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Abstract

In this paper, we address the problem of optimally querying experts to reduce
set uncertainty. We propose optimal querying strategies for two particular
query formats (local bound and pairwise comparisons) based on two selection
criteria (the minmax and the Bayesian rules). We study the computational as-
pects of the optimal solution in the general case and for the specific monotonic
and multilinear functions. The use of the proposed approach is illustrated in a
common estimation problem in reliability analysis.

Keywords: uncertainty reduction, optimal query, myopic, minimax decision
strategy, pairwise comparisons, local bound queries.

1. Introduction

Epistemic uncertainty, which stems from a lack of knowledge, prevails in
many areas and applications including risk analyses, machine learning, etc.
Contrary to the aleatory uncertainty which is inherent to the system and thereby
irreducible, epistemic uncertainty can be reduced through further data. How-
ever, in many situations, acquiring experimental data may be costly, time-
consuming or technically impossible. In such situations, expert opinions can
be a valuable way to enhance the state of knowledge and hence improve the ef-
ficiency of a decision or the reliability of an estimation in an uncertain context.

Elicitation - the process of querying experts to acquire information - has
been substantially addressed in the probabilistic framework, where an infor-
mation source - the expert - is asked some generic questions, the answers to
which guide the analyst in encoding the expert judgement by probabilities.
Elicitation finds also application in the development of decision support sys-
tems, or in active learning [24] where the analyst interactively queries a source
to label some data to be used in the learning process.

Information acquisition through expert querying often has to be conducted
with limited resources (expert availability, number of queries, focusing capa-
bility of the expert). Therefore, for the elicitation to be effective, careful con-
sideration should be paid to the choice of the queries to ask. First, both the
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questions and its possible answers need to be easily understandable, so that
the expert can focus on providing an informed and reliable answer. Second, to
get the most of the elicitation, queries should be as informative as possible on
the quantity of interest, i.e., they should selected in an optimal way.

How to choose sequences of optimal questions to ask, or even the notion of
optimal queries, has received little attention in the literature. Indeed, the great
majority of elicitation techniques prescribe generic questions, without consid-
ering the consequences of answers on some final goal [2] (the work of Curtis
and Wood [9], settled in a probabilistic context, is an exception). Similar issues
have however been addressed in other problems such as preference elicitation
with pioneering works dating back ten years ago [29, 7] and still thriving to-
day [27, 4, 6]. In the last few years, the use of similar ideas also developed in
active learning [1].

The goal of this paper is to explore similar ideas and propose optimal
querying strategies that allow to reach a given objective in an effective way.
In particular, we are concerned with the objective of reducing epistemic un-
certainty expressed by means of sets. The querying strategies we propose are
adaptive and optimal, i.e., they select, in real time and based on the previous
elicited information, the next best query to ask.

This paper is structured as follows: we first give a general formalization of
the problem in Section 2, before exploring two particularly interesting types of
queries in Sections 3 and 4. These queries, respectively named local bound and
pairwise comparisons, are simple enough to be easily understandable and to
offer computational advantages. Section 5 then explores some specific families
of functions for which these computational advantages become even stronger.
Finally, we apply our results to reliability analysis problems in Section 6.

2. Formal statement of the problem

Let Φ be a continuous function mapping a set of n logically independent
real-valued inputs (x1,x2, ...,xn) to a real-valued output y ∈R. We assume that,
initially, we know the values (x1,x2, ...,xn) to lie in a convex space X 0 ⊂ R

n, so
that

Φ : X 0 → R

x = (x1, ...,xn) 7→ Φ(x) = y.

Denoting byXi =
[
Xi ,Xi

]
⊂R intervals for xi (i ∈N = {1, ...,n}), we will consider

the case X 0 = ×ni=1X
0
i , where X0 are the initial intervals. Given an interval X, a

natural way to quantify the amount of uncertainty in X is by its width

UX = X −X.

Since Φ is continuous, the initial response y corresponding to the initial state
of knowledge on the inputs lies in the bounded interval:

Y 0 = Φ(X 0) = [min
x∈X 0

Φ(x),max
x∈X 0

Φ(x)] = [Y 0,Y
0
]. (1)
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Figure 1: Example 1: initial space X 0 and bounds of Φ .

Depending on Φ , computing the (exact) bounds of Equation (1) can already
be a quite challenging problem. Section 5 discusses this issue in more details,
and investigates specific cases of practical interest for which this problem is
tractable.

Example 1. We consider a very simple function y = φ(x1,x2) = x1 − x2, and where
X 0 = [1,2]× [0,1] (X0

1 = [1,2] and X0
2 = [0,1]). From this, we have

Y 0 = [Φ(X1,X2),Φ(X1,X2)] = [Y 0,Y
0
] = [0,2]

from which UY 0 = Y
0 −Y 0 = 2. The situation is depicted by Figure 1.

The problem we are considering is the following: we want to reduce our
uncertainty UY = Y −Y by asking question to experts about the input variables
xi , to attain some objectives. For instance, we may want to reduce the uncer-
tainty under some threshold UY ≤ s0 or simply reduce the most UY in a given
number of questions. To achieve this, we will iteratively refine the input space
X k into X k+1 ⊂ X k (starting from X 0) by asking questions to an expert.

As expert elicitation is time-consuming and cognitively demanding for the
expert, and economically expensive for the decision maker, we want to ask as
few questions as possible, or to be the most effective possible on those ques-
tions we ask. In other words, we want the querying strategy to be optimal.
This is what we develop in the next sections.

2.1. Queries and answers
Formally, a query Q will come from a space Q of possible queries. Each

query can then receive an answer A lying in a space A1.
At a given iteration (k + 1) of the elicitation process, a query and its answer

(Q,A) will define a subspace of X k , and we will also use (Q,A) to denote this

1To simplify notations, the set of answers is assumed to be the same for all queries. Extension
of the framework to query-dependent answers can easily be done.

3



X 0

X1 = 1 X1 = 2

X2 = 0

X2 = 1
Y 0

Y
0

X 1

21.3

0

1
Y 1

Y
1

(Q,A) =
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Figure 2: Updated space X 1 of Example 2.

subspace. The result of an iteration will be the reduced space

X k+1 = X k ∩ (Q,A) := X k(Q,A).

