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Abstract

Here, we explain the phenomenon of focusing using the numerical properties of space–time
discretization methods involving second-order Adams–Bashforth (AB2) method for the so-
lution of one–dimensional (1D) convection equation. It has been established that solving
1D convection equation by three–time level method invokes a numerical or spurious mode,
apart from the physical mode (as explained in Global spectral analysis of multi–level time
integration schemes: Numerical properties for error analysis T. K. Sengupta et al., Applied
Mathematics and Computation, 304, 41-57 (2017)). Here, the long elusive problem of fo-
cusing (considered as a problem of non-linear numerical aspect), is shown due to a linear
mechanism. The focusing is shown for a wave–packet propagating in a non-periodic domain
by a three–time level method. Long time integration shows the physical mode to cause focus-
ing, which shows up as spectacular growth of error–packet(s) at discrete location(s), where
the dominant wavenumber (k) depends only on the CFL number (Nc), for the space–time
discretization method. The length scale of growing error is independent of wavenumber of
the input signal. It is also established that focusing is related to numerical absolute insta-
bility, for which the numerical group velocity (VgN1) of the physical mode is zero. However,
interestingly, when a compact filter is used, the focusing phenomenon is converted from abso-
lute to convective numerical instability. This brings new insight and satisfactory explanation
of focusing and its dependence on the choice of numerical methods and use of filter. As a
demonstration of the focusing phenomenon for AB2 method, we use it with a well known
combined compact differencing scheme to solve Navier–Stokes equation in a square lid driven
cavity for a super-critical post–Hopf bifurcation Reynolds number of 10000 (based on the
side of the cavity and the constant lid velocity). Contrary to the well-established solution
with polygonal vortices in the literature, here the solution breaks down after a finite time
due to focusing.

Keywords: Three–time level integration method, Global spectral analysis, Focusing
phenomenon, Absolute instability, One–dimensional filtering, Convective instability,
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DNS.

1. Introduction

Space–time discretization methods have been studied in extensively depth in recent times by
the authors’ group in [18, 20, 24] by global spectral analysis (GSA). For a governing equation
with first derivative with respect to time, analysis of numerical amplification in the spectral
plane (as described in [18]), reveals the necessity of using two–time level methods, otherwise
spurious numerical mode(s) appear. This aspect has been described in [18] for mid-point
leapfrog method. In [26], this has been shown for AB2 [1] and second-order extrapolation
in time (EXT2) methods of time integration used with different explicit and Hermitian
spatial discretization methods. There appears to be some misconception about the existence
and harmful effects of the numerical mode for AB2 method, as it is used in many works,
discussed in [26]. In the context of evaluating space–time discretization methods together,
1D convection equation is used extensively in [16, 18, 21, 31, 32, 33] to quantify the main
sources of numerical error. For this, the model equation in Cauchy framework is,

∂u

∂t
= −c

∂u

∂x
; for c > 0, −∞ < x < +∞ (1)

with suitable initial condition provided: u(x, 0) = f(x) which provides analytical solution
for any x and t, given by f(x−ct). The comprehensive GSA tool developed in [18, 21, 22] for
non-periodic, parabolic and hyperbolic PDEs for the full domain enables one to quantify the
numerical properties of spatio–temporal discretization methods. This is different from that
described in [5, 15], which follows the von Neumann error dynamics analysis that assumes
the signal and error to follow the same governing equation for systems governed by linear
partial differential equations. Actual error dynamics for 1D convection equation has been
described in [18, 21] which shows that additional forcing appears due to various sources of
numerical error due to dissipation and dispersion. The GSA defined in Fourier spectral plane
for space, is different from von Neumann analysis to study error dynamics, as is explained
in [26]. One defines error here as, e(x, t) = u(x, t) − uN(x, t), with uN , the numerically
computed solution expressed by the hybrid representation at the jth node (xj) of a uniform
grid with spacing h by,

