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Abstract This article deals with the modelling and formulation of compositional gas liquid Darcy flow.
Our model includes an advanced boundary condition at the interface between the porous medium and the
atmosphere accounting for convective mass and energy transfer, liquid evaporation and liquid outflow.
The formulation is based on a fixed set of unknowns whatever the set of present phases. The thermody-
namic equilibrium is expressed as complementary constraints. The model and its formulation are applied
to the simulation of the Bouillante high energy geothermal field in Guadeloupe characterized by a high
temperature close to the surface.

Keywords Non-isothermal compositional Darcy flow; geothermal energy; soil-atmosphere boundary
condition; outflow boundary condition; porous medium drying; finite volume scheme.

1 Introduction

Geothermal energy is a carbon-free non-intermittent energy source with low environmental impact. It
will contribute to the decarbonization of our economy reaching its maximum mitigation potential by
2050 [2]. In countries with a favourable geological context, high temperature geothermal energy can
make a significant contribution to power production and the world installed capacity is expected to dou-
ble over the present decade [6]. As regards direct use, installed capacity growth follows exactly the same
trend [25], with a conservative assesment showing that the annual recoverable geothermal energy is in
the same order as the world current final energy consumption [24].
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France. E-mail: konstantin.brenner@unice.fr

S. Lopez
BRGM, scientific and Technical Center, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2 France E-mail:
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The quantitative understanding of the shallow parts of geothermal systems is challenging both for
the exploration and exploitation of high energy geothermal resources. First, the unsaturated zone and/or
cooler superficial water flows can considerably alter evidences of the presence of a deeper geothermal
resource. In some cases, the resource may be totally hidden. In terms of exploitation, as some systems
underlay urbanized areas (e.g. Rotuara in New Zealand or Bouillante in the French Carribean), resource
exploitation much be carrefuly monitored and controlled in order to avoid unwanted induced surface
manifestations or risks. Moreover, several features such as geysers, have a major cultural significance for
indigenous populations and must therefore be protected and kept unaltered [33].

Numerical modeling has become essential in all phases of geothermal operations. It is used in the ex-
ploration phases to assess the geothermal potential, validate conceptual hypothesis and help well siting.
Field development and resource management need quantitative estimation to prevent resource exhaustion
and achieve its sustainable exploitation (production/injection scenarios). Finally, numerical modeling is
also helpful in studying exploitation related industrial risks such as the interaction with shallow water
levels (drinking water resources, hydrothermal vents or eruption) (e.g. [33]). The physics embedded in
the numerical model correctly handle nonlinear evolution of saturation transients with water table fluc-
tuations, high temperature gradients and phase change processes in the shallow levels of the simulation
domain. In addition, simulation meshes must correctly capture topographic effects and have sufficient
vertical resolutions in these areas.

Current software suffers several limitations in terms of boundary conditions which are known to play
a major role in geothermal flows [34,31]. Mixed-type transient boundary conditions are not supported
which impedes the convenient modeling of natural processes such as recharge or seepage or water table
fluctuations. Workarounds may exist (e.g. [20]) but are relatively tedious to implement and are not formu-
lated in a generic way. Transient complex upper or lower boundary conditions are mandatory to take into
account some crucial processes. In volcanic island settings, the inland water table may be excessively
deep and the interactions between the vadose zone and the fresh water recharge may hide geothermal
resources ([11], [20]). In sedimentary basins the interactions with the topography and recharge areas
must be correctly taken into account to reproduce head distributions at basin scale [16]. Though many
groundwater simulation software can deal with the vadose zone, they are rarely designed to study mul-
tiphasic hydrothermal processes. Conversely, some geothermal reservoir simulators propose to take into
account a gas/air component [32] but they are still restricted to rather simple boundary conditions and
most of the time the alternative is between fixed value/Dirichlet type for all primary variables or fixed
fluxes/Neumann type for all conserved quantities (e.g. [35]).

The objective of this work is to investigate a new formulation for non-isothermal compositional gas
liquid Darcy flows and to couple it with an advanced soil-atmosphere boundary condition. The composi-
tional model should typically account for the water component which can vaporize into the gas phase and
for a set of gaseous components which can dissolve into the liquid phase. The soil-atmosphere boundary
condition, based on mole and energy balance equations set at the interface, should take into account the
vaporization of the liquid phase in the atmosphere, the convective molar and energy transfer, a liquid
outflow condition as well as the precipitation and the radiation terms.

Different formulations have been studied for isothermal and non-isothermal compositional Darcy
flows. They basically differ by their choice of the principal unknowns and equations and by the way they
deal with phase transitions which is one of the main difficulty of this type of models. The objective of
such a choice is usually to reduce the nonlinearity of the successive nonlinear systems that typically arise
when solving a transient problem with an Euler fully implicit time integration scheme.

Let us distinguish between variable switch and persistent variable formulations. The first ones adapt
the set of principal unknowns and equations to the set of present phases which can vary in space and time.
The most well known formulation in this family is the so called natural variable or Coats’ formulation



Title Suppressed Due to Excessive Length 3

widely used in reservoir simulations [14,13,19,41]. It has the advantage to use the physical variables of
the thermodynamic and hydrodynamic laws as the set of principal unknowns. Its main drawback is to
require a cumbersome switch of this set of variables depending on the set of present phases at each point
of the space time domain. On the other hand, persistent variable formulations are based either on natural
physical quantities such as overall component molar fractions or total specific enthalpy (see [40]), or
alternatively on nonstandard principal variables such as in [8,26]. Another strategy to avoid the switch
of variables is based on the extension of some physical quantities such as the phase molar fractions like
in [22] using component fugacities, or the phase molar fractions and pressures like in [3,27]. Let us also
mention the negative saturation formulations [1,36] belonging to this family. A comparison between
some of these formulations can be found in [40,27] in the case of isothermal compositional Darcy flows.

Our choice of the formulation is based, like in the Coats’ formulation, on the pressures, saturations,
temperature and phase molar fractions as set of principal variables. This is a convenient choice since
all the physical laws can be directly expressed using subsets of this set of variables. It is also a very
natural choice in single phase regions which are usually dominant in geothermal applications. In order to
avoid the switch of variables, this choice of the principal variables is combined with an extension of the
phase molar fractions of an absent phase by the molar fractions at thermodynamic equilibrium with the
present phase. It results that the set of principal variables does not depend on the set of present phases.
Moreover, the phase transitions can be expressed as complementary constraints as in [22] which means
that the nonlinear systems can be solved using semi-smoothed Newton techniques such as the Newton-
min algorithm [21,5]. This formulation has been prefered to the formulation proposed in [22] since the
use of the component fugacities as principal unknowns rather than the phase molar fractions results in
additional nonlinear couplings between the molar fractions and the temperature which are not desirable
for non-isothermal Darcy flows. In this work, the efficiency of this formulation combined with different
improvements of the Newton-min nonlinear solver will be investigated on several test cases.

As mentioned in [34,31], the interaction between the flow in the porous medium and the atmosphere
plays an important role in geothermal flows. Since the coupling between the porous medium and surface
flows is not computationally realistic at the space and time scales of a geothermal flow, our objective is
rather to model the soil-atmosphere interaction using an advanced boundary condition accounting for the
matter (mole) and energy balance at the interface between the porous medium and the atmosphere. Such
model should take into account the vaporization of the liquid phase, the convective molar and energy
transfer, a liquid outflow condition at seepage surfaces, as well as the heat radiation and the precipitation
influx.

Assuming the vaporization of the liquid phase at the soil-atmosphere interface, the molar and energy
normal fluxes at the interface on the atmosphere side are frequently approximated in hydrogeology by
two-point fluxes between the gas phase at the interface and the atmosphere at a reference heigh [15,
12]. The transmissivities of these two-point fluxes are based on convective molar and energy transfer
coefficients. Such approximation basically assumes that the lateral variations in wind, air temperature
and humidity can be neglected [39]. Let us refer to the textbook [29] on meteorology for the compu-
tation of convective molar and energy transfer coefficients at the soil-atmosphere interface depending
on the roughness of the soil surface including the effect of the vegetation, on the wind velocity, on the
eddy diffusivity in the air stream and stability of the air above the heated soil surface. The radiation
which is absorbed by and emitted from the soil surface as well as the precipitation recharge can also be
incorporated in such models [15,12].

Outflow boundary conditions are frequently used in hydrogeology at seepage surfaces allowing the
groundwater discharge to occur where the water table intercepts a sloping land surface. They have already
been used for geothermal applications as in [20] for a single component liquid gas Darcy flow model.
For the Richards equation, outflow boundary conditions are modelled by complementary constraints
between the non negative liquid normal flux and the non positive capillary pressure (see [38]). For liquid
gas Darcy flow models, they are combined with a Dirichlet boundary condition for the gas pressure [23].
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To our knowledge, their extension to general non-isothermal compositional liquid gas Darcy flows has
not yet been derived.