Once X k is updated into X k+1, we can compute the resulting interval Y k+1 :=
Y k(Q,A) using Equations (1) with the index 0 replaced by k+1. Note that, since
X k+1 ⊂ X k , we do have that Y k+1 ⊆ Y k and

UY k ≥UY k(Q,A), (2)

which ensures that uncertainty will decrease after each question.
In general expert elicitation, it is important to use simple questions so that

the expert can focus her/his cognitive effort on answering the question rather
than understanding it. This is particularly true when the elicitation is made of
many successive questions. In the rest of the paper, we will consider two sim-
ple question types: local bound queries (“xi ≤ α?”, i ∈ N , α ∈ Xi) and pairwise
comparison judgements (“xi ≤ xj”?, (i, j) ∈ N × N\{i}). Both types are quite
natural in many applications, such as reliability or risk analysis where it is
common to ask experts to rank some variables of interest or compare them to
reference thresholds. In addition to being easily understandable, these queries
are easy to respond as the possible answer is either Yes or No. Given a question
of the type Q = {xi ≤ α}? and the answer A = Y es, then the associated subspace
is (Q,A) = {×i−1

j=1X
0
j × [X0

i ,α]×nj=i+1 X
0
j }.

Example 2. Let us pursue Example 1 and consider the question Q = {x1 ≤ 1.3}
with a negative answer, we then have X 1 = [1.3,2]× [0,1] and Y 1 = [0.3,2]

Note that in this paper we assume the expert to be an oracle, so the “I don’t
know” answer is not considered here2.

2Should the expert return “I don’t know” to Q, then a simple heuristic strategy is to remove Q
from the question set Q and then select the optimal one among the remaining ones.
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Figure 3: Schemas of three approaches to optimal querying.

2.2. Query selection strategies
When the analyst has a set of candidate questions Q with possible answers

in A, a query selection strategy consists in defining the best question to ask at
each iteration of the elicitation process. There are at least three main ways to
do so:

• myopically, where at each iteration a single next optimal question is se-
lected and presented to the expert;

• simultaneously, where the analyst knows that he has a “budget” of m
questions, and search for the m optimal questions to ask, without as-
suming that the questions will be asked sequentially (they may even be
answered by different experts);

• sequential, where the analyst knows that he has a “budget” of m ques-
tions, and can determine in which sequence they will be presented. In
contrast with the simultaneous approach, the jth question can depend
on the observed answers so far.

These three frameworks are ordered in terms of increasing complexity, and can
be somehow mixed: for instance, one could consider a “sequential-myopic”
approach where each iteration consists of two sequential questions. Those dif-
ferent approaches are sketched in Figure 3.

This work studies the myopic approach, for the following reasons: it is of-
ten simpler to solve, sometimes allowing for analytical exact solutions, and
does not require to specify the number of asked questions in advance, a partic-
ularly interesting feature in iterative and interactive querying process.

As the goal of the elicitation is to reduce the uncertainty on the system
output Y , the myopic approach, at step k, should search for the question Q
maximizing the uncertainty reduction in the output Y k+1, or equivalently min-
imizing the resulting UY k+1 . However, the interval Y k+1 resulting from Q is
uncertain, as we do not know what the answer toQ will be. We can express the
optimization problem as follows:

Q∗ = argmin
Q∈Q

U cr
Y k(Q, · ), (3)
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where cr stands for the criterion we use to evaluate the value of question Q,
and U cr

Y k(Q, · )
is the potential uncertainty reduction induced by query Q ∈ Q.

Decision theory proposes several rules to make choices in an uncertain context
including:

• Minimin (mm), which reads

Umm
Y k(Q, · ) = min

A∈A
UY k(Q,A). (4)

It corresponds to an extreme optimistic attitude, as it selects the alterna-
tive with the best outcome (the answer A minimizing UY k(Q,A)).

• Minimax (mM) criterion [28]

UmM
Y k(Q, · ) = max

A∈A
UY k(Q,A). (5)

It is a pessimistic criterion that selects the alternative with the worst out-
come (the answer A maximizing UY k(Q,A)). While it may be too conserva-
tive in some situations, it guarantees a minimal improvement.

• Hurwicz’s criterion (H(q)), that reads

U
H(q)
Y k(Q, · )

= (1− q)max
A∈A

UY k(Q,A) + qmin
A∈A

UY k(Q,A). (6)

It is a trade-off between the optimistic and pessimistic strategies, where
q is a coefficient reflecting the decision maker’s degree of optimism.

• Bayesian (B) approach: it assumes the existence of a probability distribu-
tion P over the realizations of the uncertain event (here the answer) and
evaluates a decision by its expected outcome:

UB
Y k(Q, · ) = EP (UY k(Q,A)). (7)

In what follows, we will focus mainly on the minimax and Bayesian selec-
tion strategies, that are by far the most popular in solving optimization prob-
lems, and present computational as well as theoretical advantages for large
families of functions (this was already shown in a previous paper [3] in which
sketch of proofs were presented for the local bound queries). For both query
types, we begin by evaluating the contribution of a couple (Q,A) ∈ Q × A to
the total uncertainty reduction on Y , then we characterize the optimal query
according to the selected criteria.

3. Local bound queries

Local bound queries ask to compare the value of the variable xi to some
reference value α. We denote the set of local bound queries of type “xi ≤ α?”,
with α ∈ Xi by QLB =

{
Qαi , i ∈ N ,α ∈ Xi

}
and the set of answers A = {Y es,No}.
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3.1. The contribution of a bound query
When a question Qαi is asked and an answer A ∈ A is given, then the corre-

sponding subspace is

(Qαi ,A) =


{×i−1
j=1X

0
j × [X0

i ,α]×nj=i+1 X
0
j } if A = Y es

{×i−1
j=1X

0
j × [α,X

0
i ]×nj=i+1 X

0
j } if A =No.

(8)

If only local bound queries are used, then the starting hypercube X 0 = ×ni=1X
0
i

will remain a hypercube after each query. In this case, the space X k+1 resulting
from the combination of X k and the answer to Qαi is ×ni=1X

k+1
i with

Xk+1
j =



Xkj if i , j

Xkj ∩ [−∞,α] if i = j,A = Y es

Xkj ∩ [α,+∞] if i = j,A =No.

(9)

Example 3. Consider the function Φ(x1,x2,x3) = x1x2 − x2x3 with X0
1 = X0

3 =
[0,1], X0

2 = [0.2,1], then we have:

Y 0 = Φ(X0
1,X

0
2,X

0
3) = −1;Y

0
= Φ(X

0
1,X

0
2,X

0
3) = 1

i.e.,
UY 0 = 2.