uN(xj, t
n) =

∫

Uj(kh, t
n) eikxjdk

where current time is indicated by tn. In the integrand, Uj represents the bi-lateral Laplace
transform and the integration range is determined by the Nyquist limit of ±π/h. We have de-
fined the numerical amplification factor at the jth node by, Gj(kh,Nc) = Uj(k, t

n+1)/Uj(k, t
n)

to characterize numerical stability/ instability for the combined space–time discretization
methods, where Nc is the CFL number defined by c∆t/h, with ∆t as the time step used.
This complex quantity is furthermore denoted as, Gj = Grj + iGij, with the subscripts, r
and i, denoting the real and imaginary part, respectively.
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The values of Grj and Gij determine the numerical phase shift caused per time step (βj)
and is responsible for the numerical solution of Eq. (1) propagating from left to right with a
numerical phase speed (cN), which can deviate from the physical phase speed c. Note that
the numerical phase shift is given by, tan βj = −Gij/Grj, which need not be equal to the
physical phase shift given by, c∆t. The numerical phase shift is alternatively obtained from
cN∆t. These relations help us relating c with cN . For the same reason, the group velocity
[4] of the numerical method (VgN) will be different from the physical group velocity (for
Eq. (1), the physical group velocity is also equal to c, which makes the governing equation
non-dispersive). Furthermore, as Grj and Gij are functions of kh and Nc, it is evident that
cN becomes a function of kh and Nc. Thus for the original non-dissipative, non-dispersive
equation, the numerical solution will be dissipative (unstable) depending upon |Gj| greater
(lesser) than one.

The numerical phase speed and numerical group velocity for Eq. (1) can be obtained from
the discretized form of the equation, as shown in [26]. The numerical phase speed (cN) is
obtained from, kcN = βj/∆t, with the correct numerical dispersion relation obtained by
considering space and time discretizations given in [18, 21], ωN = kcN . This provided the
numerical group velocity as, VgN = dωN

dk
= cN + dcN

dk
. For three–time level methods, the

discretized governing equation will give a quadratic for Gj, as described in [18]. This in turn
will produce two values of the phase shift, giving rise to two values of (cN)1,2 and numerical
group velocity as, VgN1,2. The process followed for three–time level methods is identical to
that used for two–time level methods.

In many physical applications, numerical solution with multi–level time integration methods
are seen to blow up suddenly after producing results for long computational time, and this has
not been satisfactorily explained yet. Such spontaneous growth of error was often attributed
to nonlinear numerical instability by [3, 11, 17, 30]. Here, we show that the main issue is that
the error dynamics based on von Neumann analysis is inadequate to explain even the linear
instability. The situation has changed since the appearance of correct numerical dispersion
relation in [18, 20, 21]. This inadequacy can be attributed to the dispersion relation adopted
in von Neumann analysis (ωN = keqc) in [5, 10, 15], as explained by [26]. Aspects of dispersive
and non-dispersive wave solutions have been discussed earlier in [10, 16, 31, 32] without the
appropriate dispersion relation.

The central assumption in classical analysis is that the error and the signal follow the same
equation and for Eq. (1), this leads ostensibly to the error propagation equation

∂e

∂t
+ c

∂e

∂x
= 0, for c > 0; and −∞ < x < +∞ (2)

In contrast, the authors in [21] have provided the more appropriate error propagation
equation for two–time level methods, based on the correct numerical dispersion relation
(ωN = kcN), for Eq. (1) to be governed by,

∂e

∂t
+ c

∂e

∂x
= −c

[

1−
cN
c

]