In this work, both the evaporation and liquid outflow models are combined in a single boundary
condition which automatically switches from evaporation to evaporation and liquid outflow boundary
condition. It assumes that the liquid phase does not accumulate at the surface on the atmosphere side
- considering that standing water condition such as lake or sea can easily be expressed in the form of
Dirichlet conditions. Alternatively, one would need to model the flow of the liquid phase at the soil-
atmosphere surface which has not been considered here and might induce a coupling with a system with
different time scales than the underlying geothermal system. Our boundary condition is coupled with
the general non-isothermal compositional liquid gas Darcy flow model. The previous formulation of the
Darcy flow model is adapted to account for the new unknowns and equations at the soil-atmosphere in-
terface. The derivation of the two-point molar and energy fluxes in the atmosphere is obtained starting
from the transmission conditions proposed in [30] (see also [28,39]) for the coupling of non-isothermal
compositional liquid gas Darcy and free gas flows. The complementary constraints for the liquid outflow
are extended to non-isothermal compositional flows using a switching criteria based on the thermody-
namic equilibrium between the gas and liquid phases at the interface on the free-flow side.

The structure of the rest of this article is as follows. The non-isothermal compositional two-phase
Darcy flow model and its formulation are presented in section 2. The soil-atmosphere boundary condition
is derived in section 3. Then, the finite volume two-point flux discretization of the model as well as the
Newton-min algorithms used to solve the fully coupled systems at each time step of the simulation are
introduced in section 4. In section 5, the soil-atmosphere evaporation boundary condition is compared
with a full-dimensional free gas flow and transport model coupled to the liquid gas Darcy flow. In section
6, the model and its formulation are studied numerically in terms of solution and convergence of the
Newton-min nonlinear solvers on several geothermal test cases including 1D test cases and 2D cuts of
the Bouillante geothermal field in Guadeloupe.

2 Non-isothermal compositional two-phase Darcy flow model

We consider a non-isothermal compositional liquid gas Darcy flow model with P = {g, l} denoting the
set of gas and liquid phases. Each phase α ∈P is a mixture of a set of components denoted by C includ-
ing typically a water component, denoted w, which can vaporize in the gas phase and a set of gaseous
components which can dissolve in the liquid phase. The thermodynamic properties of each phase α ∈P
depend on its pressure Pα , the local equilibrium temperature of the system T and its molar fractions
Cα = (Cα

i )i∈C .

For each phase α ∈P , we denote by ζ α(Pα ,T,Cα) its molar density, by ρα(Pα ,T,Cα) its mass
density, by µα(Pα ,T,Cα) its dynamic viscosity, by eα(Pα ,T,Cα) its molar internal energy and by
hα(Pα ,T,Cα) its molar enthalpy. For the gas phase, assuming an ideal mixture, the molar enthalpy
is defined by

hg(Pg,T,Cg) = ∑
i∈C

Cg
i hg

i (P
g,T ), (2.1)

where hg
i (P

g,T ) is the molar enthalpy of the component i in the gas phase. Thermodynamic equilibrium
between the gas and liquid phases is assumed for each component and governed by the phase fugacities
denoted by f α(Pα ,T,Cα) = ( f α

i (Pα ,T,Cα))i∈C , α ∈P .
The rock porosity is denoted by φ(x) and the rock permeability tensor by ΛΛΛ(x) where x denotes

the spatial coordinates. The hydrodynamic Darcy laws are characterized by the relative permeability
kα

r (x,Sα) of each phase α ∈P , as a function of the phase saturation Sα , and by the capillary pressure
Pc(x,Sg) = Pg−Pl . The dependence of the relative permeabilities and capillary pressure on x, which is
piecewise constant for each rocktype, is omitted in the following for the sake of simplicity.
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Our formulation of the model is based on the fixed set of unknowns defined by

X =
(

Pα ,T,Sα ,Cα ,α ∈P
)
. (2.2)

Note that, as opposed to the Coats’ variable switch formulation [14,13,19,41], the molar fractions Cα

of an absent phase α are extended by the ones at equilibrium with the present phase in the sense that the
equality of the gas and liquid fugacities f g(Pg,T,Cg) = f l(Pl ,T,Cl) always holds.

Let ni(X) be the number of moles of the component i ∈ C per unit pore volume defined by

ni(X) = ∑
α∈P

ζ
α

Sα Cα
i , i ∈ C .

We introduce the rock energy per unit rock volume defined by Er(T ) and the fluid energy per unit pore
volume defined by

E(X) = ∑
α∈P

ζ
α Sα eα .

Let us denote by g the gravitational acceleration vector. The generalized Darcy velocity of the phase
α ∈P is given by

Vα =− kα
r

µα
ΛΛΛ(x)

(
∇Pα −ρ

α g
)
. (2.3)

The total molar flux of the component i ∈ C is denoted by qi and the energy flux by qe, with

qi = ∑
α∈P

Cα
i ζ

α Vα , qe = ∑
α∈P

hα
ζ

α Vα −λ∇T, (2.4)

where λ stands for the bulk thermal conductivity of the fluid and rock mixture.
The system of equations accounts for the molar conservation of each component i ∈ C together with

the energy conservation

φ(x)∂tni +div(qi) = 0, i ∈ C ,

φ(x)∂tE +(1−φ(x))∂tEr +div(qe) = 0. (2.5)

It is complemented by the following capillary relation between the two phase pressures and the pore
volume balance {

Pc(Sg) = Pg−Pl ,

∑
α∈P

Sα = 1. (2.6)

In the spirit of [22,27], the liquid gas thermodynamic equilibrium can be expressed as the following
complementary constraints for each phase α ∈P combined with the equality of the gas and liquid
fugacities of each component:{

Sα ≥ 0, 1− ∑
i∈C

Cα
i ≥ 0, Sα(1− ∑

i∈C
Cα

i ) = 0, α ∈P,

f g
i (P

g,T,Cg) = f l
i (P

l ,T,Cl), i ∈ C .
(2.7)

Note that our formulation of the model leads, independently on the set of present phases, to the
fix sets of 2#C + 5 unknowns (2.2) and of 2#C + 5 equations (2.5)-(2.6)-(2.7) including the #C + 1
conservation equations (2.5) and the remaining #C + 4 local closure laws (2.6)-(2.7). It has also the
advantage to express the thermodynamic equilibrium as complementary constraints which will allow
the use of semi-smooth Newton methods [21,5] to solve the nonlinear systems at each time step of the
simulation as specified in section 4.1.
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3 Soil-atmosphere boundary condition for non-isothermal compositional liquid gas Darcy flow

The fluid and energy transport in high energy geothermal systems is deeply governed by the conditions
set at the boundary of the computational domain. In particular, it is well known that the modelling of
the interaction between the porous medium model and the atmosphere plays an important role [34,31].
In this section, a boundary condition is derived to model the soil-atmosphere interaction based on mole
and energy balance equations set at the interface. The model takes into account two coupling processes:
on the one hand, the vaporization of the liquid phase and the convective molar and energy transfer in
the atmosphere described in subsection 3.1, on the other hand, a liquid outflow condition described in
subsection 3.2. Both coupling processes will be combined in a single boundary condition assuming that
the liquid phase does not accumulate at the surface. The radiation and the precipitation recharge are also
considered.

3.1 Convective molar and energy transfer in the atmosphere

3.1.1 Transmission conditions at the interface between a non-isothermal compositional liquid gas
Darcy flow and a gas free flow

The derivation of the boundary condition accounting for convective molar and energy transfer in the
atmosphere can be explained starting from the transmission conditions introduced in [30] (see also [28,
39]) to couple a non-isothermal compositional liquid gas Darcy flow with a gas free flow. These con-
ditions state the continuity of the component molar and energy normal fluxes, assuming instantaneous
vaporization of the liquid phase, as well as the continuity of the gas molar fractions, of the temperature
and of the gas pressure, neglecting the gas pressure jump. It is complemented by the thermodynamic
equilibrium between the liquid and gas phases and by the Beavers-Joseph condition. On the free-flow
side, the component molar and energy fluxes are defined by

wi = ζ
g(P,T,C)

(
Ciu−Dt∇Ci

)
, i ∈ C ,

we = ζ
g(P,T,C)hg(P,T,C)u−λt∇T −∑

i∈C
ζ

g(P,T,C)hg
i (P,T )Dt∇Ci,

(3.1)

where u denotes the gas velocity, P the pressure, C = (Ci)i∈C the gas molar fractions, T the temperature,
Dt the turbulent diffusivity and λt the turbulent thermal conductivity. The continuity of the component
molar normal fluxes states that

wi ·n = qi ·n, i ∈ C , (3.2)

where the unit normal vector n at the interface is oriented outward from the porous medium domain.
The last term in the free-flow energy flux in (3.1) introduces a strong nonlinear coupling between the
component molar and energy fluxes which raises an additional difficulty in the two-point approximation
of the normal fluxes. This can be addressed in a simple and efficient way if the dissolution of the gaseous
components in the liquid phase is small which corresponds to the usual case. In such a case, using
ζ g << ζ l , Cw << 1, ∑i∈C Ci = 1 and (3.2), we can derive that

|qi ·n|<< |qw ·n| ∼ ζ
g|u ·n| ∼ ζ

gDt|∇Cw ·n|, (3.3)

for all i ∈ C \{w}. Using that ∑i∈C Ci = 1, one has

(we +λt∇T ) ·n = ζ
g(P,T,C)

(
hg(P,T,C)u ·n−∑

i∈C
hg

i (P,T )Dt∇Ci ·n
)

= ζ
g(P,T,C)

(
∑
i∈C

hg
i (P,T )Ciu ·n− ∑

i∈C \{w}
(hg

i (P,T )−hg
w(P,T ))Dt∇Ci ·n

)
= hg

w(P,T )ζ
g(P,T,C)u ·n+ ∑

i∈C \{w}
(hg

i (P,T )−hg
w(P,T )wi ·n.