Assume now we ask the question Q0.5
1 and receive the answer Y es, then

X1
1 = [0,0.5],

Y
1

= Φ(X
1
1,X

1
2,X

1
3) = 0.5,

the lower bound Y 1 = Y 0 and
UY 1 = 1.5.

3.2. Optimal query selection
When local bound queries are considered, the (k + 1)th optimal query to be

selected in Equation (3) can be written as:

Q∗ = (i∗,α∗) = argmin
i∈N

min
α∈Xki

U cr
Y k(Qαi , · ), (10)

where Xki denotes the projection of X k on the ith dimension. Equation (10) is
a two stage optimization problem: we first determine the optimal local bound
value for each input i, and calculate the uncertainty reduction induced by that

7



Algorithm 1: Iterative elicitation for uncertainty reduction (bound queries).

Inputs : X 0, s0, k = 0
while UY k >= s0 do

for i in N do
Compute α∗ = argminα∈Xki

U cr
Y k(Qαi , · )

Compute U cr
Y k(Qα

∗
i , · )

end for
i∗ = argmini∈N U

cr
Y k(Qα

∗
i , · )

Ask query: “xi∗ <= α∗?”
Obtain answer A
Update X k into X k+1 = X k(Qα∗i∗ ,A)
Compute UY k+1

k=k+1
end while

local query; we then select the element i∗ that leads to the highest uncertainty
reduction in y (Algorithm 1).

The major difficulty of Algorithm 1 is the evaluation of α∗ for each possible
variable xi . In what follows, we study in detail the computational complexity
of computing the optimal bound α∗ for the minimax and Laplacian criteria,
and discuss briefly the minimin strategy.

3.2.1. Minimax strategy
For the minimax strategy, finding α∗ for a given xi at a step (k + 1) reads

α∗,mM = arg min
α∈Xki

max(UY k(Qαi ,No),UY k(Qαi ,Y es)
) (11)

The next proposition shows that solving the optimization problem (11) to get
the α∗,mM is equivalent to finding the intersection of the two functionsUY (Qαi ,Y es)

,
UY (Qαi ,No) of α. In practice, a general and efficient method to find the solution

is then to use a dichotomy search on the space [Xi ,Xi].

Proposition 1. Functions UY k(Qαi ,Y es)
and UY k(Qαi ,No) measuring the uncertainty

level on Y k induced by a positive and a negative answer to Qαi and defined on Xki

• are increasing and decreasing in α, respectively, and

• always have a non-empty intersection Mi ⊂ Xki such that

UY k(Qαi ,Y es)
=UY k(Qαi ,No)

for any α ∈Mi (Mi is a single point or an interval).
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Proof. We have that

UY k(Qαi ,Y es)
= max
X k(Qαi ,Y es)

Φ(x)− min
X k(Qαi ,Y es)

Φ(x) (12)

and
UY k(Qαi ,No) = max

X k(Qαi ,No)
Φ(x)− min

X k(Qαi ,No)
Φ(x) (13)

To show that UY k(Qαi ,Y es)
is increasing in α, we need to show that UY k(Qαi ,Y es)

≤

U
Y k(Q

β
i ,Y es)

for α ≤ β. This result follows from the fact that (Qαi ,Y es) ⊆ (Qβi ,Y es),

since
{×i−1
j=1X

0
j × [X0

i ,α]×nj=i+1 X
0
j } ⊆ {×

i−1
j=1X

0
j × [X0

i ,β]×nj=i+1 X
0
j }.

The same reasoning can be applied to UY k(Qαi ,No) to show that it is decreasing in α.
To demonstrate the second part of the proposition, simply observe that :

max
α
UY k(Qαi ,Y es)

=U
Y k(Q

Xki
i ,Y es)

=UY k ,

max
α
UY k(Qαi ,No) =U

Y k(Q
Xki
i ,No)

=UY k ,

where UY k is the uncertainty before the question. These two results stem from the

fact that answering Y es to the question xi <= X
k
i simply brings no information

(and similarly for No). As both functions have the same maximum, are continuous
(since Φ is), and are respectively increasing and decreasing in α, they have at least
one point of intersection.

When Mi is an interval [M i ,M i], we simply take the middle point α∗ =
Mi+Mi/2. This never occurs when one of the two functionsUY k(Qαi ,Y es)

,UY k(Qαi ,No)
is strictly monotonic in α.

In some situations, it may also happen that the intersection occurs on one
of the bounds of Xki for all i, which means that the proposed optimal question
will probably be uninformative, unless the expert answer reduces the interval
[Xi ,Xi] to a point, an unlikely scenario. When this occurs, we use a differ-
ent strategy that defines optimality as the highest reduction of uncertainty, no
more on y, but on xi . This heuristic is equivalent, when Xis are intervals, to
choosing the largest interval i∗ = argmaxiUXki

and to pick the mid of this in-

terval, i.e., α∗ = (Xki∗+X
k
i∗ )/2.

Remark 1. Since UY k(Qαi ,Y es)
and UY k(Qαi ,No) are respectively increasing and de-

creasing functions of α, this means that for a given variable xi , the value α∗,mm =
argminα∈Xki

min(UY k(Qαi ,No),UY k(Qαi ,Y es)
) will be obtained either for α∗,mm = Xki or

α∗,mm = X
k
i . These corresponds to very extreme questions, reducing the interval

Xki either to a point (a quite unlikely outcome in practice) or not changing it at all.
This means that the minimin approach offers little interest in the case of local bound
queries.
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3.2.2. Bayesian strategy
In the minimax approach, we do not use any a priori information about

the likelihood of answering Yes or No. However, this can lead to consider very

unlikely answers, such as answering Y es to Q
Xi
i (as is the case in the minimin

strategy, see Remark 1). Another solution is then to consider a probabilistic
strategy, where we assume the existence of a probability distribution P over
the set of answersA, this probability modelling our subjective beliefs about the
likelihood of getting the different answers. We then evaluate a query Q by the
expected reduction EP (UY k(Q, · )) of uncertainty on y induced by the possible
answers:

UB
Y k(Qαi , · ) =EP (UY k(Qαi , · )) =

∑
A∈A

P (A)UY (Qαi ,A) (14)

α∗,B =arg min
α∈Xki

(P (Y es|Qαi )UY k(Qαi ,Y es)
+ P (No|Qαi )UY k(Qαi ,No

)). (15)

When the available evidence suggests that a quantity xi lies in an interval
Xi , it is common to follow Laplace’s indifference principle and quantify uncer-
tainty by assuming a uniform probability distribution over that set. Under this
assumption, the probability of the positive and negative answers to a question
Qαi are proportional to the width of the sub-interval of Xi they lead to:

P (Y es|Qαi ) = P (Xi ≤ xi ≤ α) =
α −Xi
Xi −Xi

and

P (No|Qαi ) = P (α ≤ xi ≤ Xi) =
Xi −α
Xi −Xi

.

