions 1 and 2 hold. Therefore Corollary 2 applies with O = 0.

Other choices are possible for P and Q, as already discussed in Remark 1. As an example, we may let Q = P -1 , and check that P M + M P ≤ 0 as soon as M Q + QM ≤ 0.

Let us illustrate the asymptotic stability by means of numerical simulations. 1 The time evolutions of the first, second and third components of the solution to (30) and (33) starting from the initial conditions ξ(x, t = 0) = (cos(4πx) -1, cos(2πx) -1, -cos(4πx) + 1) for all x in (0, 1) are shown in Figures 123where it is checked that the solution converges to the origin. The boundary conditions (33) with the tuned gains k 13 , k 31 and k 32 are given in Figure 4.

Note that, due to the very small value of |λ 1 | with respect to the absolute values of the other velocities |λ 2 | and |λ 3 |, it is checked that the first component converges to the origin more slowly than the other components. Compare Figure 1 with Figures 2 and3 where a different scale for the time t is used. This is consistent with the theory of singularly perturbed hyperbolic systems as studied in [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF].

Conclusion

Hyperbolic systems described by balance laws have been considered in this paper. A boundary control problem perbolic systems as developed in e.g., [START_REF] Santos | Boundary control with integral action for hyperbolic systems of conservation laws: stability and experiments[END_REF][START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF]. As an illustration of the main results, the Saint-Venant-Exner equation describing the dynamics of the flow and of the sediments inside of an open-channel were considered. Some simulations have been performed to approximate the time evolution of the solutions.

This study leaves many open questions open. In particular, the linear-quadratic (LQ) optimal control problem is a natural extension of this work, using the framework of [START_REF] Weiss | Optimal control of stable weakly regular linear systems[END_REF]. It could be fruitful to adapt the techniques of [START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] to derive the Riccati equation and to design an LQ optimal control. An analogous (but different) control problem has been already solved in [START_REF] Aksikas | LQ control design of a class of hyperbolic 9 PDE systems: Application to fixed-bed reactor[END_REF] and [START_REF] Aksikas | Optimal lq-feedback control for a class of first-order hyperbolic distributed parameter systems[END_REF], where a linearquadratic optimal control is computed for a class of firstorder hyperbolic nonlinear partial differential equations.

See also [START_REF] Dehaye | LQ-optimal boundary control of infinite-dimensional systems with Yosidatype approximate boundary observation[END_REF] where approximate boundary observation is used to compute an LQ optimal controller. Finally it could be interesting to study the effect of the disturbances in the Saint-Venant-Exner equation on the closed-loop system performance.

Proposition 2

 2 by using an integration by parts, and by using that Ψ in D(A ) (and thus ΛΨ(1) = K ΛΨ(0)).Therefore z(0)-Kz(0), ΛΨ(0) = z(0)-Kz(0), N B Ψ and thus B Ψ = N ΛΨ(0).The control operator B : U → X -1 is defined by, for all ξ in U , Bξ = δ 0 ΛN ξ where δ 0 is the Dirac function at x = 0. B is an admissible control operator following [25, Definition 4.2.1], since with M = 0, this control operator is admissible (see e.g.[START_REF] Tucsnak | Observation and Control for Operator Semigroups[END_REF] Example 4.2.7] for the scalar case), and a bounded perturbation M = 0 does not render B not admissible.Therefore the PDE (1) with the boundary condition (3) is well-posed and with [25, Prop. 10.1.8], we get If the matrix given by (8) is invertible then, for every T > 0, ξ(0) in Z and u ∈ H 1 ((0, T ); U ) which satisfies the compatibility condition Gξ(0) = N u(0), the PDE (1) with the boundary condition (3) has a unique solution ξ and ξ ∈ C([0, T ]; Z) ∩ C 1 ([0, T ]; X).

Remark 2

 2 Combining Assumption 1 and condition[START_REF] Gugat | Gas flow in fan-shaped networks: classical solutions and feedback stabilization[END_REF] yields a set of assumptions that is implied by [22, Assumption 3.8, Page 664] when restricting to spaceinvariant operators. Thus Theorem 1 can be seen as a generalization of [22, Theorem 3.9, Page 665]. By item c) of Remark 1, Assumptions 1 and 2 are equivalent to the conditions of[START_REF] Bastin | Stability and Boundary Stabilization of 1-D Hyperbolic Systems[END_REF] Proposition 5.2]

Figure 1 .

 1 Figure 1. Time evolution of the first component of the ξ-solution.

Figure 2 .

 2 Figure 2. Time evolution of the second component of the ξ-solution.

Figure 3 .

 3 Figure 3. Time evolution of the third component of the ξ-solution.has been studied using semigroup theory. The main results suggest a new sufficient condition for the wellposedness of the boundary control problem and for the stability of the closed-loop system. The sufficient conditions are written in terms of matrix inequalities that are related to by-now classical Lyapunov theory for hy-

Figure 4 .

 4 Figure 4. Time evolution of the boundary conditions (33) when applying the tuned gains k13, k31 and k32.

The simulation codes can be downloaded from http://www.gipsa-lab.fr/ ~christophe.prieur/Codes/ automatica17.zip.
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