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Abstract. Energy efficiency is becoming an important criteria for the
inventory systems. Our aim is to explicitly integrate the energy into the
existing Inventory Routing Problem (IRP). The problem is based on a
multi-period single-vehicle IRP with one depot and several customers.
An energy estimation model is proposed based on vehicle dynamics. A
mass-flow based Mixed Integer Linear Programming (MILP) formula-
tion is presented. Instead of minimizing the distance or inventory cost,
energy minimization is taken as an objective. Benchmark instances for
inventory routing are adapted for energy estimation and experiments
are conducted. The results are compared with those of the distance/
inventory cost minimization.

1 Introduction

The Inventory Routing Problem (IRP) is developed under the Vendor Managed
Inventory (VMI) management model, where the supplier monitors the inventory
level of each retailer and acts as a central decision maker for the long-term re-
plenishment policy of the whole system. With respect to the traditional Retailer
Managed Inventory (RMI), the VMI results in a more efficient resource utiliza-
tion: on the one hand, the supplier can reduce its inventories while maintaining
the same level of service, or can increase the level of service while reducing the
transportation cost; on the other hand, the retailers can devote less resources to
monitoring their inventories while having the guarantee that no stock-out will
occur [7].

Nowadays, the inventory management is faced with a new challenge—the
sustainability. As one of the three bottom lines of sustainable supply chain man-
agement, environmental sustainability is the most recognized dimension [21]. As
shown in [24], energy costs account for about 60% of the total cost of a unit
of cargo transported on road. Since the traditional IRP concentrates solely on
the economic benefits such as transportation costs and inventory costs, there is
definitely a need to study the IRP under the energy perspective.

Under the VMI management model, the IRP combines the inventory man-
agement, vehicle routing and scheduling. There are three simultaneous decisions
to make [13]:



1. when to serve a customer;
2. how much to deliver when serving a customer;
3. how to route the vehicle among the customers to be served.

These three decisions can be transformed for energy optimization.

1. The visiting time to a customer is adaptable. We can choose a delivery time
that is both convenient for the customers and that can also avoid rush hours,
as congestion is one of the main causes of high energy consumption and CO4
emissions.

2. Under the VMI policy, the customer demands are flexible and can be dis-
tributed in different combinations. This property allows us to determine an
optimal set of delivery quantities that is the most effective for energy use
while making sure that stock-out never happens.

3. The order of visit and the vehicle routes are to be determined. It is thus
possible to design a routing strategy that takes the roads with the least
energy costs.

Our purpose is to explicitly incorporate energy issue into the IRP. We intro-
duce an energy estimation method and propose a Mixed Integer Linear Program-
ming (MILP) optimization model that integrates energy cost into the objective
function. Our study concentrates on Decisions 2 and 3 presented above. We dis-
cuss the possible influence of distribution and routing strategy to the energy
consumption of the inventory system. The main contributions of this paper are:
(i) to propose an approach to estimate the energy consumed in the transportation
activities of inventory routing; (ii) to reformulate the IRP to explicitly incorpo-
rate the energy; (iii) to analyse the possible energy savings and the trade-offs
between energy savings, travelled distances and inventory costs.

The remainder of this paper is organized as follows: A brief literature review
is provided in Sect. 2. Section 3 gives a description of the energy estimation
method, defines the problem and presents the mathematical model. After that,
experimentation and results are given in Sect. 4, followed by the conclusion in
Sect. 5.

2 Literature Review

In the literature, there are a lot of studies on the IRP since its origin in the year
1980s. There are also an emerging number of papers on the environmental-related
routing problems these years. However, few researchers have paid attention to
the energy IRP. In the remainder of the section, we start from a general literature
review of the IRPs and the Green Vehicle Routing Problems(GVRPs), then we
discuss the incorporation of these two categories of problems.

2.1 Inventory Routing Problem

The IRP was first studied under the context of the distribution of industrial
gases [10]. Early studies concentrate on the impact of short-term decisions to



long-term inventory management and the combination of inventory management
and vehicle routing [12,19,5]. Later on, various versions of IRP come out but there
is no standard version. The IRP can be generally classified by seven criteria as
shown in Table 1 [15]. For the inventory policy, under Maximum Level (ML)
inventory policy, the replenishment level is flexible but bounded by the capacity
available at each customer. while under Order-up-to Level (OU) policy, whenever
a customer is visited, the quantity delivered is that to fill its inventory capacity.
The IRP can also be considered as deterministic, stochastic or dynamic according
to the availability of information on the demands.