These probabilities can then be modified according to the information we have
(for instance, if we have reasons to think that the true value is closer to one of
the bounds Xi or Xi).

Remark 2. Note that whenUY k(Qαi ,Y es)
=UY k(Qαi ,No) =UY k(Qαi ), then EP (UY k(Qαi ,A)) =

UY k(Qαi ), whatever the values of P . This means that the function UB
Y k(Qαi )

has value

UB

Y k(Qα
∗,mM

i )
= UmM

Y k(Qα
∗,mM

i )
, since the minimax is obtained at the intersection Mi of

UY k(Qαi ,Y es)
and UY k(Qαi ,No). This means that we have

min
Xki

UB
Y k(Qαi , · ) =UB

Y k(Qα
∗,B

i )
≤UmM

Y k(Qα
∗,mM

i )
= min

Xki

UmM
Y (Qαi , · ),

hence the expected uncertainty reduction with a Bayesian strategy is at least as high
as the one obtained by the minimax strategy. However, in contrast with this latter,
the Bayesian strategy does not offer guarantees about the uncertainty reduction, in
the sense that the actual reduction may be lower than the expected one.

Also, while Proposition 1 indicates that α∗,mM can be obtained by a dichotomic
search, this cannot be done in general for the Bayesian strategy, which therefore
potentially requires heavier computations.
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Example 4. Consider the function Φ(x) = x1x2−x2x3+x2 where X0
1 = X0

3 = [0,0.5]
and X0

2 = [0,1]. Figure 4 shows the various strategies for Qα2 . We can see that
the minimax and the Laplacian strategies recommend respectively α∗,mM = 3/4 and
α∗,B = 1/2. Another remark is that UY 0(Qα2 ,Y es)

and UY 0(Qα2 ,No) are both linear. We
will see in the next section that this is true for monotonic multi linear functions.

α

UY 1

0

1

1.5

X0
2 = 0 X

0
2 = 1

UY 0(Qα2 ,Y es)

UY 0(Qα2 ,No)

UB
Y 0(Qα2 )

α∗,mMα∗,B

Figure 4: Optimal recommendations of the minimax and Bayesian strategies.

We have seen that elicitation based on local bound queries leads to com-

putationally tractable computations, provided we can evaluate bounds Y k ,Y
k

efficiently. However, as it involves only one variable per iteration, it may lead
to many questions in high dimensional problems. It also requires the expert
to compare xi with a numerical bound, which may be difficult in some cases.
These two reasons led us to investigate pairwise comparisons queries, that up-
date the state of knowledge on more than one variable per iteration, and do
not involve numerical bounds explicitly. As they remain simple, they are an
appealing alternative or complement to local bound queries.

4. Pairwise comparison judgements

Pairwise comparisons simply ask to compare the values of two variables,
that is to ask for a pair (i, j) whether “xi ≤ xj?”. We denote such a query by
Qi,j . As we assume that each variable has an ill-known yet precise value and
that the n variables describing the system are comparable. The set of pairwise
queries is finite and contains at most n(n− 1)/2 elements corresponding to the
pairs {(i, j) ∈ {1, . . . ,n} × {i + 1, . . . ,n}}.

The set of relevant queries is the subset of pairs (i, j) such that no evidence
exists yet on their ordering. Finding this set can easily be done by encoding
the pairwise comparisons already known at step k of the elicitation process in
an adjacency matrix - a n×n Boolean matrix Mk defined by:

Mk(i, j) =


1 if xi ≤ xj , j , i

0 elseif.
(16)
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x1 x2

x3

Q1,2

?

Figure 5: Example of partial ordering between variables.

The set of relevant queries is then given by

QC =
{
(i, j) ∈ {1, . . . ,n} × {i + 1, . . . ,n} :Mk,+(i, j) =Mk,+(j, i) = 0

}
whereMk,+ is the transitive closure 3 ofMk . Mk,+ can easily be computed using
the Floyd-Warshall algorithm [30], which has a O(n3) complexity.

The initial matrix M0 is such that M0(i, j) = 1 if xi ≤ xj for all x ∈ X 0. If

furthermore X 0 = ×ni=1X
0
i si a hypercube, then M0(i, j) = 1 if X

0
i ≤ X0

j , which is
very easy to check.

Example 5. Consider the case where X0
1 = [1.3,3], X0

2 = [2,3.5], X0
3 = [0.6,1]. The

matrix M0 is given by 0 0 0
0 0 0
1 1 0


and the only possible comparative query is QC = {(1,2)}. The induced partial order
on elements is pictured in Figure 5.

4.1. The contribution of a comparative query
Given a query Qi,j ∈ QC and an answer A, then

(Qi,j ,A) =


{
x ∈ X 0|xi ≤ xj

}
if A = Y es{

x ∈ X 0|xi ≥ xj
}

if A =No,
(17)

and X k ∩ (Qi,j ,A) is no longer a hypercube, as (Qi,j ,A) consists of cutting space
X k into two half spaces along equation xi = xj , and then to consider one of
these half spaces (corresponding to the inequality induced by A). The impli-
cation of X k being no longer a hypercube but a convex polyhedron will be
discussed in Section 5.

3The transitive closure of a binary relation R defined on a set X is the transitive relation R′ on
X such that R′ encloses R and is minimal.
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Figure 6: Projection of X(Q2
1 ,Y es) and X(Q2

1 ,No);

At a given step k+1 whereQi,j is asked, the adjacency matrix is also updated
into 

Mk+1(`, f ) = 1 if ` = i, f = j,A = Y es; (18a)

Mk+1(`, f ) = 1 if ` = j, f = i,A =No; (18b)

Mk+1(`, f ) =Mk(`, f ) else. (18c)

whose transitive closure Mk+1,+ can again be obtained through Floyd-Warshall
algorithm.

Example 6. Going back to Example 3, Figure 6 depicts geometrically the constraint
induced by Q1,2.

