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Sound-Source Localization in Range-Dependent 
Shallow-Water Environments Using

a Four-Layer Model

Xun Wang, Shahram Khazaie, Dimitri Komatitsch, and Pierre Sagaut

Abstract—Sound-source localization in shallow water is a diffi-cult 
task due to the complicated environment, e.g., complex sound-speed 
profile and irregular water bottom reflections. Full-wave numerical 
techniques are currently able to accurately simulate the propagation of 
sound waves in such complex environments. How-ever, the source 
localization problem, which generally involves a large number of 
sound propagation calculations, still requires a fast computation of the 
wave equation, and thus a simplified model is well advised. In this 
paper, a four-layer model is considered, which is able to approximate 
a wide range of shallow-water envi-ronments, particularly those in 
summer conditions. More specif-ically, the medium is assumed to be 
horizontally stratified and vertically divided into four layers, and the 
sound speed in each layer is assumed to be constant or varying 
linearly. Under this assumption, the wave propagation can be rapidly 
computed via a classical wave number integration method. The main 
contribution of this paper is to show the suitability of the four-layer 
model in terms of source localization in a complex (range-dependent) 
envi-ronment. The sound-speed profile is assumed to be vertically 
irreg-ular and horizontally slowly varying and the bottom is nonflat. 
In the forward problem, sound propagation in complex underwater 
environments is simulated via a time-domain full-wave simulation 
approach called the spectral-element method. The source localiza-tion 
error due to model imprecision is analyzed.
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I. INTRODUCTION

S
OUND source localization in shallow water is a chal-

lenging problem due to the complexity of the underwater

environment. The complex nature of the sound-speed distribu-

tion, which may be heterogeneous and imprecisely known, is
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especially important [1]–[8]. Particularly, source localization

in range-dependent environments [9]–[14], which may involve

ocean bottom slopes and horizontal variations in sound speed

and density due to, for example, salinity, temperature, and

internal waves, has become of significant interest in recent years.

To precisely localize a sound source, the first step consists

in modeling the sound propagation in the underwater envi-

ronment. For this purpose, various numerical methods can be

employed; for example, finite-difference methods, boundary-

element methods, classical low-order or spectral-element meth-

ods (SEMs) have proven to be efficient tools to simulate sound

propagation in a realistic and complicated medium [15], [16].

However, for a high-frequency source, to be accurate, numerical

methods require a large number of mesh elements. Furthermore,

in the underwater source localization problem, the sound prop-

agation range is long and signal processing techniques require

a large number of computations of the sound field. The above

reasons imply that the numerical methods involve high com-

putational costs. Other solutions for simulating wave propaga-

tion in a range-dependent environment are based on the normal

mode approach [17] or parabolic equations [9], [10], [18]. How-

ever, these techniques still involve a large amount of numerical

computations and are constrained to some specific cases; for

example, the environment can be divided into a sequence of

range-independent regions. For the above reasons, the model

used for sound field computation is always simplified; for ex-

ample, using a planar multilayered model in which the sound

speed varies linearly in each layer (range independent) [19]–

[23], such that the wave propagation can be rapidly computed

based on simpler techniques.

In this paper, a four-layer model is considered for model ap-

proximation in the inverse problem by its availability in terms of

giving accurate source localization in complex range-dependent

environments is studied. The sound speed is assumed to be hor-

izontally stratified; the vertical profile in the water column con-

sists of two separate constant layers, between which the sound

speed linearly varies. Moreover, a semi-infinite fluid bottom is

considered, in which the sound speed is constant. The densi-

ties in the water column and ocean bottom are both constant

but with different values. It has been mentioned in [1] that this

sound-speed profile is able to approximate a kind of shallow

water medium, particularly those during the summer months.

The depth-separated wave equation under this assumption can

be analytically solved [19]. A rapid computation of sound
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propagation between any two points in the medium can thus

be obtained, which only needs to calculate a onefold numeri-

cal integration (inverse Hankel transform) based on the wave

number integration method [15], [19], [20].

This paper studies the applicability of this simplified model

in terms of source localization in a realistic environment. More

specifically, the localization error in a range-dependent envi-

ronment is quantified, e.g., nonflat ocean bottom or horizontally

varying sound speed. In the forward problem, the sound prop-

agation in a range-dependent environment is simulated via a

time-domain full-wave simulation technique called the SEM

[24], [25]. This approach is a formulation of the finite-element

method (FEM) that uses high-degree polynomials as elemen-

tal basis functions. The accuracy of this numerical method for

sound wave simulation in the ocean has been validated [16].