Table 1: Classification of IRPs

Criteria Possible options

Time horizon Finite Infinite

Structure One-to-one One-to-many Many-to-many
Routing Direct Multiple Continuous
Inventory policy |Order-up-to level (OU) Maximum level (ML)

Inventory decisions|Lost sales Back-order Non-negative
Fleet composition |Homogeneous Heterogeneous

Fleet size Single Multiple Unconstrained

Both exact and approximative methods have been studied to solve the IRP.
In [7], an MILP formulation of the IRP is proposed and the first branch-and-cut
algorithm is developed. [17] extended the previous formulation to cases with het-
erogeneous multiple vehicles, with transshipment and also with consistency con-
straints. They also proposed a branch-and-cut algorithm. Heuristic algorithms
are widely applied in early papers, such as assignment heuristic [19], clustering
heuristic [5], and trade-off based heuristic [12]. A randomized greedy algorithm
is developed in [26] for the inventory routing with continuous moves which con-
tains both pick-ups and deliveries. Later papers applied a variety of metaheuris-
tics, such as Greedy Randomized Adaptive Search Procedure (GRASP) [14],
tabu search [6], Adapted Large Neighbourhood Search (ALNS) [16], etc. Recent
solution methods combine heuristic and mathematical programming, yielding
the so-called "matheuristic” algorithms. For example, based on the formulation
in [7], new formulations are proposed in [8]. The authors used a branch-and-cut
algorithm that adds cuts heuristically and compared the new formulations with
existing ones using a large set of benchmark instances.

Two literature reviews are worth mentioning here. A survey of the industrial
aspects of the problem can be found in [3], and the typologies of the problem as
well as their solution methods is reviewed in [15].

2.2 Green Freight Routing

In the literature, there are a growing number of papers about the green logistics
and sustainable supply chain management.



On the transportation side, the eco-driving mechanism is developed to guide
the driver to perform the most fuel efficient operation [1], and the eco-routing
navigation systems aim to identify the most energy-efficient route for a vehicle
to travel between two points in real-time [11].

More and more researchers pay attention to the incorporation of energy into
Vehicle Routing Problem (VRP). In [22], the Capacitated Vehicle Routing Prob-
lem (CVRP) is extended with a new cost function that depends on both the
distance travelled and the load of the vehicle and this problem is defined as
the Energy Minimizing Vehicle Routing Problem (EMVRP). In [29], the Fuel
Consumption Rate (FCR), a factor depending on load, is added to the CVRP
with the objective of minimizing fuel consumption. The authors proposed a
String-model-based simulated annealing algorithm to solve the problem. They
discovered that the difference of the FCR induced by vehicle loads, the diverse
demands and uneven geographical positions of the customers can all influence
fuel cost savings. Focusing on the pollution and C'O, emission generated by the
road transport sector, the Pollution Routing Problem (PRP) is proposed to ex-
plicitly control the Greenhouse Gas (GHG) emission of the transportation [9].
In this paper, the authors discussed the trade-offs between distance, load and
energy minimizing objectives and the influence of parameters such as vehicle
speed and load as well as customers time windows.

A detailed literature review of the GVRP can be found in [23]. In this re-
view, the environmental sensitive Vehicle Routing Problem is divided into three
groups: the Green-VRP for the optimization of energy consumption [22,29]; the
PRP for the reduction of pollution, especially GHG emissions [9]; and the Vehicle
Routing in Reverse Logistics for the collection of wastes and end-of-life product.
It is pointed out that incorporating inventory models with PRP models can be
promising.

The vehicle emission models and their applications to road transportation
planning are reviewed in [18]. Different factors affecting fuel consumption or
vehicle emission are discussed in this paper. However, few models focus on the
energy consumed.

The first paper that incorporates environmental aspects in the IRP is a
case study from the petrochemical industry [27]. They proposed a mathemati-
cal model that integrate C'Oy cost into the objective function. A multi-vehicle
inventory routing with CO, emission is also studied in [2], where a penalty is
added if the COy emission of the planning route is higher than a predefined
capacity of the road. However, neither of them consider the energy estimation,
nor are the influential factors clearly exposed.