(3.4)
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From (3.3) and (3.2), it results that

(we +λt∇T ) ·n∼ hg
w(P,T )ζ

g(P,T,C)u ·n,

allowing to use the following approximation of we ·n:

w̃e ·n = hg
w(P,T )ζ

g(P,T,C)u ·n−λt∇T ·n. (3.5)

3.1.2 Two-point flux approximation

The boundary conditions are obtained by two-point flux approximations of the component normal fluxes
wi · n, i ∈ C and of the energy normal flux w̃e · n. These two-point fluxes are computed between the
interface on the atmosphere side and the far field atmospheric conditions at a given reference heigh. The
far field atmospheric conditions are defined by the constant gas molar fractions Cg,atm

∞ , temperature T atm
∞

and pressure Patm, which fixes the far field atmospheric specific gas enthalpy of the water component
hg,atm

w,∞ = hg
w(Patm,T atm

∞ ). From the transmission conditions stated above, the temperature, the gas molar
fractions and the gas pressure defined at the interface on the atmospheric side, match with their values
on the porous-medium side and consequently they are denoted respectively by T , Cg and Pg. The two-
point flux approximations account for the turbulent boundary layers of the gas flow and transport in the
atmosphere using the molar and energy transfer coefficients Hm and HT . These coefficients are usually
obtained from correlations used for environmental gas flows depending on the roughness of the soil
surface including the effect of the vegetation, on the wind velocity, on the eddy diffusivity in the air
stream and stability of the air above the heated soil surface [29]. The two-point fluxes also take into
account the convective normal fluxes using, as additional unknown, the gas molar flow rate qg,atm at the
interface on the atmosphere side oriented outward from the porous-medium domain. It is combined with
an upwinding of the gas molar fractions and of the gas enthalpy of the water component between the
interface and the far field atmospheric conditions. This leads us to define the following two-point fluxes
oriented outward from the porous-medium domain:

qg,atm
i = (qg,atm)+Cg

i − (qg,atm)−Cg,atm
i,∞ +Hm

(
Cg

i −Cg,atm
i,∞

)
, i ∈ C ,

qg,atm
e = (qg,atm)+hg

w(P
g,T )− (qg,atm)−hg,atm

w,∞ +HT (T −T atm
∞ ), (3.6)

where for any real u, we have set (u)+ = max(0,u) and (u)− = max(0,−u).

Neglecting the variations of pressure in the atmosphere, leads to the following continuity equation
for the gas pressure

Pg = Patm. (3.7)

Thermodynamic equilibrium is always assumed at the interface in the sense that the gas molar fractions
and pressure at the interface on the porous-medium side are extended by the one at equilibrium with the
liquid phase in the absence of the gas phase. On the other hand, the liquid phase can appear or disappear
according to the liquid phase complementary constraints. It results that the following equations hold at
the interface:

f g
i (P

g,T,Cg) = f l
i (P

l ,T,Cl), i ∈ C

∑
i∈C

Cg
i = 1,

Sl ≥ 0, 1−∑
i∈C

Cl
i ≥ 0, Sl(1−∑

i∈C
Cl

i ) = 0,

Sg = Sg(Pg−Pl),

∑
α∈P

Sα = 1,

(3.8)
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where Pl is the liquid pressure, Cl the liquid molar fractions and Sα , α ∈P the saturations at the
interface on the porous medium side and Sg(Pc) denotes the inverse of the monotone graph extension of
the capillary pressure function Pc(Sg). As detailed in [9,10] and in subsection 6.1.2, a switch of variables
between Sg and Pc could also be used in order to account for non invertible capillary functions.

Regarding the interface energy balance, the model can also account for the solar and long wave
radiation that is absorbed by and emitted from the soil surface defined by the following net radiation Rn
(W.m−2):

Rn = (1−a)Rs +Ra− εσSBT 4, (3.9)

where Ra is the incoming long-wave radiation emitted by the atmosphere, Rs (W.m−2) is the net short-
wave radiation, a is the surface albedo, σSB (W.m−2.K−4) is the Stephan-Boltzman constant and ε the
soil emissivity.

3.2 Liquid outflow complementary constraints

The liquid phase is assumed to vaporize instantaneously when leaving the porous medium as long as
the atmosphere is not saturated with water vapour. As soon as the atmosphere is vapour saturated at the
interface, the component molar and energy normal fluxes in the liquid phase defined by

ql,atm
i =Cl,atm

i ql,atm, i ∈ C ,

ql,atm
e = hl(Pl ,T,Cl,atm)ql,atm,

(3.10)

are allowed to exit the porous medium, where ql,atm ≥ 0 is an additional unknown corresponding to the
total liquid molar flow rate oriented positively outward to the porous-medium domain. In (3.10), the
liquid molar fractions Cl,atm = (Cl,atm

i )i∈C at the interface on the atmosphere side are those at thermody-
namic equilibrium with the gas phase, and are such that

f l(Patm,T,Cl,atm) = f g(Pg,T,Cg). (3.11)

Note that, due to the jump of the capillary pressure which vanishes on the atmosphere side, Cl,atm does
not match in general with the liquid molar fractions on the porous-medium side Cl which satisfies

f l(Pl ,T,Cl) = f g(Pg,T,Cg). (3.12)

The liquid molar outflow rate ql,atm is determined by the following complementary constraints account-
ing for the thermodynamic equilibrium between the liquid and gas phases at the interface on the atmo-
sphere side: 

(1− ∑
i∈C

Cl,atm
i ) ql,atm = 0,

1− ∑
i∈C

Cl,atm
i > 0, ql,atm > 0.

(3.13)

It remains to eliminate the liquid molar fractions Cl,atm from (3.10) and (3.13). Let us consider for f ∈RC

the function Cl( f ,Pl ,T ) ∈ RC defined as the unique solution of the equation f l(Pl ,T,Cl) = f .
From f g(Pg,T,Cg) = f l(Pg,T,Cl,atm) = f l(Pl ,T,Cl) := f̄ given by the equations (3.11) and (3.12), it
results that

Cl,atm = Cl( f̄ ,Pg,T ).

On the one hand, if Sl > 0, it follows that

1−∑
i∈C

Cl,atm
i = ∑

i∈C

(
Cl

i −Cl,atm
i

)
= ∑

i∈C

(
Cl

i( f̄ ,Pl ,T )−Cl
i( f̄ ,Pg,T )

)
.

(3.14)
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Following [27], since the function ∑i∈C Cl
i( f ,P,T ) is strictly decreasing with respect to P, it results that

the complementary constraints (3.13) is equivalent to{
(Pg−Pl) ql,atm = 0,
Pg−Pl > 0, ql,atm > 0.

(3.15)

On the other hand, if Sl = 0 then one has Pg−Pl = Pc(1) > 0 and ∑i∈C Cl,atm
i < 1. It results that both

conditions (3.15) and (3.13) imply that ql,atm = 0. Finally, let us remark that if (3.15) holds, the liquid
outflow fluxes in (3.10) rewrite as follows:

ql,atm
i =Cl

i q
l,atm, i ∈ C ,

ql,atm
e = hl(Pl ,T,Cl)ql,atm.

(3.16)

The model also takes into account the following component molar and energy flow rates which represent
the precipitation recharge

ql,rain
i =Cl,rain

i ql,rain, i ∈ C ,

ql,rain
e = hl(Patm,T atm

∞ ,Cl,rain)ql,rain,
(3.17)

with the rain molar fractions denoted by Cl,rain = (Cl,rain
i )i∈C , a temperature assumed at equilibrium with

the far field atmosphere and the rain molar enthalpy denoted by hl,rain = hl(Patm,T atm
∞ ,Cl,rain).

3.3 Evaporation-outflow boundary condition

Both the liquid outflow and evaporation models are combined in a single boundary condition, assuming
that the liquid does not accumulate at the surface. Gathering the equations (3.6), (3.7), (3.8), (3.15),
(3.16), (3.17) together with the component molar an energy balance equations, the evaporation-outflow
boundary condition at the interface is defined by the sets of 7+2#C unknowns

XΓ =
(

qg,atm,ql,atm,T,Pα ,Sα ,Cα ,α ∈P
)
,

and equations 

qi ·n = (qg,atm)+Cg
i − (qg,atm)−Cg,atm

i,∞ +Hm

(
Cg

i −Cg,atm
i,∞

)
+Cl

i q
l,atm +Cl,rain

i ql,rain, i ∈ C ,

qe ·n = (qg,atm)+hg
w(Pg,T )− (qg,atm)−hg,atm

w,∞ +HT (T −T atm
∞ )

−Rn +hl(Pl ,T,Cl)ql,atm +hl,rainql,rain,
Pg = Patm,

Sg = Sg(Pg−Pl),

∑
α∈P

Sα = 1,

∑
i∈C

Cg
i = 1,

Sl ≥ 0, 1− ∑
i∈C

Cl
i ≥ 0, Sl(1− ∑

i∈C
Cl

i ) = 0,

f g
i (P

g,T,Cg) = f l
i (P

l ,T,Cl), i ∈ C

Pg−Pl ≥ 0, ql,atm ≥ 0, (Pg−Pl)ql,atm = 0.