The underwater environment is considered in a 3-D space but

the wave equation is assumed to be independent of the hori-

zontal azimuth, thus the 2-D axisymmetric version of SEM can

be used [26]. We thus use the open-source code SPECFEM2D

[16], which is available at geodynamics.org, to simulate the

sound wave propagation in the time domain.

In this paper, two matched-field processing (MFP) approaches

[2]–[5], [15], [27]–[30] are used as the signal processing tech-

niques for source localization. Conventional MFP [31], [32]

maximizes the power output of a point source, which leads

to a maximum likelihood estimate of the source location and

strength [33]–[35]. Minimum variance distortionless response

filter, or Capon’s MFP [36], [37], minimizes the variance at the

output of a linear weighting of the sensors subject to unit gain.

Compared to the conventional MFP, this approach returns a su-

perresolution estimate and compresses the level of side lobes,

but it needs a relatively large number of samples to guarantee

the full rank of sample covariance matrix and is more sensi-

tive to environmental parameter uncertainties. More detailed

introduction for the two MFP approaches and other versions of

MFP, as well as their comparison can be found in review papers

[27], [33].

The plan of this paper is as follows. Section II introduces

the four-layer model and the solution of wave equation for this

model. The sound-source localization methods are briefly pre-

sented in Section III. Then, numerical examples are introduced

in Section IV. A summer Mediterranean shallow-water sound

speed is approximated by the four-layer model, and the influ-

ence of nonflat bottom and horizontally varied sound speed on

the source localization is investigated. Finally, conclusions are

drawn in Section V.

II. SOUND PROPAGATION IN A FOUR-LAYER SHALLOW

WATER ENVIRONMENT

In this section, the sound propagation in shallow water with a

four-layer model is considered, as illustrated in Fig. 1. A sound

source r0 = (x0 , y0 , z0) is placed in the underwater region {r =
(x, y, z) : z ∈ [0, d)}, where d > 0 stands for the water depth

(the water bottom is assumed to be flat for now in this simplified

model). The sound speed in this region is horizontally stratified,

continuous with respect to z, and in the vertical direction consists

of two separate constant layers, with a layer in between in which

Fig. 1. Shallow-water environment with a four-layer sound-speed profile
c(z). The cross and circles represent the source and measurement locations,
respectively.

k2(z) varies linearly with respect to depth (the sound speed c(z)
is thus pseudolinear [15]). Here, k(z) = 2πf/c(z) is the wave

number and f is the frequency. The bottom is represented by an

infinite fluid half-space {r = (x, y, z) : z ∈ [d,∞)} in which

the sound speed is constant. The sound-speed profile is shown

on the left of Fig. 1 and is represented as follows:

c(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

c1 , z ∈ [0, d1)
√

1

az + b
, a > 0, z ∈ [d1 , d2)

c2 , z ∈ [d2 , d)

c3 , z ∈ [d,∞)

(1)

where the coefficients a and b are

a =
c2
1 − c2

2

c2
1c

2
2(d2 − d1)

, b =
c2
2d2 − c2

1d1

c2
1c

2
2(d2 − d1)

. (2)

In both the water column and the ocean bottom, the density is

assumed to be constant

ρ(z) =

{

ρ1 , z ∈ [0, d)

ρ2 , z ∈ [d,∞).
(3)

The wave equation for the displacement potential, denoted

by ψ̃, as a function of the spatial coordinate r = (x, y, z) and

time t, which exists because the density is constant in each layer

[15], is governed by

(

∇2 −
1

c2(z)

∂2

∂t2

)

ψ̃(r, t) = δ(r − r0)St (4)

where St is the deterministic function of the source signal in

the time domain, and δ is the Dirac delta distribution. Taking a

Fourier transform of both sides of (4) with respect to t results

in the Helmholtz equation for the sound field ψ(r, f) in the

frequency domain

(

∇2 + k2(z)
)

ψ(r, f) = δ(r − r0)Sf (5)

where Sf is the Fourier transform of St . The sound pressure is

obtained from the displacement potential as
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p(r, f) = ρω2ψ(r, f) (6)

where ω = 2πf is the angular frequency.