3 Problem Statement

The problem in our study is based on a multi-period single-vehicle deterministic
IRP with one depot and several customers. The planning horizon is defined by
a set of periods. The vehicle can leave the depot only once per period. In each
period, it makes a tour around the customers that need to be refilled and returns



to the depot. Stock-out and back-orders are not allowed in this model. Instead
of the distance and inventory minimization, we take energy minimization as
objective. Both the ML and the OU policy are applied to see the influence of
different replenishment strategies to the energy consumption.

In this section, we start with the energy estimation model that explains how
to estimate the energy cost of a road segment with vehicle speed variation. Then
we present the parameters and decisions variables of the problem. Finally we
give the mathematical formulation of the problem.

3.1 Energy Estimation Model

In most of the literature related to IRP, transportation cost is represented by
the distance travelled. This is not suitable for the energy minimization because
energy is influenced by various factors as shown in Sect. 2.2. In the literature
related to energy issue, most models focus on the fuel consumption or COs emis-
sion and most of them depend on vehicle type. Nevertheless, with the emergence
of electric and hybrid vehicles, we find it more appropriate to estimate the en-
ergy used directly. In addition, for the generality of the problem, it is important
that the energy estimation model would apply for every type of vehicles.

According to [25], travelling kinematic variation (accelerations, idle duration,
etc.) obviously affects engine load and by turns the energy consumption. Thus,
in this paper, we propose a general simple model based on vehicle dynamics.
This model would be applicable to European suburban transportation network
with short or medium distances and potentially high traffic intensity. It can give
us a gross estimation of the energy required by a vehicle on a road segment with
speed variation, independent of vehicle type or energy source.

General Parameters. Suppose a vehicle travelling from one location to an-
other. The path of the vehicle between two locations is supposed to be prede-
fined with an average stop rate 7, and the total distance travelled is s. So the
vehicle stops 7 - s times during the trip. The coefficient of friction is a fixed
parameter = 0.01. The gravitational acceleration is g = 9.81m/s2. The envi-
ronmental effects of the road (wind, temperature etc.) as well as the viscosity
of air are ignored. Road slopes, denoted by the rate 6, is deduced from the dif-
ference of altitude between the origin and the destination (sinf = % where
Ah = hend — hbegin)- We consider that on the same segment of road, the vehicle
only climb or descend once. If the vehicle climbs (the destination is higher than
the origin), then 6 is positive. If the vehicle descends, then 6 is negative. The
only forces exerted on the vehicle are the gravity, the rolling resistance and the
traction force of the engine.

In our model, the stop rate 7, i.e., the number of stops per unit of distance
is used to model the dynamics of the vehicle on a fixed segment of road. This
parameter can also represent the traffic condition on the road. More precisely,
with a traffic near free flow, 7 takes a value near 0, which means that the vehicle
goes through the road fluently without any stops; however, with congestion, this



number corresponds to a higher value to indicate a frequent speed variation.
Usually 7 takes a value between 0 and 4 depending on road types [4]. Moreover,
there exists an interrelationship between the distance travelled, the stop rate
and the speed and acceleration of the vehicle, which is generally explained in
Sect. 4.1.

Between every two stops, the vehicle speed is supposed to follow a fixed pat-
tern of variation—acceleration, uniform speed movement and stop. Each time,
the vehicle speeds up from 0 to the target speed V with a fixed acceleration a,cc.
It goes on at this speed for a while and then stops. The stop is supposed to be
instantaneous. This pattern is repeated 7-s times supposing that the vehicle has
no speed at both the starting and the ending point. After each stop, it speeds
up again to the same target speed. This speed profile is shown in Fig. 1.

s velocity
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Fig. 1: The speed variation of the vehicle with time

Energy Consumption Formula. According to knowledge of physics and en-
ergy conservation, under the hypothesis of speed variation presented above, the
energy consumption on a segment between two locations with a distance s can
be calculated as follows:

Acceleration Phase. In this phase, the speed of the vehicle increases from 0 to
the target speed V with a constant acceleration ac.. If we note F,.. the traction
force of the engine, s,.. the distance travelled on the slope 6, E,.. the energy
consumed, and P, (t) the engine power at instant ¢, we have:

v(t) = aacct;
V= Gacctace;
1

Sacc(t) = iaacctz;
Face —mgpcos —mgsinf = mayec;

Pace(t) = Faccv(t) = m(aace + gucos 0 + gsin @) aacct;



taCC
Eace = / Pacc(t)dt'
0

At the end of this phase, the engine power is

pend _ M (@ace + g cos + gsin G)V,

acc
the total distance travelled is

V2
Sacc = .
20acc

The total energy cost per unit of mass is:

1 .
Cace = 5(&aCC + gpcosf + gsin G)QaCthm

1 2
= §V2 + g(pcos @ + sinb) 4 .