(3.18)
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4 Discretization and nonlinear solvers

The system of equations (2.5)-(2.6)-(2.7)-(3.18) is discretized using a finite volume discretization in
space with a Two-Point Flux Approximation (TPFA) of the Darcy and Fourier fluxes [18,17] combined
with a phase based upwind scheme for the approximation of the mobilities [4,18]. A mesh satisfying
the admissibility condition of TPFA schemes at both inner and boundary faces is used [18,17]. It can be
typically a triangular mesh with acute angles with isotropic permeability, a Voronoi mesh with isotropic
permeability or a Cartesian mesh with anisotropic permeability aligned with the axes. In all cases the
permeability is assumed cellwise constant.

Let Ω denote a bounded polytopal domain of Rd (polygonal for d = 2 or polyhedral for d = 3) and
Γ ⊂ ∂Ω the boundary on which the soil-atmosphere evaporation-outflow boundary condition is imposed.
Let us denote by M the set of cells that are disjoint open polytopal subsets of Ω such that

⋃
K∈M K = Ω .

It is assumed that there exists a subset FΓ of the set of faces such that

Γ =
⋃

σ∈FΓ

σ .

For the sake of simplicity only the boundary faces σ ∈FΓ are considered in the following. The time
integration is based on a fully implicit Euler scheme to avoid severe restrictions on the time steps. For
N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = t f of the time
interval [0, t f ]. We denote the time steps by ∆ tn = tn− tn−1 for all n = 1, · · · ,N.

Let us denote the set of physical unknowns by

XK =
(

Pα
K ,TK ,Sα

K ,C
α
K ,α ∈P

)
, (4.1)

for each cell K ∈M and by

Xσ =
(

qg,atm
σ ,ql,atm

σ ,Pα
σ ,Tσ ,Sα

σ ,C
α
σ ,α ∈P

)
, (4.2)

for each boundary face σ ∈FΓ . The full set of unknowns is denoted by

XD = {XK ,Xσ ,K ∈M ,σ ∈FΓ }. (4.3)

For each degree of freedom ν ∈M ∪FΓ , we denote by Rν(XD ) the residual vector
(
Rν ,i(XD ), i ∈

C ∪{e}
)

of the component and energy conservation equations and by Lν(Xν) the residual vector of the
local closure laws. It defines the following nonlinear system at each time step n = 1,2, ...,N

0 = R(XD ) =


(

RK(XD )
LK(XK)

)
K ∈M ,(

Rσ (XD )
Lσ (Xσ )

)
σ ∈FΓ ,

(4.4)

where the current time step superscript n has been dropped.

4.1 Newton-min nonlinear solver

The nonlinear system R(XD ) = 0 is solved using a Newton-min solver [21,5] as detailed below. In order
to reduce the size of the linear systems to be solved at each Newton-min iteration to #C + 1 equations
and unknowns for each degree of freedom ν ∈M ∪FΓ , the set of unknowns Xν is splitted into #C +1
primary unknowns X p

ν and the remaining secondary unknowns X s
ν . This splitting is done for each degree

of freedom in such a way that the Jacobian of the local closure laws ∂Lν

∂Xs
ν
(Xν) with respect to the sec-

ondary unknowns is non singular.
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The Newton-min algorithm is initialized with an initial guess X (0)
D usually given by the previous time

step solution and iterates on the following steps for r = 0, · · · , until the stopping criteria

max
i∈C∪{e}

 ∑
ν∈M∪FΓ

|Rν ,i(X
(r)
D )|

∑
ν∈M∪FΓ

|Rν ,i(X
(0)
D )|

≤ εR or
#C+1

∑
i=1

 max
ν∈M∪FΓ

|dX p (r)
ν ,i |

∆Xi

≤ εX

for εR = 10−8, εX = 10−6, given ∆Xi > 0, i = 1, · · · ,#C +1, and with the Newton’s step dX p (r)
ν ,i defined

in (4.5) . If the convergence it not met after rmax Newton iterations, the time step is chopped.

1. Computation of the residual R(X (r)
D ) and of the Jacobian matrix with elimination of the secondary

unknowns. It starts with the choice of the primary and secondary unknowns for each degree of free-
dom ν ∈M ∪FΓ depending only on the active complementary constraints as specified in Table
(4.1). Then the matrices Asp (r)

ν and the vectors Bs (r)
ν , ν ∈M ∪FΓ defined by

Asp (r)
ν =−

(
∂Lν

∂X s (r)
ν

)−1
∂Lν

∂X p (r)
ν

, Bs (r)
ν =

(
∂Lν

∂X s (r)
ν

)−1

Lν

and such that

dX s (r)
ν = Asp (r)

ν dX p (r)
ν +Bs (r)

ν ,

are computed to obtain the reduced Jacobian J(r) = (J(r)
ν ,ν ′)(ν ,ν ′)∈(M∪FΓ )2 defined by the square ma-

trices of size #C +1

J(r)
ν ,ν ′ =

∂Rν

∂X p (r)
ν ′

(X (r)
D )+

∂Rν

∂X s (r)
ν ′

(X (r)
D )Asp (r)

ν ′ ,

and the reduced right hand side B(r) = (B(r)
ν )ν∈M∪FΓ

defined by the vectors of size #C +1

B(r)
ν =−Rν(X

(r)
D )− ∑

ν ′∈M∪FΓ

∂Rν

∂X s (r)
ν ′

(X (r)
D )Bs (r)

ν ′ .

2. Computation of the solution of the reduced linear system

J(r) dX p (r)
D = B(r). (4.5)

3. Update of the unknowns X (r)
ν ν ∈M ∪FΓ with a possible relaxation θ (r) ∈ (0,1]{
X p (r+1)

ν = X p (r)
ν +θ (r) dX p (r)

ν ,

X s (r+1)
ν = X s (r)

ν +θ (r)
(

Asp (r)
ν dX p (r)

ν +Bs (r)
ν

)
.

(4.6)

4. Additional updates of some unknowns in order to satisfy exactly some nonlinear closure laws to be
specified in the following paragraphs.

The step (4) of the above algorithm allows to propose different improvements of the basic Newton-
min algorithm that are detailed in the following paragraphs.
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Table 4.1 Primary unknowns of the degree of freedom ν depending on the active complementary constraints of the Newton-min
algorithm.

ν ∈FΓ ν ∈M

ql,atm
ν qg,atm

ν ,Pc,ν ,(Cl
i,ν )i=1,#C−1

1− ∑
i∈C

Cg
i,ν Pg

ν ,S
g
ν ,(Cl

i,ν )i=1,#C−1
1− ∑

i∈C
Cl

i,ν 1− ∑
i∈C

Cl
i,ν

Pg
ν −Pl

ν qg,atm
ν ,ql,atm

ν ,Tν , Sg
ν Pg

ν ,Tν ,(Cl
i,ν )i=1,#C−11− ∑

i∈C
Cl

i,ν (Cl
i,ν )i=1,#C−2 1− ∑

i∈C
Cl

i,ν

ql,atm
ν qg,atm

ν ,Tν ,(C
g
i,ν )i=1,#C−1

1− ∑
i∈C

Cg
i,ν Pg

ν ,Tν ,(C
g
i,ν )i=1,#C−1

Sl
ν Sl

ν

4.1.1 Basic Newton-min algorithm

The basic version of the Newton-min algorithm only enforces at each iterate the following nonlinear
closure law for ν ∈M ∪FΓ :

Pg
ν −Pl

ν = Pc(S
g
ν).

Our objective for this basic Newton-min algorithm was to use no projections of the physical unknowns
onto their physical bounds. However, in order to obtain the convergence of the Newton-min algorithm,
it was necessary to project the molar fractions of a present phase within the range say [−0.2;1.2] at each
Newton iterate.

4.1.2 Newton-min with projection on the complementary constraints

In order to obtain a better convergence of the Newton-min algorithm, all the complementary constraints
of type min(X1,X2) = 0 are enforced at the initial guess and at each Newton iterate. In addition, Pg

ν −Pl
ν =

Pc(S
g
ν) is also enforced at each Newton iterate and the following physical ranges are imposed on the molar

fractions of a present phase and on the saturations:
if Sα

ν > 0 then 0≤Cα
i,ν ≤ 1, i ∈ C , α ∈P,

Sα
ν > 0, α ∈P,

∑
α∈P

Sα
ν = 1.

An additional improvement also studied in the numerical section is to test the appearance of a missing
phase using the molar fractions at equilibrium with the present phase rather than their linear Newton
updates.

4.1.3 Newton-min with projection on the complementary constraints and thermodynamic equilibrium

In addition to the previous updates, the molar fractions Cᾱ which are secondary unknowns (see Table
4.1), complemented by the temperature if both phases are present, are updated in order to verify the
following closure laws at each Newton iterate: min

(
Sᾱ

ν ,1− ∑
i∈C

Cᾱ
i,ν

)
= 0,

f g
i (P

g
ν ,Tν ,C

g
ν) = f l

i (P
l
ν ,Tν ,Cl

ν), i ∈ C

for all ν ∈M ∪FΓ . Note that the first equation is already satisfied if only one phase is present as Sᾱ
ν = 0.
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5 Validation of the soil-atmosphere evaporation boundary condition

In this subsection, the solutions of the non-isothermal liquid gas Darcy flow coupled either with the
soil-atmosphere evaporation-outflow boundary condition or with a full-dimensional gas free flow, are
compared. The full-dimensional free-flow model is a non-isothermal compositional Reynolds Average
Navier-Stokes (RANS) gas flow. The coupling conditions at the interface between the free-flow and
porous-medium domains are those introduced in [30]. They assume the vaporization of the liquid phase in
the free-flow domain and account for the gas molar fraction and molar and energy normal flux continuity,
the liquid gas thermodynamic equilibrium, the no slip condition and the normal component of the normal
stress continuity.