If the answer to the query is negative then:

Y 1 = Φ(0.5,0.5,1) = −0.25;Y
1

= Φ(1,1,0) = 1

i.e.,
UY 1 = 1.25.

4.2. Query selection strategy
The set QC of comparative queries being finite, finding the optimal pair in

Equation (3) can be achieved via a brute force search that first calculates the
uncertainty reduction on Y induced by every (i, j) ∈ QC , and then picks the one
that leads to the highest value. Algorithm 2 describes the procedure. When
the selection strategy leads to two or several equally optimal queries, ties can
be broken random.

4.2.1. Minimax strategy
The minimax strategy (4) for comparative queries is given by

UmM
Y k(Qi,j , · ) = max(UY k(Qi,j ,Y es),UY k(Qi,j ,No)). (19)
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Algorithm: Iterative elicitation for uncertainty reduction (comparative
queries).

Inputs : X 0, s0, k = 0, M0,+

while (UY k >= s0) and (QC , ∅) do
for (i, j) ∈ QC do

Compute U cr
Y k(Qi,j , · )

end for
(i∗, j∗) = argmin(i,j)∈QC U

cr
Y k(Qi,j , · )

Ask query: “xi∗ < xj∗?”
Obtain answer A
Compute UY k+1 =U

Y k(Qj
∗
i∗ ,A)

Build Mk+1,+

Update QC
k=k+1

end while

When the Equation
arg min

(i,j)∈QC
UmM
Y k(Qi,j , · ) (20)

has multiple answers, we use a lexicographic ordering between these answers.
That is, ifQi,j andQi′ ,j ′ are both solutions to Equation (20) (they have the same
worst case), then Qi,j is preferred to Qi′ ,j ′ if

min(UY k(Qi,j ,No),UY k(Qi,j ,Y es)) <min(UY k(Qi′ ,j′ ,No),UY k(Qi′ ,j′ ,Y es)).

4.2.2. Bayesian selection
The minimax strategy (7) for comparative queries is given by

UB
Y k(Qi,j , · ) = P (Y es|Qi,j )UY k(Qi,j ,Y es) + P (No|Qi,j )UY k(Qi,j ,No), (21)

where P (Y es|Qi,j ) (resp. P (No|Qi,j )), is the ratio of the volume of the polytope
X k(Qi,j ,Y es) (resp. X k(Qi,j ,No) to the volume of X k . In Example 6, we have
for P (Y es|Qi,j ) > P (No|Qi,j ).

Computing integrals over polytopes is known to be a hard problem. In
particular, computing the volume of a polytope defined by its vertices or facets
is # P-hard [12, 8], so exact values may not be easy to obtain, especially for high
dimensional problems. Computations can however be extremely simplified
when the constraints are independent. In the general case, the volumes can be
efficiently approached using Monte Carlo integration.

Remark 3. Pairwise comparisons are quite interesting, as it is sometimes easier to
compare two quantities rather than comparing a quantity to a numerical value. It
is also easier to search through them, as they are in finite number. However, one of
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their drawback is that they will usually not reduce the set X 0 to a single value, even
if the n(n− 1)/2 comparisons are performed.

Indeed, if the intersection ∩i∈{1,...,n}X0
i = X0

∩ , ∅ of all the initial intervals is non-
empty, then any set X k obtained through pairwise comparisons will always contain
the subset {x : x1 = x2 = . . . = xn,xi ∈= X0

∩}. This also indicates that pairwise com-
parisons alone will have a limited value if all initial intervals taken together have a
large overlap (but may remain quite useful if only some of them have a significant
overlap).

The above remark also tells us that it may be interesting to combine both
queries.

4.3. Combining both query types
Considering both classes, the query set is given by: Q = QC ∪QLB, which

still has the same set of answers A. The elicitation procedure is described in
the following algorithm.

Algorithm: Iterative elicitation for uncertainty reduction (comparative and
LB queries).

Inputs : X 0, s0, k = 0, M0,+

while (U cr
Y >= s0) do

Compute Qα
∗

k∗

if QC , ∅ then
Compute Qi∗,j∗

end if
Q∗ = argminQ∈

{
Qi∗ ,j∗ ,Q

α∗
i∗

} (U cr
Y k(Q, · )

)

Ask query: “Q∗?”
Obtain answer A
Compute UY k+1 =UY k(Q∗,A)

Update X k , QC and Mk,+ if necessary.
k=k+1

end while

From a computational point of view, mixing both query types complicates
the computations as soon as a comparative query is performed, resulting in
a convex set X k that is not a hypercube. In particular, it may complicates

the computations of bounds Y k ,Y
k

significantly. This is discussed in the next
section for specific functions of interest.

5. Computational aspects for specific cases

In this section, we analyse what become of the computations involved in
determining the optimal query at each iteration for specific functions. In par-
ticular, we are concerned with multilinear and monotonic functions.
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5.1. Multilinear functions
A Multi-linear function over variables x1, . . . ,xn is a multivariate polyno-

mial in which the variables are raised to the powers of 0 or 1. It can be written
in the following form:

Φ(x1, ...,xn) =
∑
A⊆N

dA
∏
i∈A

xi (22)

with dA ∈ R real-valued coefficients. These functions form a large class that
encompasses the linear, quadratic, and bilinear functions. As any pseudo-
Boolean function can be rewritten in this form [16], multilinear functions are
encountered in problems where pseudo-Boolean functions have a role, such
as cooperative game theory [22] (where Boolean functions model the payoff of
a coalition of players), multicriteria decision-making [14] (interactions among
criteria are modeled by Boolean functions), combinatorial optimization [31],
reliability theory [20], etc.

The multilinearity of Φ provides nice computational facilities when the
bounds are to be found on a hypercube X . First, it is known [18] that the
upper and lower bounds of a non constant multilinear function are reached at
the vertices of the n-dimensional hypercube of the variables. Actually, multi-
linear functions belong to a family of functions that are locally monotone4 in
every variable, and it is known that the bounds of a function are obtained for
boundary values of variables in which they are locally monotone. This prop-
erty makes the bounds computations in Equation 1 tractable, at least for low
dimensional problems, since the exact solution can be found (greedily) by enu-
merating all the extreme points of the joint space (O(n22n) complexity).

Second, provided that 0 < Xi , the local bound minimax strategy (11) will
produce a unique optimal bound M∗ = α∗,mM due to the fact that UY (Qαi ,Y es)

,
UY (Qαi ,No) are strictly increasing and decreasing, respectively (as the bounds in
Equation (22) will be strictly monotone functions).