ClaCC

Uniform-Speed Phase. In this phase, the vehicle travels in uniform speed for
a distance s,. This distance is computed as the difference between the total
distance s and the total distance travelled in acceleration and deceleration. Since
the deceleration is considered to be instantaneous (sqec = 0), the total distance
travelled at uniform speed is calculated as:
Sy =8—T 8 (Sace + Sdec) = 8 — T S Sacc
with 7 - s the total number of stops. The engine force is constant
Fy = pmgcos + mgsin§ = mg(pcos § + sin ).
The engine power is also constant
Py(t) = F,V = mguV.

The total energy cost per unit of mass in the uniform phase is:

cy = g(pcost +sinbh)(s — 7 s Sacc)-

Deceleration Phase. In this phase, since we consider an instantaneous stop, the
distance sgec and the engine power Pye. is 0, the energy is lost immediately:
FEiee = %sz. The energy cost per unit of mass is

1
Cdec = §V2



Summary of Energy Cost. According to the three-phase analysis of the vehicle
energy, the total energy cost per unit of mass when distance s is travelled with

stop rate 7 is then:
c=¢y+ 78 (Cace + Cdec)-

Finally, we get:
c=g(ucos® +sinb)s + 7sV?>

Since 6 is usually a small value, we can take cosf ~ 1 and sin = %, then the

energy cost would be
c=gus + gAh + 7sV?, (1)

which is the same result as obtained by the law of conservation of energy.

Figure 2 shows the power variation of the vehicle under the previous speed
variation. We can see that each time the vehicle speeds up, there appears a
"peak” of engine power which corresponds to a potentially high energy con-
sumption. This is also reflected by (1)—the more the vehicle stops on a road
segment (7 takes a bigger value), the higher the energy would cost. In addition,
if the vehicle climbs a mountain (Ah positive), more energy would be used.
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Fig. 2: The power variation with time

In this way, we define ¢;; = gus;j +gAhi; + 75545 Vg the energy cost per unit
of mass from location 7 to location j. It is related to the distance travelled s;;,
the variation of altitude Ah;; and the dynamics of the vehicle on the road as

expressed by the stop rate 7;; and target speed V;;.

3.2 Problem Definition

To facilitate the energy estimation, two units are used to measure inventory—
the number of components and the weight in kilograms (kg). The number of
components is used by the customers to represent their inventory levels and
to count the number of packages of delivered goods. The weight is used by
the transporters. It is the physical mass of the components transported by the

vehicle.



The next parts present in details the parameters and variables of the problem.
In particular, mass flow variables are introduced to link the energy estimation
and the inventory management.

General Settings for Routing. The problem is constructed on a complete
undirected graph G = {V,E}. V = {0,...,n} is the vertex set. It includes one
depot denoted by 0 and the customers to visit denoted by the set V. = {1,...,n}.
E = {(i,j) | t,7 € Vand i < j} is the set of undirected edges. There are T
replenishment planning periods. Each period can be a day, a week or even a
month according to the real situation. In each period, only one tour can be
performed. If a tour is presented in a period, the vehicle starts from the depot,
travels through all the customers who need to be served at this period and
returns back to the depot at the end of the period.
Three sets of decision variables zf, z}; and y}; correspond to routing. For each
i € Voot €T, 2! is a binary variable indicating whether customer i is served
at period t. It equals 1 if customer i is served and 0 otherwise. Particularly,
2§ indicates whether the tour at period t is performed (equals 1) or not (0).
For each edge (i,j) € E and each period t € T, xﬁj is an integer variable
indicating the number of times that edge (4,7) is used in the tour of period t.
xfj € {0,1} if 4, j € V. since a customer can be visited only once per period and
zo; € {0,1,2} Vj € V. because direct shipping is allowed between the depot and
a customer. For each arc (i,j) € V x V and each period ¢ € T, variable yf; is a
binary variable to indicate the direction of the vehicle route. It equals 1 if the
vehicle travels from ¢ to j at period t.

The vehicle has a capacity ) expressed in numbers of components and a
mass limit M. The empty vehicle mass, or curb weight of the vehicle is W (in

kg).