Note that by assuming that the sound source is omnidirec-

tional, the sound field produced by the source only depends on

the depth and on the horizontal range. For this reason, a cylin-

drical coordinate system is chosen, i.e., the spatial coordinate

is denoted by r = (r, z, φ), where r and φ stand for the hori-

zontal range and azimuth, respectively. By applying the Hankel

transform

f(kr , z) =

∫ ∞

0

f(r, z)J0(krr)rdr (7)

to (5), the depth-separated wave equation is obtained
[

∂2

∂z2
+ (k2(z) − k2

r )

]

ψ(kr , z) = Sf
δ(z − z0)

2π
(8)

where kr is the horizontal wave number. Note that (8) can be

solved analytically, as recalled in Appendix A. Then, by apply-

ing an inverse Hankel transform on ψ(kr , z), i.e.,

ψ(r, z) =

∫ ∞

0

ψ(kr , z)J0(krr)krdkr (9)

the sound field at any point can be computed. Here, the inte-

gral (9) is computed numerically based on the wave number

integration method as recalled in Appendix B.

III. SOUND-SOURCE LOCALIZATION

In this section, the MFP methods for solving the source lo-

calization problem are briefly recalled. As shown in Fig. 1,

M measurement stations are placed at r′m = (x′
m , y′

m , z′m ),
m = 1, . . . , M , and the sound pressure measurements are de-

noted by pt = (p1t , . . . , pM t)
⊤, where t = 1, . . . , T is the num-

ber of snapshots and ⊤ stands for the transpose operator. The

Green’s function for pressure (with unit amplitude), which cor-

responds to the sound propagation from the source r0 to r,

is obtained from (5) and (6). Let G(r, r0) denote the Green’s

function and G(r0) = (G(r1 , r0), . . . , G(rM , r0))
⊤ represent

the vector of Green’s functions at the measurement locations.

Then, the acoustical measurement has the theoretical expression

pt = SG + nt (10)

where S is the amplitude of the source signal and nt is an M -

dimensional complex-valued random vector representing the

measurement error. The sample covariance matrix can be esti-

mated based on the T snapshots: K̂ = 1
T

∑T
t=1 ptp

H
t where H

is the Hermitian transpose. The sound source can then be local-

ized using the conventional and Capon’s MFP methods [27]:

r̂0 = arg max
r0

GH (r0)K̂G(r0)

|G(r0)|2
(11)

and

r̂0 = arg max
r0

1

GH (r0)K̂−1G(r0)
(12)

respectively. It is worth noting that to guarantee the full rank of

the sample covariance matrix, the Capon’s MFP method needs

to use a relatively large number of snapshots (greater than the

rank of the sample covariance matrix) or regularization methods

[38] . By contrast, the conventional MFP works even if only one

snapshot is available.

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are performed.

Section IV-A recalls the principles of SEM that is used in the

forward problem to simulate the wave propagation and mea-

surements in a complex environment. Then, sound-source lo-

calization using the four-layer model is studied. A summer

Mediterranean shallow-water sound-speed profile is considered.

The influence of an additional range-dependent variation of the

medium (nonflat water bottom and horizontal-sound-speed vari-

ation) is quantified in Sections IV-B and IV-C.

A. Sound Propagation in a Complex Environment Using SEM

The sound propagation in a complex underwater environ-

ment is realized via SEM, which is a time-domain full-wave

numerical approach. The accuracy of this numerical method,

particularly for sound wave simulation in ocean acoustics, has

been validated in the literature [16]. In this section, the wave

equation is assumed to be independent of the horizontal az-

imuth, therefore as mentioned above the 2-D axisymmetric ver-

sion of the SEM [26] is used. The water depth is d = 100 m

(in the next section a nonflat bottom will be considered, but its

average water depth will be 100 m). A real summer Mediter-

ranean shallow-water sound-speed profile (the data used are

from [15, Fig. 1.15]) in the water column is shown by the solid

line in Fig. 2; its linear approximation is represented by the

dashed line. The sound speed in the bottom is assumed to be

1800 m·s−1 . The density in the water column and ocean bot-

tom is respectively ρ1 = 1000 kg·m−3 and ρ2 = 1800 kg·m−3 .