We consider a 2D test case from [7] which simulates the mass and energy exchanges occurring
within deep geological radioactive waste disposal at the interface between a geological formation with
low permeable porous medium and a ventilation excavated gallery. The data set is derived from lab
experiments and in accordance with the deep disposal center for French radioactive waste project. In
this test case, the porous medium initially saturated with the liquid phase is dried by suction in the
neighbourhood of the interface between the porous and free-flow domains. The gas phase penetrates the
porous domain and the liquid phase is vaporized in the free-flow domain.

As exhibited in Figure 5.1, the porous-medium domain is defined by Ωpm = (0, l)× (h f f ,hpm) with
l = 100 m, h f f = 5 m, hpm = 20 m. It corresponds to the computational domain of the Darcy flow
model coupled with the soil-atmosphere evaporation-outflow boundary condition at the interface Γ =
(0, l)×{h f f }. The computational domain (0, l)× (0,hpm) of the coupled Darcy and full-dimensional
free-flow models is the union of the porous medium domain Ωpm and of the free-flow domain Ω f f =
(0, l)× (0,h f f ).

0m 100m
0m

5m

20m
Dirichlet: Pl = 38 atm, Sl = 1,
T = 303 or 333K, Cl

w = 1

Neumann:
thermally isolated and
impervious

Neumann:
thermally isolated

and impervious

u0(y),T = 303K,Hur = 0.5 Pout = 105 Pa

Dirichlet for the velocity;
Neumann for the molar and energy transport

Fig. 5.1 Computational domain of the coupled Darcy and full-dimensional free-flow models.

0m 100m
5m

20m
Dirichlet: Pl = 38 atm, Sl = 1,
T = 303 or 333K, Cl

w = 1

Neumann:
thermally isolated and
impervious

Neumann:
thermally isolated

and impervious

Atmospheric boundary condition

Fig. 5.2 Computational domain of the Darcy flow model coupled with the soil-atmosphere evaporation-outflow boundary condi-
tion.

A single rocktype defined by the Callovo Oxfordian clay (Cox) is considered in the porous medium
with the homogeneous porosity φ(x) = 0.15 and isotropic permeability ΛΛΛ(x) = K× I with K = 5 ·10−20
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m2. The relative permeabilities and capillary pressure are given by the following Van Genuchten laws
with the parameters n = 1.49, m = 1− 1

n , Pr = 15 · 106 Pa and the residual liquid and gas saturations
Sl

r = 0.4, Sg
r = 0 (see Figure 5.3).

kl
r(S

l) =


0 if Sl < Sl

r,

1 if Sl > 1−Sg
r ,√

S̄l
(

1− (1− (S̄l)
1
m )m
)2

if Sl
r ≤ Sl ≤ 1−Sg

r ,

kg
r (S

g) =


0 if Sg < Sg

r ,

1 if Sg > 1−Sl
r,√

1− S̄l
(

1− (S̄l)
1
m

)2m
if Sg

r ≤ Sg ≤ 1−Sl
r,

Pc(Sl) = Pr((S̄l)−
1
m −1)

1
n if 0 < S̄l ≤ 1,

with

S̄l =
Sl−Sl

r

1−Sl
r−Sg

r
.
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Fig. 5.3 Relative permeabilities (left) of both phases kα
r , α = g, l and capillary pressure Pc (right) as functions of the liquid

saturation Sl of the Callovo Oxfordian clay.

The liquid and gas phases are a mixture of two components, the water denoted by w and the air de-
noted by a. The gas molar density is defined by the perfect gas law ζ g = Pg

RT , with R= 8.314 J.K−1.mol−1

and the liquid molar density is fixed to ζ l = 55555 mol.m−3. The phases viscosities are fixed to µg =
18.51 · 10−6 Pa.s−1 and µ l = 10−3 Pa.s−1. The gas fugacities are given by Daltons law for an ideal
mixture of perfect gas f g

i = Cg
i Pg, i = a,w. The fugacity of the air component in the liquid phase is

given by Henry’s law f l
a = Cl

aHa(T ) with the temperature dependent Henry constant Ha(T ) = Ha1 +
(Ha2−Ha1)

T−T1
T2−T1

where Ha1 = 6 ·109 Pa, Ha2 = 1010 Pa, T1 = 293 K and T2 = 353 K. For the water
component in the liquid phase, the fugacity is taken from [37]

f l
w =Cl

wPsat(T )exp
(
− Psat(T )−Pl

ζ lRT

)
,

where Psat(T ) is the vapour pressure of the pure water given by the Rankine formula

Psat(T ) = 1.013 ·105 exp
(

13.7− 5120
T

)
.

The liquid molar enthalpy hl and the gas molar enthalpy of the water component hg
w are taken from [37].

The gas molar enthalpy of the air component is given by hg
a(T )= cg

p,amaT where cg
p,a = 1000J.K−1.Kg−1
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is the specific heat capacity of pure air and ma = 29 ·10−3 Kg.mol−1 is the air molar mass. The gas molar
enthalpy is then defined by (2.1). The thermal conductivity is fixed to λ = 10 W.m2.K−1 and the rock
energy per unit volume is given by Er(T ) = 2 ·106T in J.m−3 with T in K.

The initial and top boundary conditions in the porous medium are defined by a liquid phase Sl = 1
with pure water Cl

w = 1, Cl
a = 0, a temperature T 0

pm fixed either to 303 or 333 K and an hydrostatic
pressure with 38 atm at the top boundary. The lateral boundaries are considered to be thermally isolated
(no Fourier flux) and impervious (no Darcy flux). The soil-atmosphere evaporation-outflow boundary
condition at the interface Γ is set with no radiation nor precipitation recharge and the outflow liquid flux
is vanishing during the overall simulation in the following test cases.

At the output boundary Γout = {l}×(0,h f f ) of the free-flow domain, the pressure Pout = 105 Pa is the
atmospheric pressure. The velocity at the input boundary Γin = {0}×(0,h f f ) is defined by the uncoupled
turbulent velocity profile

u0(y) =
(

u0(y)
0

)
,

computed from the Prandtl algebraic turbulent model (see [28]), with an average velocity

uin =
1

hff

∫ hff

0
u0(y)dy = 0.5m.s−1,

and such that u0(h f f ) = u0(0) = 0. The temperature at the input boundary Γin is fixed to Tin = 303K and
the input molar fractions to

Cin =

(
Cw,in

1−Cw,in

)
with the relative humidity

PoutCw,in

Psat(Tin)
= 0.5.

An homogeneous Dirichlet boundary condition for the velocity and homogeneous Neumann boundary
conditions for the molar and energy transport are used at the boundary (0, l)×{0}. The turbulent vis-
cosity µt used in the free-flow domain to define the RANS stress tensor is given by the Prandtl algebraic
turbulent model as in [28] and computed once and for all from the uncoupled solution in the free-flow
model. The turbulent diffusivity

Dt = Dg +
µt−µg

ρgSc
(5.1)

is deduced using the gas Fickian diffusion Dg = 2 · 10−5 m2.s−1 and the Schmidt number Sc = 1. The
turbulent thermal conductivity is similarly defined by λt = λ g + cg

p,a(µt−µg) with the gas thermal con-
ductivity λ g = 0.026 W.m−1.K−1.

The simulation is run over the time interval [0, t f ] with t f = 200 years, using an adaptive time step
starting with an initial time stepping of 1s and a maximum time step of 10 years. The Cartesian mesh is
uniform in the x direction with Nx = 100 edges and refined exponentially in the vertical y direction on
both sides of the interface Γ to account for the turbulent boundary layer and for the high gradient of the
liquid pressure. More precisely, the porous-medium mesh is defined by the parameters

Ne > 0, Ny > Ne, r > 1, ∆yr > 0,

such that h f f +∆yr(rNe −1) < hpm. Numbering the y-edges (yi,yi+1), i = 1, · · · ,Ny +1 from bottom to
top, we set

yi =


h f f +∆yr(ri−1−1), 1≤ i≤ Ne +1,

yNe+1 +(i−Ne−1)
hpm− yNe+1

Ny−Ne
, Ne +2≤ i≤ Ny +1.

The numerical performances of the Darcy flow model coupled with the soil-atmosphere boundary con-
dition are assessed on the following meshes
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Ny = 30 with Ne = 10, r = 1.58, ∆yr = 1.43 ·10−2,

Ny = 60 with Ne = 20, r = 1.28, ∆yr = 1.02 ·10−2,

Ny = 90 with Ne = 30, r = 1.19, ∆yr = 8.40 ·10−3,

and the solutions of the liquid gas Darcy flow coupled either with the soil-atmosphere boundary condi-
tion or with the full-dimensional gas free flow are compared using the finest mesh with Ny = 90.

The convective molar and energy transfer coefficients are computed from the following low frequency
diagonal approximations of the Dirichlet to Neumann operators related to the uncoupled convection
diffusion equations in the free-flow domains. Let us define the solutions c and T of the following linear
convection diffusion equations:

ζ
g(Pout,Tin)div

(
cu0−Dt∇c

)
= 0 on Ω f f ,

c = 1 on Γ ,

c = 0 on Γin,

∇c ·n = 0 on Γout,

∇c ·n = 0 on (0, l)×{0},

(5.2)

and

div
(

ζ
g(Pout,Tin)

∂hg
w

∂T
(Pout,Tin)T u0−λt∇T

)
= 0 on Ω f f ,

T = 1 on Γ ,

T = 0 on Γin,

∇T ·n = 0 on Γout,

∇T ·n = 0 on (0, l)×{0}.