Inventory Characteristics. Inventory levels at customers and depot are mon-
itored during the whole planning time horizon. They are summarised at the end
of each replenishment period. The customer demands are described as demand
rates per period. In each period, r; is the number of units of components de-
manded by the customer ¢ € V. In particular, ry is the number of components
made available at the depot in each period. Each customer i € V, has a stocking
capacity C;, while the depot is supposed to have an unlimited stocking capacity.
h; is the inventory storage cost per unit of component per period at customer ¢
or the depot.

Two variables are defined for the inventory management. The variable I} is
the inventory level in number of components at the depot 0 or at the customer
i € V. at the end of period . The variable ¢! is the number of components
delivered to customer ¢ € V. during period t € T'.

Commodity Mass Flow. The energy cost per unit of mass for each arc (i, j) €
V x V is defined at the end of Sect. 3.1. If m;; is the mass (kg) loaded on the



vehicle when traversing from vertex i to vertex j and W the vehicle weight(kg),
the energy cost of the vehicle travelling from ¢ to j is thus:

cij(mi; + W) (2)

As we can see from (2), the total energy cost is a linear function of mass. Mean-
while, the mass or the quantity of products is also an important element in the
inventory management. It is a measurement of the inventory levels. In fact, there
exists a mass flow inside the transportation network and it can serve as a bridge
linking the inventory routing and the energy optimization.

In the traditional IRP formulations presented in [8], a flow formulation exists
to model the inventory flows inside the transportation network. Our model takes
advantage of this formulation. Instead of thinking the flows in terms of number of
components, the mass of the shipped components is considered. In each period,
once we decide the mass transported on each edge of the network , we can deduce
the number of components left at each customer vertex. Or inversely, if we know
how many units of components are delivered to each customer, we can decide the
order of visits and get a mass flow in the transportation network that minimizes
the energy consumed.

In our model, variables mgj are defined as the mass transported by the vehicle
from i to j at period t. They are linked with the vehicle flow variables yfj If the
vehicle does not go from i to j at period ¢ (yj; = 0), mj; is equal to 0.

Figure 3 details the various flows traversing customer ¢ at period ¢. The
inventory flow I! and the demand r;, expressed in number of components, are
associated with the dotted arcs. They describe the variation of the inventory
level of ¢ with time periods. The solid arcs stand for the mass of the incoming
and outgoing products (m§Z and mﬁj respectively). They are used to estimate the
potential energy consumption, with cfj the energy cost per unit of mass on edge
(,7). The weight of one unit of component in kilograms at a customer i € V, is

1
denoted by m;. The difference E( Z ml; — Z mj;) gives the number
JeVA{i} JEV\{i}
of components ¢! delivered to customer i during period t.

t—1
Ii

Fig. 3: The flows passing through customer ¢ at period ¢



3.3 Mathematical Model

With the parameters and the variables defined in Sect. 3, the mathematical
model is explained here. The complete model can be found in the annexe.

Objectives. Two objectives are defined, one for inventory and distance opti-
mization and the other for energy optimization. Equation (3) is the traditional
objective as defined in [8]. It is the sum of the total distance travelled plus the
sum of the inventory storage costs over all the periods.

min Z Z sijyfj + Z Z hiIf (3)

teT (i,j) eV XV teT icV

Equation (4) is the sum of the total energy consumed in the inventory routing
over all the periods. Note that it contains two terms: one is a flexible cost related
to the transported mass of the vehicle mﬁj, and the other is a fixed cost induced
by the vehicle curb weight W.

minz Z cijmﬁjJrWZ Z Cz‘jyfj (4)

teT (i,j)EV XV teT (i,j)eV XV

Constraints. Compared with the basic flow formulation in [8], mass flow vari-
ables take place of commodity flow variables.

Inventory Management. Constraints (5) to (9) are for monitoring the inventory
levels of each location at each period.

Io=15"+ro~ ) a Ve (5)
ieVe

t_ pt—1 ) t .

ILi=I,"-ri+q VieV,teT (6)

g > Cizi — I;"" VieVeteT (7)

g <Ci—I7" VieViteT (8)

q; < Ciz VieViteT (9)

Constraints (5) and (6) ensure that the inventory levels of each station are
coherent from one period to another. The OU inventory policy is ensured by
constraints (7) and (8)—after each delivery, the inventory level of each visited
customer is fulfilled to the maximum. If we delete Constraints (7), the model
becomes one under the ML policy, where the replenishment level is flexible but
bounded by the stocking capacity of each customer. Constraints (9) ensure that
nothing is delivered to a customer ¢ if he is not visited at a period and that
otherwise, the delivered quantity never exceeds the capacity.