The source signal is a Ricker wavelet, i.e., the second deriva-

tive of a Gaussian function, with dominant frequency f0 =
100 Hz. To ensure the accuracy of the SEM, the size ∆x of

each element must be smaller than ∆xmin = λmin = 6.04 m,

wherein λmin ≈ v2/(2.5f0) is the minimum typical wavelength

for which there is significant energy in the medium. Besides, ac-

cording to the Courant–Friedrichs–Lewy stability condition of

the time-integration scheme, the time step ∆t should be smaller

than C∆xmin/v3 = 0.0013 s, where C is the Courant number,

which for the SEM is typically 0.4. We thus select an element

length ∆x = 1 m (each element includes nine Gauss–Lobatto–

Legendre integration points in each direction and thus 81 points

in total) and a time step ∆t = 2 × 10−5 s, which ensure the

accuracy of the wave propagation simulation. Moreover, the

considered maximum horizontal range is 10 km, thus the total

measurement time is set to 5 s such that the direct propagation

and the main reflections of sound wave all pass through the

measurement stations. By performing a discrete Fourier trans-

form, the sound pressures in the frequency domain can then be

obtained.

Fig. 3 compares the sound pressure at the frequency f =
100 Hz at r′m = (2000, 0, z′m ) m, z′m = 5, 10, . . . , 95, obtained

based on the wave number integration method (crosses) and

the SEM (circles), in which the sound speed in both cases is

the linearized one (i.e., the four-layer model). Both real and
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Fig. 2. Sound-speed profile in the summer Mediterranean (solid line, the data
used are from [15, Fig. 1.15]), and its approximation using a four-layer model
(dashed line).

Fig. 3. Real (left) and imaginary (right) parts of sound pressure measurements
with the four-layer sound-speed profile, obtained from the wave number integra-
tion method (crosses) and the SEM (circles). The measurements are performed
at a horizontal distance of 2 km from the source, at depths z ′m = 5, 10, . . . , 95.

imaginary parts of the pressure normalized by the correspond-

ing maximum values among the 19 measurements are shown.

This example illustrates the accuracy of both the wave num-

ber integration method and the SEM. Here, we remark that the

computation time of the wave number integration method for

obtaining the results in Fig. 3 is very short (especially com-

pared to SEM), approximately a few seconds on a personal

Fig. 4. Real (left), imaginary (middle) parts and absolute value (right) of
sound pressure measurements obtained from the four-layer sound-speed profile
using the wave number integration method (crosses) and the real sound-speed
profile using the SEM (circles). The measurements are performed at a horizontal
distance of 5 km from the source, at depths z ′m = 5,10, . . . , 95 m.

PC. Then, we consider the more realistic sound-speed profile

(the solid line in Fig. 2) and the corresponding sound pressures

are calculated using the SEM. The circles in Fig. 4 show the

normalized real part, imaginary part and norm of the sound

pressure at r′m = (5000, 0, z′m ) m, z′m = 5, 10, . . . , 95, as well

as the corresponding results (crosses) with sound-speed approx-

imation (d1 = 15 m, d2 = 70 m, c1 = 1537.5 m·s−1 , and c2 =
1510 m·s−1 , as shown in Fig. 2) using the wave number integra-

tion method. In this case, due to the mismatch of the sound-speed

profile between the irregular one and its linearized approxima-

tion, the simplified model cannot perfectly replicate the phase

of sound pressure but the amplitude is relatively precise. Note

that if the data generator for the inverse problem could precisely

compute the measured pressure as in Fig. 3, the localization,

which essentially matches the measurement to the model by

tuning the corresponding model parameters, would be easy. The

main purpose of this paper is to evaluate the performance of the

localization methods under the model and data uncertainties like

the case in Fig. 4. It has been shown in [28] that the MFP ap-

proaches are robust with uncertainties since they can efficiently

deal with phase error. In the following, the limitations of MFP

approaches are tested in more complex and practical scenarios:

An additional range-dependent variation of the underwater en-

vironment is considered, in which we will study and quantify

the source localization accuracy.