When it comes to comparative queries, computing UY (Qi,j ,Y es), UY (Qi,j ,No)

consists in finding the bounds over a multilinear functions in a convex do-
main. However, as Equation (22) is non-convex, this leads to non-convex opti-
misation problems, for which no efficient, exact computation techniques exist.
Customarily, finding global solutions can be done by considering a convex re-
laxation of the original problem [21, 23, 25], which computational costs grow
exponentially as the number of variables increase.

Example 7. Consider the function Φ(x1,x2,x3) = x1x2 − x2x3 with X0
1 = X0

3 =
[0,1],X0

2 = [0.2,1].

4φ is locally monotone in xi if, all other variables being fixed, it is either decreasing or increas-
ing in xi . Function Φ of Example 3 is locally monotone in x2, as it is either increasing or decreasing
in x2 once x1 and x3 are fixed (see ?? for details).
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Figure 7 displays the solutions Φ over X 1 = X 0(Q1,2,Y es) on the plan x3 = 1,
and for which we get

Y 1 = Φ(0,1,1) = −1;Y 1 = Φ(0.5,0.5,1) = −0.25

Note that the optimal solution lies on the boundary of the polytope. Actually,
this result holds for every multilinear optimisation problem with non negative vari-
ables [10, 11]. Hence, if solution lies on a boundary for which xi = xj , this turns
the problem of optimizing Equation (22) into the problem of optimizing a general
polynomial (as xi ,xj can be merged into a variable with a higher degree), a known
NP-hard problem [17].

Y
1

x1

x2

Y 1
0.2

1

0 10.5

x1 = x2

Figure 7: Multilinear optimisation with comparative queries: illustration.

5.2. Increasing (and decreasing) functions
Functions Φ that are increasing (or decreasing) in each variable are also of

practical importance, as they are commonly use in applications such as relia-
bility analysis [20], multi-criteria decision making [14], learning problems [26]
such as ordinal regression [15].

When X k is a hypercube (i.e., when using only local bound queries), then

the computation of Y k ,Y
k

and of UY k is straightforward, as we have when Φ is
increasing

UY k = Φ(X
k
1, . . . ,X

k
n)−Φ(Xk1, . . . ,X

k
n), (23)

If Φ is monotonic, but can be either increasing or decreasing in each variable
xi , computations involved in the calculation of UY k are also significantly facili-
tated as the upper and lower bounds of function Φ are reached on well-known
vertices of the hypercube X k :

UY k = Φ(X
k
I ,X

k
I
)−Φ(XkI ,X

k
I ), (24)

where I denotes the set of variables in which Φ is increasing, and I its comple-
ment.

When Φ is increasing, computing bounds Y k ,Y
k

when also considering
comparative queries remains quite tractable. Given a set of questions, let us
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first denote Xk,LBi ,X
k,LB
i the set of bounds obtained by considering only the lo-

cal bound queries made so far. using Mk,+, let us then consider the bounds

Xki = max
j,Mk,+(j,i)=1

(Xk,LBi ,Xk,LBj ), (25)

and
X
k
i = min

j,Mk,+(i,j)=1
(X

k,LB
i ,X

k,LB
j ), (26)

that are (jointly) reachable in X k for each xi , as they do not contradict any pair-

wise comparison. The bounds Y k ,Y
k

are then given by Equation (23). Note
that this is not necessarily true if Φ is monotonic in every variable, but is in-
creasing in some variables and decreasing in some others. An easy example is
given by considering the function Φ(x1,x2) = x1 − x2 together with the set of
Figure 7.

Proposition 2. Consider X 0 = ×ni=1X
0
i , then for any comparative assessment Qi,j ,

there is a local bound query Qα∗i such that

UmM
Y k(Qi,j , · ) ≤U

mM
Y k(Qα∗i , · )

Proof. Let Φ be increasing (or decreasing) in every variable, and consider the
comparative query Qi,j , meaning that the variable intervals overlap. Since i
and j are exchangeable, there are two situations to consider that are depicted

in Figure 8: the case where X0
i ≤ X

0
j and X

0
i ≤ X

0
j (Figure 8.a), and the case of

nested intervals (Figure 8.b).

Xi Xi
Xj Xj

(a)

Xi Xi
Xj Xj

(b)

Figure 8: Overlap schemes of intervals Xi and Xj .

Let us look at these two cases in details

• case a: in this case, an answer A =No do change X0
i into X1

i = X0
j and X

0
j

into X
1
j = X

0
i , meaning that UY 0(Qi,j ,Y es) ≤ UY 0 . However, an answer A =

Y es will leave both intervals X1
i = X0

i and X1
j = X0

j unchanged, meaning
that UY 0(Qi,j ,Y es) =UY 0 and that the minimax value of this query is

UmM
Y k(Qi,j , · ) = max(UY k(Qi,j ,No),UY (Qi,j ,Y es)) =UY k(Qi,j ,Y es) =UY k−1 .

This means that for pairs of variables in case a, any comparative assess-
ment cannot improve the situation according to the minimax criterion,
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while local bound queries Qα
∗,mM

i or Qα
∗,mM

j can improve the situation,
and are guaranteed to do so if the function is strictly increasing in every
variable.

• case b: the comparative query will only update the largest interval (i.e.,
herein Xi): the positive answer will shift its lower bound, while the neg-
ative answer shifts its upper bound. In this situation

UmM
Y 0(Qi,j , · ) = max(UY 0(Qi,j ,No),UY 0(Qi,j ,Y es))

= max(U
Y 0(Q

Xj
i ,No)

,U
Y 0(Q

Xj
i ,Y es)

)

≥ UmM
Y 0(Qαi ) = max(UY 0(Qαi ,No),UY 0(Qαi ,Y es)

)

For any α ∈ [Xj ,Xj )].

Therefore, also in the case of Figure 8.b every comparative query Qi,j can
be outperformed by a choice of UmM

Y 0(Qαi ).

In conclusion, for every pair i, j there is a local bound query at least as good as
the comparative query involving i, j, hence proving Proposition 2.

Note that Proposition 2 can be extended to the case where X 0 (or X k) al-
ready contains some comparative statements. In such a case, the reduction of
intervals in the proof of Proposition 2 will be propagated to other variables
involved in these comparisons, and the argument still holds. This means that,
in practice, comparative queries would never be selected with a maximin cri-
terion on increasing (decreasing) functions. Yet this does not mean that com-
parative queries have no interest in such problems, as they can be perceived
as more natural or easier to answer by experts. Hence, it may be useful to
start with comparative queries to then switch to local bound queries, in order
to refine the obtained results. We will also see in Section 6 that in practice
comparative queries can sometimes do better than local bound ones.