Commodity Mass Flow Management. Constraints (10) and (11) are the mass
flow constraints.

Z mo; = Z gim; vteT (10)
JEVe 1€Ve
> omb = > mi; = gim, VieVoteT (11)
JEV JjEV

Constraints (10) ensure that at period ¢, the mass out of the depot is equal to
the total mass transported to all the customers. Constraints (11) ensure that for
each customer 7 at each period ¢, the quantity received is equal to the difference
between the entering and the leaving mass flow.

Vehicle Routing. Constraints (12) to Constraints (17) are typical routing con-
straints.
Degree Constraints

> g, =22 VteT (12)
]ev(‘
Soali+ > al; =24 VieV,teT (13)
jev JEVe
i<t J>t
Directed vehicle flow
> o =20 VteT (14)
JEVe
> oyl =t VteT, i€V, (15)
JjeEV
> yhi=a VteT,ieV, (16)
JjeEV
Tij = yij + Y5 VteT,(i,j) € E (17)

Constraints (12) and (13) are the degree constraints. They define the route of
the vehicle in each period. Constraints (14)—(16) restrain the direction of the
vehicle flow. They link y and z variables to make sure that in each period at
most one tour is performed and that each customer is visited at most once in
each period. Constraints (17) link variables y and z to ensure that each edge is
used at most once in each period.

Vehicle Capacity. Constraints (18) and (19) guarantee that the vehicle capacity
is never exceeded both in number of components and in unit of mass.

S o < s wer )
i€V,

Constraints (19) also link the mass flow and the vehicle flow on the graph. They
make sure that the direction of the vehicle flow is the same as that of the mass
flow.



Variable Domains. Constraints (20)—(26) are the variable domains.

0<I/<Ci Il eN VieV,teT (20)
0<¢ <Q,q €N VieV,teT (21)
0<m{; <M,mj; €N V(i,j) eV XV,teT (22)
z €{0,1} VieV,teT (23)

zi; € {0,1} Y(i,j) € E,i<jteT (24)
xh; € {0,1,2} VjEVo,teT (25)

yi; € {0,1} V(,7) eV xV,teT (26)

All the variables take integer values. Constraints (20) ensure that the inventory
level of a customer never exceeds his stocking capacity. Constraints (21) and (22)
make sure that the vehicle capacity is never exceeded neither in terms of mass
nor in terms of units of components. Note that for variables xf)j, since direct
routing is possible, they can be assigned with value 2.

4 Experimentation and Results

The existing IRP instances proposed in [7] are adapted for energy estimation.
The MILP model is constructed and solved using the adapted instances. An
analysis of the obtained results is presented.

4.1 Data Generation

Information on stop rates 7 and vehicle target speeds V relative to the distance
is added to the benchmark instances proposed in [7]. The correlation within
these parameters is determined based on empirical data of delivery trucks on
real routes provided by [28]. The following part explains how the data set is
generated.

First, two types of road is considered—highway and national route. For each
edge between two locations, the type of road is generated randomly. The target
speed and the number of stops for different types of roads are generated using
different methods. On a highway, the maximum speed is fixed at 110 km/h, and
the number of stops is fixed at 2 stops per edge no matter how long is travelled.
On a national route, the vehicle speed is fixed at 80 km/h and the number of
stops is linearly dependent on the distance with a random error. For all types of
road, the average acceleration rate is fixed at 1.01 m/s2. The instances generated
contain two categories of type proportion: one is with % edges among all the edges
defined as highway and % as national route; the other is with % edges among all
defined as highway and % as national route.

Then, a random number between 1 and 10 is generated for each customer i
to represent the mass of one unit of components m;. Vehicle weight and mass
capacity are correlated according to vehicle information provided in [20].

Last, a random number between 0 to 500 is generated as the altitude h; of
each location .



In total, 64 cases are generated. Each case contains 5 instances. The cases are
categorized by the number of periods (3 or 6 periods of replenishment planning),
the proportion of the inventory storage cost in relation to the transportation cost
(high or low), the inventory replenishment policy (OU or ML), the proportion
of each type of road in the whole map and the number of customers in the map.

4.2 System Settings

The model is realized in C4++ with IBM® ILOG® CPLEX 12.6.1.0 and solved
by the default Branch-and-Bound algorithm with one thread. The operation
system is Ubuntu 14.04 LTS with Intel® Core® i7-4790 3.60GHz processor
and 16 G memory.