(5.3)

Then, we set
Hm(x) = ζ

g(Pout,Tin)Dg
∇c ·n f f |Γ , HT (x) = λ

g
∇T ·n f f |Γ , (5.4)

with n f f the normal at Γ oriented outward to the free-flow domain.

Nx×Ny 100×30 100×60 100×90
Basic Newton-min × × ×

Newton-min 157/0/583/147 157/1/699/552 ×with projection
and nonlinear phase appearance criteria 157/0/540/147 157/0/596/502 157/0/615/1012

Newton-min
157/0/543/140 157/0/594/487 157/0/623/988with projection and

thermodynamic equilibrium

Table 5.1 Number of time steps, of time step chops, total number of Newton iterations and CPU time for the three Newton-min
methods obtained with Ny = 30,60,90 and T 0

pm = 303 K.

Figures 5.4 and 5.5 show that the soil-atmosphere boundary condition combined with the convective
molar and energy transfer coefficients (5.4) provides a very good approximation of the coupled non-
isothermal liquid gas Darcy and full-dimensional gas free flow model. The mismatch is larger for T 0

pm =

333 K than for T 0
pm = 303 K on the evaporation rate due to larger variations in time of the convective

molar and energy transfer coefficients not captured by Hm and HT . On the over hand, the temperature
and relative humidity at the interface remains very well approximated in both cases.

Tables 5.1 and 5.2 compare, respectively for T 0
pm = 303 K and T 0

pm = 333 K and for the three meshes,
the numerical efficiency of the Newton-min nonlinear solvers with their different improvements. It is
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Fig. 5.4 Mean relative humidity, mean temperature (in K) and molar flow rate of the water component (in mol.m−2.s−1) at the
interface as a function of time (in years) for both models with T 0

pm = 303 K and Ny = 90.

Nx×Ny 100×30 100×60 100×90
Basic Newton-min × × ×

Newton-min 157/0/552/142 157/0/613/497 182/2/886/1360with projection
and nonlinear phase appearance criteria 157/0/540/145 157/0/597/467 157/0/614/999

Newton-min
157/0/533/138 157/0/586/523 157/0/612/972with projection and

thermodynamic equilibrium

Table 5.2 Number of time steps, of time step chops, total number of Newton iterations and CPU time for the three Newton-min
methods obtained with Ny = 30,60,90 and T 0

pm = 333 K.

shown that the basic Newton-min algorithm fails to converge in this test case and that the use of the
equilibrium phase molar fractions for the phase appearance criteria is necessary to obtain the convergence
for the finest mesh at T 0

pm = 303 K. On the other hand, imposing the thermodynamic equilibrium at each
Newton iterate improves only slightly the convergence.

6 1D and 2D geothermal test cases

In these test cases, the porous medium is homogeneous of porosity φ(x) = 0.35 and of isotropic perme-
ability ΛΛΛ(x) = K× I with K = 1 D. The relative permeabilities are defined by kα

r (S
α) = (Sα)2 for each

phase α ∈P . The capillary pressure function is given by the Corey law (see Figure 6.1)

Pc(Sg) =

{
−b ln(1−Sg) if 0≤ Sg ≤ S1
−b ln(1−S1)+

b
1−S1

(Sg−S1) if S1 < Sg ≤ 1

with b = 2 ·105 Pa and S1 = 0.99. The capillary pressure is regularized for Sg ∈ (S1;1] to allow for the
disappearance of the liquid phase (see Figure 6.1). Since there is no entry capillary pressure (in the sense
that Pc(0) = 0), the complementary constraints min(Pc(Sg),ql,atm) = 0 are equivalent to min(Sg,ql,atm) =
0. It results that the gas saturation can be used in the following test cases as primary unknown at the
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Fig. 5.5 Mean relative humidity, mean temperature (in K) and molar flow rate of the water component (in mol.m−2.s−1) at the
interface as a function of time (in years) for both models with T 0

pm = 333 K and Ny = 90.

interface Γ rather than the capillary pressure Pc in Table (4.1). Different choices, including Pc and a
variable switch between Pc and Sg are compared in paragraph 6.1.2.
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Fig. 6.1 Relative permeabilities (left) of both phases kα
r , α = g, l and capillary pressure Pc (right) as functions of the liquid

saturation Sl .

The liquid and gas phases are a mixture of two components, the water denoted by w and the air
denoted by a. The gas thermodynamic laws are defined by the perfect gas molar density ζ g = Pg

RT , with
R = 8.314 J.K−1.mol−1 and the viscosity µg = (0.361T −10.2) ·10−7 Pa.s. The liquid molar enthalpy
hl and the gas molar enthalpies of each component hg

a, hg
w are taken from [37]. The gas molar enthalpy is

then defined by (2.1). The liquid molar density and viscosity are also from [37] and defined by

ζ
l =

(780.83795+1.62692T +−3.06354 ·10−3 T 2)(1+0.651 Cs)

0.018
mol.m−3, (6.1)

µ
l =

(1+1.34 Cs +6.12 C2
s ) ·10−3

0.02148(T −273−8.435+
√

8078.4+(T −273−8.435)2)−1.2
Pa.s (6.2)



Title Suppressed Due to Excessive Length 19

with the salinity fixed to Cs = 35 · 10−3 Kg.Kg−1. The mass density is defined by ρα = ∑i∈C Cα
i miζ

α

with the molar masses ma = 0.029 and mw = 0.018 Kg.mol−1. The vapour pressure Psat(T ) is given by
the Clausius-Clapeyron equation

Psat(T ) = 100exp
(

46.784− 6435
T
−3.868 log(T )

)
,

and the Henry constant of the air component is set to Ha = 108 Pa. The molar internal energy of each
phase is considered to be equal to its enthalpy. Finally, the fugacities are defined by

f g
i =Cg

i Pg, i = a,w,
f l
a =Cl

aHa,

f l
w =Cl

wPsat(T )exp
(
− Psat (T )−Pl

1000RT/0.018

)
.

6.1 1D geothermal test cases

The aim of the 1D test cases is to study the soil-atmosphere evaporation-outflow boundary condition
introduced in section 3 and in particular the appearance and disappearance of the liquid outflow. The
domain is a box of length (0 m,11000 m) and heigh (−3000 m,1000 m) meshed with 1000 cells in
the vertical direction. The initial condition is defined by a liquid phase Sl = 1 composed of pure water
Cl

w = 1, Cl
a = 0 at hydrostatic pressure with Pl = 1 atm at the top boundary and a linear temperature

between the temperature 300 K at the top boundary and the temperature 550 K at the bottom boundary.
The lateral boundaries of the domain are thermally isolated (no Fourier flux) and impervious (no Darcy
flux). In addition to the fixed temperature 550 K, we impose at the bottom boundary an input molar flow
rate qw,in < 0 composed of pure liquid water. The thermal conductivity is fixed to λ = 3 W.m2.K−1 and
the rock energy per unit volume is given by Er(T ) = 2 ·106T in J.m−3 with T in K.

The soil-atmosphere evaporation-outflow boundary condition developed in section 3 is imposed at
the top boundary. The short and long wave radiation coming from the atmosphere and reaching the soil
surface is fixed to (1−a)Rs+Ra = 340 W.m−2 and the soil emissivity to ε = 0.97. The convective molar
and energy transfer coefficients are set to Hm = 0.69 mol.m−2.s−1 and HT = 29×Hm = 20 W.m−2.K−1.
The far field atmospheric conditions are set to Cg,atm

a,∞ = 0.99, Cg,atm
w,∞ = 10−2, T atm

∞ = 300 K and Patm = 1
atm, corresponding to a relative humidity of 0.5. The precipitation recharge is not considered in these
1D test cases.

The simulations are run with t f = 1200 years using an adaptive time stepping starting with an initial
time step of 6 days and with a maximum time step of 700 days.

6.1.1 1D geothermal test case with appearance and disappearance of the outflow

In this test case, as exhibited in Figure 6.2, the time-dependent input molar flow rate

qw,in(t) =

−2.9 ·10−2 for 0 < t ≤ 300 years,
0 for 300 < t ≤ 900 years,
−1.45 ·10−2 for 900 < t ≤ t f .

in mol.m−2.s−1 is imposed at the bottom boundary in order to test the appearance and disappearance of
the liquid outflow.

Figures 6.3 and 6.4 show the time evolution of the phase pressures, temperature and gas saturation
both at the top cell and at the top boundary. Figure 6.5 exhibits the solutions obtained at the end of each
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Fig. 6.2 Input molar flow rate qw,in(t) at the bottom boundary as a function of time.

1D geothermal
Basic Newton-min 1880/252/12813/773

Newton-min 804/12/3552/215with projection
and nonlinear phase appearance criteria 850/24/3912/245

Newton-min
835/17/3812/247with projection and

thermodynamic equilibrium

Table 6.1 Number of time steps, of time step chops, total number of Newton iterations and CPU time for the Newton-min algo-
rithms for the dependent on time input molar flow rate.

period at times t = 300,900,1200 years.