B. Sound-Source Localization With Irregular

Bottom Interfaces

In this section, we study the source localization error with

respect to bottom interface irregularities. As a reference, the

localization error, which is defined by the L2 distance between

the source location estimate and its actual value

e(r̂0) = ‖r̂0 − r0‖2 (13)

with only sound-speed approximation is first plotted. In the

forward problem, the data generation is realized via the SEM

4
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Fig. 5. Source localization error (absolute error and error relative to wave-
length) in shallow water, along with its 95% confidence interval, due to measure-
ment noise and sound-speed linear approximation. SNR varies from −10 dB to
10 dB. The actual sound-speed profile and its approximation follow the solid
line and the dash line in Fig. 2.

with the irregular sound-speed profile (the solid line in Fig. 2).

Gaussian random noise with various signal-to-noise ratio (SNR)

is added to obtain the data for the inverse problem and T = 220

snapshots are used, which guarantees the full rank of the sam-

ple covariance matrix. Here, SNR is defined by 20 log10(p̄/σ),
where σ is the standard deviation of the Gaussian random

noise and p̄ is the average sound pressure. Note that by the

Shannon–Nyquist sampling theorem [39], [40], the resolution

of leak localization is approximately half of a wavelength.

Therefore, throughout this section, both absolute error and er-

ror relative to wavelength λ is plotted and the error less than

a half-wavelength is considered as “acceptable.” The coordi-

nates of measurement stations are r′m = (5000, y′
m , z′m ) m,

y′
m = −1000,−600, . . . , 1000 and z′m = 5,15, . . . , 95. Fig. 5

shows the localization results of conventional and Capon’s

MFPs with various SNR from −10 dB to 10 dB; the average

localization error and the corresponding 95% confidence inter-

val obtained from 30 computations (with different realizations

of random noise) are plotted. For high SNRs, the error tends to

0.5 m (around 0.02λ), instead of 0, which can be assumed as the

error due to sound-speed approximation. Note that this error is

small, which implies that the linear approximation of the sound-

speed profile is reasonable in the sense of source localization.

As the noise level increases to SNR = −10 dB, the error of both

methods increases but Capon’s MFP has a relatively higher er-

ror. However, both errors are acceptable (≪ 0.5λ) even for a

high noise level SNR = −10 dB.

Then, nonflat water bottom is considered. The data are gen-

erated via the SEM with the irregular sound-speed profile and a

sinusoidal bottom interface (i.e., range dependent)

d(x) = 100 + Ab sin(λbx/(2π)) . (14)

Fig. 6 shows the sound field in this case at the time snapshots

0.154, 0.259, 0.609, and 0.756 s, with Ab = 8 m and λb =

Fig. 6. Snapshots of sound propagation at times 0.154, 0.259, 0.609, and
0.756 s with the summer Mediterranean sound-speed profile (the solid line in
Fig. 2) and with a sinusoidal bottom with λb = 400 m and Ab = 8 m in (14).

Fig. 7. Sound-source localization in the summer Mediterranean using a four-
layer model. The water bottom is a sinusoidal function with period λb = 1000 m
and amplitude Ab = 5 m in (a) and (b) and Ab = 7 m in (c) and (d). The source
localization methods are conventional MFP in (a) and (c) and Capon MFP in
(b) and (d). The distance between the sound source and the measurement plane
is 5 km and the frequency is 100 Hz.

400 m in (14). We then perform the source localization assuming

the (range independent) four-layer sound-speed profile and flat

bottom surface. To evaluate the localization performance of the

MFP methods, we first plot the ambiguity surface [28] in the

source plane x = 0 (by 2-D plotting the output function in (11)

or (12) with fixed x = 0) in Fig. 7, where λb = 1000 m. When

Ab = 5 m [Fig. 7(a) and (b)], both methods return an acceptable

estimate of sound-source location, although with slight errors.

By contrast, when the maximum variation of water depth (Ab )

is increased to 7 m [Fig. 7(c) and (d)] the source localization is

not robust: The reconstructed sound field of conventional MFP

exhibits a spurious secondary source and the estimate of Capon’s

MFP has a large error.