The solution process is divided into two phases. In the first phase, the ob-
jective is to minimize the combined cost of transportation and inventory as in
objective function (3). In the second phase, starting with the solution of the first
phase, the same model is solved to minimize the total energy consumption as
computed in objective function (4).

A time limit of 1800 seconds is set for each of the two phases. All the other
settings of CPLEX are as default. The results of both of the two phases are
compared in the next part.

4.3 Result and Analysis

Performance. The dimension of an instance is determined by the number of
periods and the number of customers. The inventory policy (OU or ML) changes
the constraint sets of the model. The combination of these three parameters
define a category of instances. FEach category contains 20 instances. In Table 2,
computation time in seconds of each solution phase (”timel” and ”time2”) and
the solution status within the time limit ("statusl” and ”status2”) are listed for
each category. The values for computation time are average values over all the
instances of the same category. If all the instances of a category can be solved
to optimality by CPLEX, the status is noted ”Optimal”. If part of the instances
of a category can be solved to optimality, then the status is noted ” Optimal(n)”
with a number n in parentheses indicating the number of instances solved to
optimality in this category. Otherwise, if no optimal solution is found in the time
limit by CPLEX, then the average relative gap after 1800 seconds of computation
is reported as the status, and the time value is noted 1800.

As we can see from Table 2, energy minimization is much more difficult to
solve than inventory and transportation cost minimization (time2 >> timel).
This may result from the large possible combination of the values of the mass
flows. The problem is NP since it is an extension of the VRP. It becomes more
difficult as the dimension of the instances increases. For both OU and ML poli-
cies, instances larger than 20 customers with 3 periods or 15 customers with 6
periods can hardly be solved to optimality for energy optimization within the
time limit. The influence of the inventory policy to energy minimization is not
as obvious as in the traditional IRP.



Table 2: Solution Status and Solving Time

ML policy OU Policy

Tin |statusl status2 timel time2 |n [statusl status2 timel time2
5 |Optimal Optimal 0.137 0.0892|5 |Optimal Optimal 0.0992 0.0844
10{Optimal Optimal 1.78 1.60 [10|Optimal Optimal 1.70 1.34
15|Optimal Optimal 12.5 61.5 |[15|Optimal Optimal 16.6  35.0
20|Optimal Optimal(13) 199 976 |20|Optimal Optimal(17) 65.6 749

3 25|Optimal 0.084 67.01 1800 |25|Optimal(12) 0.058 787 1800
30|Optimal 0.12 310 1800 |30|Optimal(12) 0.10 1017 1800
35/Optimal 0.15 183 1800 |[35|Optimal(8) 0.15 1248 1800
40|Optimal(16) 0.17 624 1800 |40|Optimal(2) 0.19 1714 1800
45|Optimal(14) 0.18 756 1800 |45/0.054 0.22 1800 1800
50|Optimal(5) 0.23 1649 1800 |50/0.10 0.27 1800 1800
5 |Optimal Optimal 2.53 0.401 |5 |Optimal Optimal 0.489 0.465
10{Optimal Optimal 45.0 54.9 |10|Optimal Optimal 29.2 55.3

6 15|Optimal Optimal(1) 429 1790 |15|Optimal Optimal(3) 169 1630
20|Optimal(4) 0.098 1639 1800 [20|Optimal(7) 0.10 1487 1800
25|0Optimal(4) 0.14 1575 1800 |[25|Optimal(6) 0.16 1515 1800
30/0.077 0.20 1800 1800 [30]0.075 0.21 1800 1800

Energy Impacting Factors. Suppose that the energy consumption in Phase
1 is noted E; and the consumption in Phase 2 is noted Fs. The energy reduction

in the following paragraphs is defined as the ratio r =

Ey—FEy
E

. In general, the

energy reduction can achieve 35% in average. It is at least 21% and can reach

as high as 46%.