5.3. Multi linear increasing functions
When Φ is both multi linear and increasing in each direction, there are

interesting properties to compute our optimal strategies in local bound queries
based elicitation. The first property relates to the shape of U cr

Y k(Qαi ,Y es)
and

U cr
Y k(Qαi ,No)

.

Proposition 3. If Φ is a multi linear increasing function, then for every i ∈ N ,
U cr
Y k(Qαi ,Y es)

and U cr
Y k(Qαi ,No)

are linear in α.

Proof. If Φ is increasing in all variables, this means that in Equations (12)-(13),
the variables other than xi in maxΦ(x) and minΦ(x) will always be set to the same
boundary values, hence maxΦ(x) and minΦ(x) will be linear in α if Φ is multi
linear.
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This has several consequences on the computations of strategies:

• Using the local bound queries, the minimax strategy recommends a unique
query bound Mi in Xi , as U cr

Y k(Qαi ,Y es)
and U cr

Y k(Qαi ,No)
intersection will be

a unique point;

• Using the local bound queries: computingU cr
Y k(Qαi ,Y es)

andU cr
Y k(Qαi ,No)

will

require only three computations, as they are linear (requiring each two
evaluations) and as they have the same maximal value. Computing Mi
then comes down to evaluate the intersection point of two lines.

It should be noted that the above remarks may be true for some variables xi
(but not all, as in Proposition 3) even if the function is not increasing. This is
the case in Example 3 and Figure 4 for variable x2.

However, these properties are lost when combining both query formats.
In fact, U cr

Y k(Qαi ,Y es)
and U cr

Y k(Qαi ,No)
become a polynomial function in α when

there are some comparisons involving the i component, with the polynomial
degree being at most the number of such comparisons. This is due to the
fact that changing a lower/upper bound of some variable may also impact the
lower/upper bound of other variables, as indicated by Equations (26)-(25).

6. Application to reliability

In the reliability and safety domain, several analysis such as systems com-
parisons, reliability prediction of newly designed systems (in early design stages),
etc. suffer from the lack of empirical data. This may be due to a high cost of the
data acquisition process, time constraints, complexity, etc. Experts opinions
can be a valuable source of information to enhance the poor state of knowl-
edge.

In this section, we illustrate the use of the optimal elicitation strategies
described previously in reducing uncertainty in system dependability param-
eters. The proposed approach is particularly appealing in reliability for two
reasons. First, both query formats considered in this work are natural and
meaningful. In particular, comparing the performance or the behavior of the
components is quite common, and experts are familar with this question for-
mat. Second, the computations are tractable given the monotonicity of the
reliability functions.

6.1. Estimating the reliability of a system
In the previously considered network S, every component i is either operat-

ing or failing and its state is represented by a Boolean variable ei that associates
0 and 1 to the failed, working state, respectively. The probability that the com-
ponent is functioning is called the elementary reliability:

pi = P r(ei = 1)
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. When the components are independent, i.e., when their state variables are
stochastically independent, the reliability of the system:

R = P r(Φs(e1, ...en) = 1),

can be determined from the reliability of its components via the reliability func-
tion Φ :

R = Φ(p1, ...,pn), (27)

which is the multi-linear extension of Φs [20] and so writes:

Φ(p1, ...,pn) =
∑
A⊆N

dA
∏
i∈A

pi

In practice, the exact expression of the reliability function can be directly gen-
erated using the inclusion-exclusion formula [19] based on determining the
minimal path set (i.e., the minimal set of components that must be in working
state that guarantees the functioning of the system) and cut sets (the minimal
set of components such that if all of them fail, the system is guaranteed to fail
whatever the value of the others components).

For the majority of systems, forming the class of semi-coherent systems, the
structure function is monotonic in each of the n directions, meaning that we
can apply the results of Section 5.3. We now consider the case where variables
pi are known to lie in intervals Pi

6.2. Case studies
We now detail two case studies. The first, focusing on local bound queries,

is a simple illustrative case showing the interest of our approach compared to a
random or a heuristic approach. The second, considering an actual system use
in railways, compares the comparative and local bound queries, confirming
experimentally what has been discussed in previous sections.

6.2.1. Local bound queries: optimal vs heuristic strategies
Let us first explore whether computing optimal answers is worth it. In

order to do so, we compare the performance of the proposed method to two
basic strategies, focusing on local bound queries:

1. a random strategy that compares at each stage the reliability of compo-
nent i, selected at random in N , with some random α ∈ Pi . For the results
to be significant, the performance of the strategy at each iteration is av-
eraged over a high number (herein 1000) of runs.

2. a baseline strategy that asks at each stage about the most uncertain com-
ponent, and the query bound is the midpoint of the largest interval:

Q∗Baseline =
(
i∗,
P i∗ + P i∗

2

)
where:

i∗ = argmax
i∈N

UPi .

21



To make the comparison, we consider a simple series parallel system com-
posed of four independent and non-identical components (Figure 9). The sys-
tem reliability is:

R = p1p2p3p4 + p1p4 + p2p4 + p3p4 − p1p3p4 − p2p3p4 − p1p2p4.

c1

c2

c3

c4

Figure 9: Reliability block diagram of a series parallel system.

Let the initial state of knowledge on the elementary reliabilities be the fol-
lowing: p1 ∈ [0.01,0.99], p2 ∈ [0.01,0.99], p3 ∈ [0.97,0.99], and p4 ∈ [0.7,0.9],
and the true values be: p∗1 = 0.6, p∗2 = 0.7, p∗3 = 0.99, p∗4 = 0.8.

The sequence of questions and their effects on input variables p1, . . . ,p4 us-
ing the baseline strategy can be visualized in Figure 10 which plots the uncer-
tainty on each component at every stage. A drop in the points of component i
at stage k+1 indicates that the kth query of the baseline strategy was about that
component. The magnitude of the drop corresponds to the uncertainty reduc-
tion after the question has been answered. Note that up to the 6th question,
the strategy selected components 1 and 2, those two being the most uncertain.

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

# query

U
p
1

C1

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

# query

U
p
2

C2

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

# query

U
p
3

C3

0 2 4 6 8 10
0.05

0.1

0.15

0.2

0.25

# query

U
p
4

C4

Figure 10: The baseline strategy: the sequence of optimal components.