Then, Fig. 8 plots the source localization errors for different

amplitudes of the sinusoidal bottom surface, λb = 1000 m in

Fig. 8(a), (c), and (e) and λb = 400 m in Fig. 8(b), (d), and

(f), and SNR is 20 dB in Fig. 8(a) and (b), 5 dB in Fig. 8(c)

and (d), and −5 dB in Fig. 8(e) and (f). For the low noise
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Fig. 8. Source localization error in shallow water with a sinusoidal bottom.
The period of the bottom is 1000 m in (a), (c), and (e) and 400 m in (b), (d),
and (f). The SNR is 20 dB in (a) and (b), 5 dB in (c) and (d), and −5 dB in
(e) and (f).

level SNR = 20 dB where the influence of noise can be almost

neglected, both source localization methods are robust for Ab ≤
6 m in Fig. 8(a). For the sinusoidal bottom with λb = 400 m, the

errors of both methods are larger than in the previous case (λb =
1000 m) due to the presence of a larger number of slopes: The

localization error is greater than a half-wavelength when Ab ≥
2 m. However, the error of conventional MFP is smaller than

the Capon’s MFP, which shows that the former method is more

robust with respect to modeling error. As SNR decreases (to

5 dB and −5 dB), the localization error increases, except that in

Fig. 8(c) and (d) when Ab = 7 m, the average error of Capon’s

MFP decreases. This is because two large local maxima of (12)

appear [can be observed as in Fig. 7(d)]: when noise is low, the

one corresponding to the spurious secondary source is higher

but a higher noise possibly enables the peak corresponding to

the actual leak location to be higher. Generally speaking, the

influence of noise is relatively small compared to the uncertainty

due to nonflat bottom: The threshold of Ab in the sense of error

less than a half-wavelength (labeled by the dotted lines in Fig. 8)

almost does not change even for a low SNR = −5 dB.

C. Sound-Source Localization With Horizontally Varying

Sound Speed

In this section, a sound speed having a horizontal variation

is considered, which may represent some real cases of sound-

speed profile due to local variation of temperature and salinity.

Note that the sound speed follows the following formula [11]:

Fig. 9. Source localization error in shallow water with a range-dependent
variation sound speed, using the conventional and Capon’s MFP methods. The
coefficient of horizontal variation is h = 250, 500, 750, or 1000.

c(z, T, S) = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+ (1.34 − 0.01T )(S − 35) + 0.016z (15)

where S ∈ [0, 45] is the salinity and T ∈ [0,35 ◦C] is the temper-

ature. In the numerical example in this section, the sound speed

is assumed to be c(x, z) = c0(z) + (x − 5000)/h, where c0(z)
is the range-independent sound speed shown by the solid line in

Fig. 2. This sound-speed profile c(x, z) can represent a linear

variation of salinity or an approximately linear variation of tem-

perature in the horizontal direction. The value h of horizontal

variation is set to 250, 500, 750, and then 1000, which corre-

sponds to different levels of horizontal variation of sound speed.

The bottom surface is flat and the water depth is d = 100 m.

Different distances between the sound source and the measure-

ment plane are considered, from 1 to 10 km. Fig. 9 shows the

source localization errors using the conventional and Capon’s

MFP. When the source-receiver plane distance is less than 7 km,

a high horizontal variation of sound speed (h = 250) results in

a large error, since the sound-speed error in this range has a

large bias. In the three other cases (h = 500, 750, and 1000),

the error is acceptable (almost smaller than a half-wavelength).

When the source-receiver plane distance increases to 10 km,

i.e., the sound-speed errors in the horizontal direction may

compensate each other (the sound speed is overestimated in

short range and underestimated in long range), the errors for

all the four cases are similar and acceptable. Based on this re-

sult, we can conclude that an unbiasedly horizontal-sound-speed

error (the average error in the horizontal range is 0) does not sig-

nificantly affect the sound localization result. Furthermore, the

error of Capon’s MFP is slightly higher than the conventional

MFP, which is similar to the previous result.

V. CONCLUSION

In shallow-water sound-source localization problems, the

sound-speed profile is always simplified such that the sound

propagation can be rapidly computed. In this paper, a four-layer
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model was considered in which the medium was assumed to

be horizontally stratified and vertically divided into four lay-

ers, and in each layer the sound speed was constant or linear.