Table 6.1 shows that the numerical performances are drastically increased when enforcing the com-
plementary constraints of type min(X1,X2) = 0 to hold exactly at each Newton iteration. The nonlinear
appearance criteria slightly increases the total number of Newton iterations compared with the linear ap-
pearance criteria. Enforcing the thermodynamic equilibrium at each Newton iterate improves the Newton
convergence but it still remains worse than the one obtained with linear appearance criteria.

Fig. 6.3 Relative humidity and gas and liquid molar flow rates (in mol.m−2.s−1) as functions of time, obtained for the dependent
on time input molar flow rate.

Since there is no entry capillary pressure in this test case, the liquid outflow complementary con-
straints 3.15 is equivalent to min

(
Sg, ql,atm

)
= 0 which explains why, in Figures 6.3 and 6.4, the gas

saturation at the interface is vanishing as soon as the liquid molar flow rate ql,atm is strictly positive. This
can also be observed in Figure 6.5 in the gas saturation blue and red plots.

The solutions exhibited respectively at times t = 300 year and at final time correspond to the sta-
tionary states obtained with their respective input molar flow rate at the bottom boundary. During the
time interval 300 years < t ≤ 900 years, as there is no input flow rate at the bottom boundary, the liquid
outflow and the gas molar flow rate vanish rapidly. The solutions at the end of this time interval exhib-
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Fig. 6.4 Gas and liquid pressures (in MPa), temperature (in K) and gas saturation as functions of time both at the top boundary
and at the top cell, obtained for the dependent on time input molar flow rate.

ited in green in Figure 6.5, show that the liquid phase drops and the gas phase rises by gravity. Only
the gas phase is present at the top of the geothermal column for say z ∈ (978,1000) m. Note also that
the stationary linear conductive solution for the temperature is far from being reached after 600 years
at time t = 900 years. From 630 m to say 845 m, a step in the temperature curve can be noticed. This
step corresponds to the domain where the fluid is diphasic and the air molar fraction in the gas phase
vanishes. Neglecting the Kelvin correction and the dissolution of air in the liquid phase, the equality of
the liquid and gas water fugacities imposes that f g

w =Cg
wPg ∼ Psat(T ). Since f g

w =Cg
wPg is roughly equal

to 1 atm, the temperature is also roughly constant.

6.1.2 1D geothermal test case with entry capillary pressure

In this test case, the input molar flow rate is fixed to qw,in =−2.9 ·10−2 mol.m−2.s−1 during the overall
simulation and the capillary pressure curve includes an entry pressure Pe > 0 defined by the following
regularization of the Corey law (see Figure 6.6):

Pc(Sg) =

{
Pe−b ln(1−Sg) if 0≤ Sg ≤ S1
Pe−b ln(1−S1)+

b
1−S1

(Sg−S1) if S1 < Sg ≤ 1

with Pe = 105 Pa, b = 2 · 105 Pa and S1 = 0.99. The Corey law is again regularized for Sg ∈ (S1;1] to
allow for the disappearance of the liquid phase.

The soil-atmosphere evaporation-outflow boundary condition (3.18) should account for capillary
pressures Pg−Pl in the interval [0,Pe]. It results that, for non zero entry pressures Pe, the gas satura-
tion cannot be used anymore as primary unknown at the top boundary. Following [9,10], let us introduce
a parameter τ and two continuously differentiable non-decreasing functions

S : R→ [0,1] Pc : R→ R,

chosen such that
Pc(S(τ)) = Pc(τ).
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Fig. 6.5 Gas and liquid pressures (in MPa), temperature (in K) and gas saturation as functions of depth (in m) and air molar
fraction in the gas phase obtained at times t = 300 years, 900 years and 1200 years for the dependent on time input molar flow rate.
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Fig. 6.6 Capillary pressure (in Pa) with a non-zero entry pressure as a function of the liquid saturation.

Then, τ is defined as an additional unknown at the top boundary and equation Sg = Sg(Pg−Pl) in (3.18)
is replaced by

Sg = S(τ) and Pg−Pl = Pc(τ).

Two choices of parametrization S(τ) and Pc(τ) are compared in terms of convergence of the different
versions of the Newton-min algorithm in Tables 6.2 and 6.3. The first choice uses the capillary pressure
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scaled by the entry pressure Pe as parameter τ and is defined by

S(τ) =

{
0 if τ ∈ [0,1),
P−1

c (Pe τ) if τ ∈ [1, Pc(1)
Pe

],
Pc(τ) = Pe τ if τ ∈ [0,

Pc(1)
Pe

].

The second choice is based on a variable switch between the capillary pressure and the gas saturation
which is shown in [9,10] to improve the nonlinear convergence and also allows to account for non
invertible capillary functions. It is defined by

S(τ) =

{
0 if τ ∈ [0,1),
τ−1 if τ ∈ [1,2], Pc(τ) =

{
Pe τ if τ ∈ [0,1),
Pc(τ−1) if τ ∈ [1,2].

Tables 6.2 and 6.3 exhibit a significant gain in terms of nonlinear convergence obtained with the variable
switch parametrization compared with the scaled capillary pressure.

1D geothermal
Basic Newton-min 749/11/1874/135

Newton-min 722/4/1487/115with projection
and nonlinear phase appearance criteria 722/4/1489/116

Newton-min
719/5/1515/114with projection and

thermodynamic equilibrium

Table 6.2 Number of time steps, of time step chops, total number of Newton iterations and CPU time for the different versions of
the Newton-min algorithm using the scaled capillary pressure as parameter τ .

1D geothermal
Basic Newton-min 731/4/1558/117

Newton-min 718/2/1439/113with projection
and nonlinear phase appearance criteria 720/1/1428/115

Newton-min
718/2/1439/109with projection and

thermodynamic equilibrium

Table 6.3 Number of time steps, of time step chops, total number of Newton iterations and CPU time for the different versions of
the Newton-min algorithm using the variable switch parametrization.

Fig. 6.7 Relative humidity and gas and liquid molar flow rates (in mol.m−2.s−1) at the top boundary as functions of time.
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Fig. 6.8 Gas and liquid pressures (in MPa), temperature (in K) and gas saturation at the top boundary and at the top cell as
functions of time.

The plots of Figures 6.7 and 6.8 highlight that the liquid outflow appears at the first time step and
remains throughout the simulation. This is due to a high input molar flux at the bottom boundary which
saturates the atmosphere at the top boundary. Figure 6.8 exhibits that the evaporation rate increases with
the temperature at the top boundary while the liquid outflow decreases. The stationary state is reached
after say 200 years for this test case and is very similar to the one obtained at the end of the first period
of the previous test case.

6.2 2D Bouillante geothermal test cases

The two dimensional test case illustrated in Figure 6.9 represents a simplified 2D cut of the Bouillante
geothermal reservoir. It is run with two different upper boundary conditions to compare the solutions
obtained with the evaporation-outflow boundary condition introduced in section 3 and with Dirichlet
boundary conditions. The initial and left side conditions are defined by a pure water liquid phase (Sl = 1,
Cl

w = 1, Cl
a = 0) at hydrostatic pressure and by a linear temperature between the fixed top and bottom tem-

peratures. The bottom boundary is impervious (no Darcy flux) with a fixed temperature of 400 K except
in the interval 8000 m ≤ x≤ 10000 m where a pure water liquid input flux of −2.9 ·10−2 mol.m−2.s−1

at 550 K is imposed. The right side of the domain is supposed thermally isolated (no Fourier flux) and
impervious (no Darcy flux).

The top boundary conditions are test case dependent and are detailed below, except at the seabed
boundary such that z ≤ 0 m, x ≤ 5000 m. The seabed boundary condition is defined by a pure water
liquid phase (Sl = 1, Cl

w = 1) at hydrostatic pressure. The temperature is sea depth dependent. It is linear
between the sea level z = 0 m at 300 K and z =−100 m at 278 K, then constant below z =−100 m.

Two Voronoi meshes, a fine and a coarse mesh, satisfying the admissibility condition of TPFA
schemes at both inner and boundary faces have been generated. The fine mesh contains approximatively
3500 cells (around 4000 degrees of freedom) and is refined at the neighbourhood of the top boundary
with a volume ratio of 115 between the smallest and the largest cells of the mesh. The coarse mesh con-
tains approximatively 1500 cells (about 1700 degrees of freedom) and the refinement at the interface is
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Fig. 6.9 Illustration of the two dimensional domain and its boundary conditions.

characterized by a volume ratio of 22 between the smallest and the largest cells of the mesh.

The simulations are run over the time interval [0, t f ], t f = 1000 years, with an adaptive time stepping
starting with an initial time step of 6 days in the Dirichlet case and of 1 day with the evaporation-outflow
boundary condition. The maximum time step is fixed to 700 days in both cases.

6.2.1 2D geothermal test case with Dirichlet top boundary conditions

In this test case, the upper boundary is composed of three parts corresponding to the seabed (z≤ 0 m and
0≤ x≤ 5000 m) described above, a sunny plain zone (0 < z≤ 500 m and 5000 m < x≤ 8450 m) and a
rainy mountain zone (z > 500 m and 8450 m < x≤ 11000 m). The sunny plain zone is defined with the
same parameters than the far field atmospheric conditions used in subsection 6.2.2, which means that the
relative humidity is fixed to 0.5, the temperature to 300 K and the gas pressure to Pg = 1 atm from which
we deduce that only the gas phase with water and air molar fractions Cg

a = 0.99, Cg
w = 10−2 is present.