However, reducing uncertainty on components 1 and 2 does not reduce our
uncertainty on the reliability R, as shows the baseline curve in Figure 11. In
this case the baseline strategy performs actually very bad, not only compared
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to the optimal Bayesian and minimax strategies, but also to the random up
to the 8th query. This is due to the fact that the baseline basically ignores
the impact that a reduction of the input uncertainty will have on the output
uncertainty, or in this case how important are the component uncertainties
with respect to the overall system uncertainty.
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0

0.05

0.1

0.15

0.2

0.25

# query

U
R
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mM
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Figure 11: Minimax, random, and baseline strategies for the case of series parallel system.

This confirms that looking for optimal queries is actually useful, as it com-
pares favourably to simple heuristic strategies in terms of number of questions
asked before reaching a given precision level. This is especially true when
input variables or components do not have symmetric roles in the output un-
certainty.

6.2.2. Local bound and comparative queries: the RBC system
We now focus on comparing the two types of queries explored in detail in

the paper, and to so consider a real-world system used in the European rail-
ways traffic management system: the Radio Block Center system (RBC), whose
role is to collect data about the position of trains and to provide movement
authorisation. Because of the relatively recent exploitation of the system, suf-
ficient data to estimate the reliability of the RBC are lacking, so it is a perfect
candidate for our framework.

The RBC is composed of 5 different components, each of them being re-
dundant. The architecture of the RBC is pictured in Figure 12, where the 2/3
symbol means that the subsystem composed of components 5 works if and only
if at least 2 out of the 3 components work.
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C5
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Figure 12: Reliability block diagram of the RBC.
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The reliability function can be written as:

R = (1− (1− p1)3)(1− (1− p2)2)(1− (1− p3)2)(1− (1− p4)2)ptmr

with
ptmr = (3p2

5)− 2(p3
5))(1− (1− p6)2).

We consider a setting where initial knowledge tells us that the reliabilities
of the RBC components range respectively in [0.3,1], [0.2,0.8], [0.3,1], [0.6,0.7],
[0.3,1], [0.45,0.55], and that the true values are: p∗1 = 0.45, p∗2 = 0.7, p∗3 = 0.6,
p∗4 = 0.68, p∗5 = 0.8, p∗6 = 0.5. Figure 13 shows the uncertainty reduction profiles
(for the minimax and Bayesian strategies) using solely comparative queries,
while Figure 14 also shows the profiles (for the minimax and Bayesian strate-
gies) using solely local bound queries. Proposition 2 indicates that consider-
ing both types of queries would be equivalent to consider solely local bound
queries. About these figures, we can notice that:
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Figure 13: Performance of the pairwise comparisons-based elicitation.

• in both cases, the minimax strategy actually performs better than the
Bayesian one. This shows that in some cases, taking a comparative ap-
proach can actually lead to better results;

• the limitations of using comparative queries, compared to local bound
queries, is quite visible on Figure 14. Indeed, with comparative queries
at most an uncertainty reduction of 37% of the initial one. Although
we cannot expect qualitative information (in the form of simple com-
parisons) to outperform quantitative ones, comparative queries can still
bring some interesting information, and by being simpler can also be
used at the start of the elicitation procedure, as they usually require less
cognitive efforts;
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Figure 14: Profile of uncertainty reduction induced by comparative (C) and local bound questions
(LB) for both the minimax (mM) and probabilistic (B) strategies.

• for local bound queries, the minimax strategy generally requires in aver-
age three less queries than the Bayesian one to reach a similar uncertainty
reduction. This is a noticeable gain, showing that the two strategies can
lead to very different results and are not equivalent.

We said that comparative queries could be useful as a ”warm-up”, as they
are easier to answer. However, the next situation shows that starting by them
could also lead to better (i.e., less queries for a similar uncertainty reduction)
results. Consider now another scenario where the initial state of knowledge
is the following: p1 = [0.4,0.5], p2 = [0.61,0.62], p3 = [0.45,0.85], p4 = 0.45,
p5 = [0.9,1], p6 = [0.46,1], p1 ≤ p3 and p3 ≤ p6. The true values are: p∗1 = 0.45,
p∗2 = 0.615, p∗3 = 0.63, p∗4 = 0.45, p∗5 = 0.95, p∗6 = 0.7.

We consider two strategies: a first one where we ask first all possible com-
parative queries (simpler and easier to answer) then switch to local bound ones,
and a second where just consider local bound queries. Figure 13 shows the re-
sulting profile of uncertainty reduction, as a continuous line for the first strat-
egy, and as a dashed line for the second one.

A quite noticeable result is that the first comparative query (Q2,3) actually
outperform in practice the first local bound query (Q0.57

3 ). However, the two
next comparative queries do not improve much the situation, and in particular
are outperformed by the corresponding local bound queries. This means that if
we had asked only one comparative query to start and then had switch to local
bound queries, we would have obtained a better strategy than those displayed
in Figure 13. This tells us that comparative queries, used in limited number,
may not only be interesting as easy or warm-up questions, but may actually
lead to more efficient elicitation procedure. Also remember that this case study
involves 5 components and that in the scenario only 3 comparative queries are
performed, hence asking all 3 of them was likely to be sub-optimal.
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Figure 15: Profile of uncertainty reduction induced by comparative (C) and local bound questions
(LB) for both the minimax (mM) and probabilistic (B) strategies.

7. Conclusion

In this paper, we have explored the problem of eliciting expert information
in an optimal way to reduce set uncertainty, partly taking inspiration from
recent works in preference learning and elicitation. This is done by considering
questions easily understandable by experts, and by defining a way to compare
the values of these different questions.

While the general framework introduced may face computational challenges,
we have investigated cases of practical interest in which it remains quite tractable.
We have also provided some first results and applications on reliability assess-
ment issues.

This work in can be enriched, complemented, and extended in several ways.
Beyond the obvious ones of investigating other queries and types of questions,
we think two challenging avenues of research are particularly promising:

• adapt the current criteria and define efficient strategy search algorithms
for the simultaneous and sequential versions of the problem (see Fig-
ure 3). Here again, preference elicitation could be a starting point [5];

• combine the current approach, focusing on expert, with experimental
design techniques [13]. Indeed, one could consider an experiment (to
be performed) as a question, and its result as an answer impacting our
knowledge of the system. Expertise and experimental data points could
then be seen under the same umbrella.
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