Based on this assumption, the wave propagation can be eas-

ily computed via a onefold numerical integration. This paper

has evaluated the suitability of this model in terms of source

localization in a realistic environment. The acoustical measure-

ments were simulated via a time-domain full wave simulation

technique called the SEM. The vertical sound speed followed

a summer Mediterranean shallow-water profile. Two cases of

range-dependent variation of the underwater environment were

also considered. First, when the bottom was assumed to be non-

flat, the source localization accuracy with respect to different

levels of bottom irregularity was evaluated. The threshold for

bottom irregularity parameters for accurate source localization

(error less than a half-wavelength) with various noise level was

shown. Second, a horizontally varying sound speed that may

represent variation of temperature and salinity was considered,

which showed that the model simplification of sound-speed pro-

file is reasonable if it is approximately unbiased in the horizontal

direction.

The numerical results in this paper show two types of

range-dependent underwater environments: seabed irregularity

(slopes) and horizontal variation in the water column due to

temperature, salinity, etc. However, real shallow-water environ-

ments are much more complex than these examples and should

be studied in the future. For example, very different seafloors

(gravels, boulders, or very fine mud) can be found within a

propagation range of a few kilometers. Besides, the seabed may

be more reasonably assumed to be made of many layers with

nonparallel interfaces. Generally speaking, to simulate the wave

propagation in these environments, the axisymmetric 2-D SEM

cannot be used but the 3-D version of SEM is necessary, which

requires a higher computation power.

APPENDIX A

SOLUTION OF THE DEPTH-SEPARATED WAVE EQUATION

The depth-separated wave equation (8) with the four-layer

model has a general solution [15], [19]:

ψ(kr , z) = ψg (kr , z) + ψs(kr , z) (A.1)

where ψg (kr , z) is the solution of the homogeneous depth-

separated wave equation [i.e., when the right-hand side of (8)

is 0]

ψg (kr , z)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

A+
1 (kr )e

ikz , 1 z + A−
1 (kr )e

−ikz , 1 z , z ∈ [0, d1)

A+
2 (kr )Ai(ξ) + A−

2 (kr )[Ai(ξ) − i Bi(ξ)], z ∈ [d1 , d2)

A+
3 (kr )e

ikz , 2 z + A−
3 (kr )e

−ikz , 2 z , z ∈ [d2 , d)

A+
4 (kr )e

ikz , 3 (z−d) , z ∈ [d,∞)

(A.2)

and

ψs(kr , z)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Sf
eikz , 1 |z−z0 |

4πikz ,1
1[0,d1 )(z), if zs ∈ [0, d1)

Sf

4π
f−(kr , z)1[d1 ,zs )(z) +

Sf

4π
f+ (kr , z)1[zs ,d2 )(z),

if zs ∈ [d1 , d2)

Sf
eikz , 2 |z−z0 |

4πikz ,2
1[d2 ,d)(z), if zs ∈ [d2 , d).

(A.3)

Here, 1 is the indicator function, the vertical wave numbers are

kz ,i =

{ √

k2
i − k2

r , |kr | ≤ ki

i
√

k2
r − k2

i , |kr | > ki

, ki =
2πf

ci
, i = 1, 2, 3

(A.4)

f−(kr , z)

=
2(ω2a)−1/3 [Ai(ξ0) − i Bi(ξ0))]Ai(ξ)

Ai′(ξ0)[Ai(ξ0) − i Bi(ξ0))] − Ai(ξ0)[Ai′(ξ0) − i Bi′(ξ0))]
(A.5)

f+ (kr , z)

=
2(ω2a)−1/3Ai(ξ0)[Ai(ξ) − i Bi(ξ))]

Ai′(ξ0)[Ai(ξ0) − i Bi(ξ0))] − Ai(ξ0)[Ai′(ξ0) − i Bi′(ξ0))]
(A.6)

where Ai and Bi are Airy functions of the first and second kinds,

ξ is the variable transformation

ξ = (ω2a)−2/3 [k2
r − ω2(az + b)] (A.7)

and ξ0 is obtained by inserting z0 into (A.7). The coefficients

A+
1 , A−

1 , A+
2 , A−

2 , A+
3 , A−

3 , and A+
4 can be computed by en-

forcing the pressure-free boundary at z = 0, i.e.,

ψ1(kr , 0) = 0 (A.8)

and the continuity of vertical displacement and pressure at z =
d1 , d2 , d, i.e.,