The rainy mountain zone is characterized by a diphasic fluid at thermodynamic equilibrium which is
fitted in such a way that the liquid flux entering the domain is similar to the one obtained in subsection
6.2.2 with the evaporation-outflow top boundary condition including the precipitation recharge. Then,
using the simulation results of subsection 6.2.2, the Dirichlet boundary condition for z > 500 m (which
corresponds to x > 8450 m) is defined by


Sg = 0.72, Sl = 0.28,
Pg = 1 atm, Pl =−153671 Pa,
Cg

a = 0.97, Cg
w = 0.03,

Cl
a = 10−3, Cl

w = 0.999,
T = 300 K.

Figure 6.10 exhibits the temperature and the gas saturation in the reservoir at final time. From Figure
6.10, let us remark that the high temperature flux goes out of the reservoir at the top boundary on both
sides of the shoreline approximately in the interval 3575 m ≤ x ≤ 5550 m. Inside this interval, we can
observe a temperature drop in the interval 4800 m < x < 5200 m. It is explained by the evaporation of
the liquid phase which cools down the surface neighbourhood.
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Coarse mesh Fine mesh
Basic Newton-min 638/15/2768/226 1002/98/6124/2041

Newton-min 632/3/2395/220 632/6/2788/944with projection
and nonlinear phase appearance criteria 623/2/2332/211 633/8/2799/1034

Newton-min
604/1/2302/207 623/9/2779/920with projection and

thermodynamic equilibrium

Table 6.4 Number of time steps, of time step chops, total number of Newton iterations and CPU time obtained for the different
versions of the Newton-min algorithm for both meshes with the Dirichlet top boundary condition.

Fig. 6.10 Temperature (in Celsius) and gas saturation at final time (1000 years) obtained with the fine mesh and the Dirichlet top
boundary conditions.

6.2.2 2D geothermal test case with the soil-atmosphere evaporation-outflow boundary condition

In this subsection, the Dirichlet conditions on the sunny plain and rainy mountain zones are replaced by
the evaporation-outflow boundary condition developed in section 3. The radiation, the convective molar
and energy transfer coefficients and the far field atmospheric conditions are those defined in subsec-
tion 6.1. The precipitation recharge is null on the sunny plain zone and fixed to ql,rain = −3.2 · 10−2

mol.m−2.s−1 on the rainy mountain zone with Cl,rain
w = 0.999 and Cl,rain

a = 10−3. This precipitation
recharge corresponds to roughly twice the observed rainfall of 9 m in 2016. It has been doubled since
the reservoir 2D cut is assumed to be along a fault plane which favours the water intrusion.

Coarse mesh Fine mesh
Basic Newton-min × ×

Newton-min 620/5/2803/243 699/25/3850/1334with projection
and nonlinear phase appearance criteria 616/3/2727/246 670/14/3399/1240

Newton-min
622/3/2771/244 646/13/3368/1137with projection and

thermodynamic equilibrium

Table 6.5 Number of time steps, of time step chops, total number of Newton iterations and CPU time obtained for the different
versions of the Newton-min algorithm for both meshes and with the evaporation-outflow boundary condition.

Fig. 6.11 Temperature (in Celsius) and gas saturation at final time (1000 years) obtained with the fine mesh and the evaporation-
outflow boundary condition.
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Figure 6.11 exhibits the temperature and the gas saturation in the whole domain at final time. When
compared with Figure 6.10, one can notice that at final time the evaporation-outflow boundary condition
shifts the high temperature zone to the left, from (3575 m,5550 m) at the top boundary for the Dirichlet
boundary condition to (2950 m,4575 m) for the evaporation-outflow boundary condition. This shift can
be explained by the lower liquid pressure Pl = Patm−Pc(1) provided at the top boundary by the gas
Dirichlet condition than the one provided by the evaporation-outflow boundary condition with in partic-
ular Pl = Pg = Patm between say x = 5000 m and x = 6000 m as a result of the liquid outflow. It also
results that the temperature drop near the shoreline does no longer appear. The gas saturation remains
null below the seabed and the desaturated zone is shifted to x > 5000 m. It can also be noticed that the
desaturated zone is deeper with the evaporation-outflow than with the Dirichlet boundary condition.

In both Figures 6.10 and 6.11, convective thermal instabilities can be noticed which are induced
artificially by the left Dirichlet boundary conditions. An efficient way to get rid off these artefacts is to
model the sea water intrusion taking into account the additional salt component and the dependence of
the liquid viscosity and mass density on the salinity. This is the object of the next test case.

6.2.3 2D geothermal test case with a water-air-salt thermodynamic system

In this subsection, the previous test case of subsection 6.2.2 is extended to take into account the disso-
lution of the salt component in the liquid phase. Since our model assumes all components to be present
in both phases, the liquid and gas phases are now a mixture of three components, the water denoted by
w, the air denoted by a and the salt denoted by s, setting C = {w,a,s}. The liquid molar density (6.1)
and viscosity (6.2) are functions of the salinity Cs in Kg.Kg−1 which is now related to the liquid molar
fractions by

Cs =
Cl

sms

∑i∈C Cl
i mi

,

with ms = 58.44 ·10−3, mw = 18 ·10−3, ma = 29 ·10−3 Kg.mol−1. The air and water fugacities in both
phases are still given by (6.3) and the fugacities of the salt component are defined by{

f g
s =Cg

s Pg,
f l
s =Cl

sHs,

with a very low Henry constant Hs = 10−1 Pa in order to keep the vaporization of the salt component in
the gas phase negligible.

The Dirichlet boundary condition at the interface between the sea and the reservoir now uses the
input salinity Cs = 35 ·10−3 Kg.Kg−1 of the sea water. The input salinity at the left side of the reservoir
as well as at the bottom boundary is fixed to the lower value Cs = 20 · 10−3 Kg.Kg−1. The remaining
boundary and initial conditions are unchanged compared with the previous test case, using a zero salinity
for the initial water in the reservoir and for the precipitation recharge.

Coarse mesh Fine mesh
Basic Newton-min × ×

Newton-min 737/28/3422/415 734/36/4204/2063with projection
and nonlinear phase appearance criteria 717/18/3178/389 706/26/3696/1826

Newton-min
752/32/3449/413 626/31/3808/1863with projection and

thermodynamic equilibrium

Table 6.6 Number of time steps, of time step chops, total number of Newton iterations and CPU time obtained with the different
versions of the Newton-min algorithm for both meshes and the air-water-salt test case.
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Table 6.6 summarizes the convergence behaviour of the different versions of the Newton-min algo-
rithm. Figure 6.12 exhibits the temperature, the gas saturation and the salt mass fraction in the liquid
phase in the reservoir at final time.

Fig. 6.12 Temperature (in Celsius), gas saturation and salinity of the liquid phase (in g.Kg−1) at final time (1000 years) obtained
with the fine mesh and the air-water-salt test case.

It is clear from the comparison between Figure 6.12 and Figures 6.10, 6.11 that the sea water intru-
sion prevents as expected the development of the convective thermal instabilities from the left side of
the reservoir. This is due to the higher salinity of the sea water compared with the left side and bottom
salinity. It also explains why the high temperature zone is shifted to the right in this test case compared
with the previous test case. The plot of the salt molar fraction in the liquid phase at final time in Figure
6.12 clearly shows that the reservoir is splitted in 3 zones depending on the source of the water flux,
the sea water zone on the left, the rain water zone on the right and the high temperature water zone in
between.

Tables 6.4, 6.5 and 6.6 confirm that enforcing the complementary constraints to hold at each New-
ton iterate considerably improves the convergence compared with the basic Newton-min version. For
the evaporation-outflow boundary condition and the air-water-salt test cases, the basic Newton-min al-
gorithm fails to converge while the Newton-min algorithm with projection on the complementary con-
straints exhibits a good nonlinear convergence. In both cases, the nonlinear phase appearance criteria
also improves significantly the nonlinear convergence while in most cases its combination with the ther-
modynamic equilibrium update somewhat reduces this improvement.

7 Conclusion

In this work, a new formulation for non-isothermal compositional gas liquid Darcy flows based on natural
variables and using extended phase molar fractions has been introduced. The non-isothermal composi-
tional model is coupled with an advanced soil-atmosphere boundary condition accounting for the vapor-
ization of the liquid phase in the atmosphere, the convective molar and energy transfer, a liquid outflow
condition as well as the precipitation recharge and the radiation. Newton-min algorithms with various
improvements have been investigated to solve the nonlinear systems obtained at each time step after
an Euler implicit time integration. The numerical efficiency of the formulation and the soil-atmosphere
evaporation-outflow boundary condition have been studied on several 1D and 2D test cases including in
particular a 2D cut of the Bouillante high energy geothermal field in Guadeloupe with both both air-water
and air-water-salt thermodynamic systems. The importance for geothermal simulations of the top bound-
ary condition taking into account the seabed, the sunny plain and the rainy mountain zones is enlightened
by comparison with a fitted Dirichlet boundary condition. Regarding the nonlinear solver efficiency, it
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is shown that enforcing the complementary constraints to hold at each Newton iterate considerably im-
proves the nonlinear convergence. A more robust convergence is also obtained when using the nonlinear
phase apperance criteria rather than its linearized version.
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16. Dentzer: Réévaluation du potentiel géothermique en ile de france. Ph.D. thesis (2016)
17. Droniou, J.: Finite volume schemes for diffusion equations: Introduction to and review of modern methods. Mathematical

Models and Methods in Applied Sciences 24(8), 1575–1619 (2014)
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