Several factors have an impact on the energy reduction. First, the size of the
instance can influence the potential energy reduction. Larger instances tend to
induce higher energy conservation. Figure 4 shows the variation of the energy
reduction in relation with the number of customers.
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Fig. 4: Number of Customers and Energy Reduction
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Second, there exists a compromise between the inventory/distance cost and
energy cost since all the energy reduction necessitates an augmentation of dis-
tance and inventory costs whatever policy or planning horizon (see Fig. 5). And
it seems that under the configuration where there are more national routes (that
means a more variation of number of stops), this compromise becomes more
obvious.
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Fig. 5: Distance and Inventory Cost and Energy Cost under Different Configu-
rations

Third, energy reduction does not mean distance minimization. Contrary to
the common belief that the shortest route is the one that minimizes the energy,
our study shows that both the distance and the vehicle weight and loads are
important for the energy consumption. The vehicle with a high load tends to
start his journey with the least energy cost road and put to the end the visit
to a customer in an area with high energy cost. For example, Fig. 6 shows the
route of the vehicle under different objectives with 3 periods and OU policy. 6a
is the route obtained with energy minimization. The vehicle serves Customer 1
with 65 kg products in the first period, then makes a tour by visiting customers
3(1230) — 4(766) — 5(478) — 2(280) in the second period (the number in
the parentheses is the mass flow on the corresponding arc), and no delivery is
done in the third period. With distance and inventory minimization (Fig. 6b),
the vehicle serves Customer 3 with 232 kg and 464 kg products in the first and
last period respectively, and in the second period, it visits 4(896) — 2(608) —
5(328) — 1(130). In the route given by energy minimization, only one national
route is used (the arc (3,4)) and the maximal mass flow is distributed on arc
(0,3) which corresponds to the minimum cost per unit of mass in this instance.
In the route given by inventory and distance minimization, however, only one
highway is used (the arc (1,0)) and one delivery is planned in addition in period
3, which induces a lot of energy use because the vehicle weight (4000 kg) is
important in relation to the payload (464 kg).



(a) Energy Minimization. (b) Inventory and Distance
Minimization.

Fig. 6: Vehicle Routes under Different Objectives

The relation between the distance and the energy is influenced by the road
type (or vehicle dynamics such as number of stops and vehicle speed). As shown
in Fig. 7, in a world with more highways (road type "A2N1” means that 2/3
arcs of all the arcs are highway and 1/3 are national route, similar for ” AIN2”),
we can achieve 40% of energy reduction with at most 30% of augmentation of
distance, whereas in ” A1N2” configuration, the augmentation of distance can be
as high as 60% to have an energy reduction of 35%. This confirms the fact that
a free-flow configuration is better for energy use.
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Fig. 7: Distance and Energy Cost under Different Road Types

Last but not least, inventory replenishment strategy can also impact the
energy reduction potential of an inventory routing system (See Fig. 8). Under



ML policy, inventory change to save energy is higher than under OU policy, since
ML policy is more flexible than OU policy.
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Fig. 8: Inventory and Energy Cost under Different Inventory policies

5 Conclusions

Energy consumption is an important aspect in both economical and ecological
view. It becomes more and more important with the sustainable requirement of
the inventory systems. We address the combination of inventory management,
vehicle routing and energy minimization and propose a new mass-flow based
formulation of the IRP with explicit energy consumption. This formulation uses
an energy estimation methods depending on vehicle dynamics (speed) and road
characteristics (stop rate per kilometre and slope). This estimation gives us an
energy cost function that is linear to the total mass. In this formulation, the
mass is added as a decision variable and the energy cost function is considered
as an objective. Our first experimentation shows that there is a great potential
in improving the energy efficiency in the inventory routing.

Various parameters can have an impact on the energy consumption. From
the transportation aspect, vehicle speed and number of stops are important. The
improvement of energy can be higher on a road with congestion. On the inven-
tory management side, inventory strategy can influence the energy consumption.
Under the condition that no customer is in stock-out, the ML policy provides
much more flexibility for energy minimization than the OU policy.

Further works include modelling of traffic networks, so that different traffic
conditions as well as vehicle speed levels could be considered in the decision
process. More data are needed from the real world to accomplish this work.

The inventory routing model needs to be improved to better control the time
and quantity of each delivery. In fact, the traditional IRP is very aggregated in
terms of inventory levels and delivery time since all the inventory monitoring



is summarized in periods. In reality, however, there are two time scales for the
routing and inventory management. It is in small scale (minutes or hours) for
the vehicle routing because traffic conditions can change in a day, while for the
inventory management it is in large scale (days or months) according to the real
application. The model should incorporate these two time scales so that there is
no loss of information.

Heuristics are being studied to speed up the computation. Especially with
realistic data, larger number of customers or longer decision periods is common.
The extension of the problem to a multi-objective one is also a promising track
of study.
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Annexe

The energy minimizing IRP mathematical model with OU inventory policy is
presented below.
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