∂ψ1

∂z
(kr , δ) =

∂ψ2

∂z
(kr , δ) (A.9)

and

ψ1(kr , δ) = ψ2(kr , δ) (A.10)

where δ = d1 , d2 , d. The solution can obtained by solving the

linear equation

Si = QA (A.11)

if the source is in the ith layer (i = 1, 2, 3). Then, in that equa-

tion, we have (A.12) and (A.13), shown at the top of the next

page, where Ci = Ai − iBi, and then
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A = (A+
1 , A−

1 , A+
2 , A−

2 , A+
3 , A−

3 , A+
4 )⊤ (A.12)

Q =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 1 0 0 0 0 0

ikz ,1e
ikz , 1 d1 −ikz ,1e

−ikz , 1 d1 (ω2a)
1
3 Ai′(ξd1

) (ω2a)
1
3 Ci′(ξd1

) 0 0 0

eikz , 1 d1 e−ikz , 1 d1 −Ai(ξd1
) −Ci(ξd1

) 0 0 0

0 0 (ω2a)
1
3 Ai′(ξd2

) (ω2a)
1
3 Ci′(ξd2

) ikz ,2e
ikz , 2 d2 −ikz ,2e

−ikz , 2 d2 0

0 0 Ai(ξd2
) Ci(ξd2

) −eikz , 2 d2 −e−ikz , 2 d2 0

0 0 0 0 ikz ,2e
ikz , 2 d −ikz ,2e

−ikz , 2 d −ikz ,3

0 0 0 0 ρ1e
ikz , 2 d ρ1e

−ikz , 2 d −ρ2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.13)

S1 = −
Sf

4π

(

0, (ω2a)
1
3
∂f−
∂ξ

(kr , d1),−f−(kr , d1),

(ω2a)
1
3
∂f+

∂ξ
(kr , d2), f+ (kr , d2), 0, 0

)⊤

(A.14)

S2 = −
Sf

4π

(

eikz , 1 z0

ikz ,1
, eikz , 1 (d1 −z0 ) ,

eikz , 1 (d1 −z0 )

ikz ,1
, 0, 0, 0, 0

)⊤

(A.15)

and

S3 =
Sf

4π

(

0, 0, 0, eikz , 2 (z0 −d2 ) ,
eikz , 2 (z0 −d2 )

ikz ,2
,

− eikz , 2 (d−z0 ) ,−ρ1
eikz , 2 (d−z0 )

ikz ,2

)⊤

. (A.16)

APPENDIX B

WAVENUMBER INTEGRATION

Let us briefly recall how the Helmholtz equation (5) can be ob-

tained by numerically computing the inverse Hankel transform

[15], [19], [20]. First, the integration domain in (9) is truncated.

It can be observed that the integral kernel decays rapidly after

the maximum wave number in the medium k2 = 2πf/c2 and

quickly reaches a certain point, denoted as kmax , at which the

matrix Q is singular. The numerical integral is thus truncated

right before kmax .

The depth-separated wave equation ψ(kr , z) contains discrete

singularities in the interval [k3 , k2 ]. For this reason, a complex

contour integration method [15], based on the Cauchy’s residue

theorem, is used to obtain a numerically stable integration: The

integral domain is moved from the real axis (from 0 to kmax )

to the complex plane with a small vertical displacement ǫ (ǫ ≪
kmax ):

ψ(r, z) ≈

∫ km a x

0

ψ((kr − iǫ), z)J0((kr − iǫ)r)(kr − iǫ)dkr .

(B.1)

The right-hand side of (B.1) guarantees the nonsingularity of

the integration and smooths the integral kernel.

The integral kernel of (B.1) oscillates more significantly in

the interval [k3 , k2 ] than in the other two regions [0, k3) and

(k2 , kmax). Therefore, a smaller discretization spacing in the

interval [k3 , k2 ] (denoted by ∆2) than the other two (the spacing

is ∆1 and ∆3) is well advised. Thus, the Helmholtz equation at

each point with range r and depth z can be computed via the

numerical integration of (B.1):

ψ̂(r, z) =

(

∆1

L1
∑

l=1

+∆2

L1 +L2
∑

l=L1 +1

+∆3

L1 +L2 +L3
∑

l=L1 +L2 +1

)

× ψ ((kl − iǫ), z) J0((kl − iǫ)r)(kl − iǫ) (B.2)

where kl s are the discrete points of kr , L1 = k3/∆1 , L2 =
(k2 − k3)/∆2 , and L3 = (kmax − k2)/∆3 .
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