∂ūN

∂x
−

∫

VgN − cN
k

[
∫ k

0

ik′A0 [|G|]t/∆t eik
′(x−cN t)dk′

]

dk
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−

∫

Ln |G|

∆t
A0 [|G|]t/∆t eik(x−cN t) dk, (3)

with initial condition given by, u(x, 0) =
∫

A0(k)e
ikxdk. Here for the ease of representation,

we have omitted the subscript from G with the understanding that one is focusing upon
the jth node. Physically, the phase speed is the speed with which the phase at any point
moves, while the group velocity is related to energy propagation speed [18, 31] and for a
non-dispersive system as Eq. (1), these two are the same. Here, for any arbitrary numerical
method, cN 6= VgN 6= c [18, 26]. The error dynamics, Eq. (3), for Eq. (1) holds for any
discrete method analyzed for space–time discretization together. The evolution of the error
equation is expressed as a forced excitation problem. The terms on the right hand side of Eq.
(3) arises: (i) due to phase error given by the first term; (ii) the dispersion error consisting
of the first and second terms and (iii) the last term on right hand side of Eq. (3) is the
dissipation error and comes into play whenever |G| 6= 1.

Adoption of von Neumann’s theory of computing with Fourier analysis cannot explain many
situations, which prompted the author in [33] to state that “through Fourier analysis, one can
evaluate the phase and amplitude error of a given method as a function of the wavenumber.
However, this information can be difficult to interpret”.

The GSA reveals the features of error to help identify the limits of computational parameters
for which the error is minimal. These numerical properties have been obtained for some
representative two–time level methods in [18] and for AB2 scheme in [26], where the correct
error propagation equation is quoted for arbitrary space–time discretization methods by Eq.
(3) above for the model Eq. (1).

While discussing the linear focusing mechanism for dispersive and non-dispersive wave prob-
lem in [2], the authors summarized the state of art with respect to two–time level methods
used with compact schemes. In the reference, for the first time, a linear focusing mecha-
nism for the wave–packet propagation was explained for a non-periodic problem. Focusing
for compact scheme was noted for three different scenarios: (i) it can be associated with
discontinuity in the numerical solution; (ii) it can be observed near boundary nodes due to
poor performance of boundary closure schemes for basic compact schemes and (iii) it has
strong dependence on the chosen methods of discretization. The phenomena studied were
due to the non-physical nature of boundary closure schemes used in all compact schemes
with two–time level methods. Here, we discuss about three–time level methods, used with
different explicit and implicit spatial discretization methods.

It is postulated by various researchers that violent instability appears in a short span of time
(as compared to total computing time) by a nonlinear mechanism previously documented
in [3, 11, 17, 30]. Briggs et al. [3] proposed a mechanism by which the error is focused
at one point in the computational domain for the inviscid Burgers’ equation, solved as a
periodic nonlinear problem. This governing equation was quasi-linearized and a three–time
level leapfrog method has been used for time advancement, along with second–order central
difference (CD2) scheme. It was specifically noted that noise can localize on spatial grid
and cause finite amplitude instability thresholds to be exceeded at distinct locations. Other
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references on focusing also demonstrated its existence by using three–time level methods such
as that reported in [11, 30], where mid–point leapfrog method was used. Sloan and Mitchell
[30] explained the phenomenon of focusing by describing the Fourier side–band instability
for amplitude modulation. The implication from this observation is equivalent to stating
that error–packets develop in the spatial grid.

The paper is formatted in the following manner. In the next section, the dispersion and
amplification properties of some three–time level methods shown in [26] are revisited along
with some new methods, to emphasize centrality of GSA in explaining focusing of numerical
solution. The importance of GSA is furthermore emphasized by explaining the phenomenon
of focusing and its classification in section 3. In section 4, we solve Navier–Stokes equation for
flow inside a square lid driven cavity (LDC) at a high Reynolds number, for which the flow is
unsteady [29], by AB2 time integration method along with a high order combined compact
difference scheme to show focusing, which has produced accurate results with four-stage,
fourth-order Runge–Kutta method [23, 28]. We summarize the paper in section 5, along with
some specific conclusions regarding focusing and the means to avoid the phenomenon.

2. Dispersion Properties explained by GSA of Three–time Level Methods

In [26] we have noted that AB2 method suffers due to presence of numerical mode, which
introduces error and in some cases produces highly erroneous results. Present research
focuses on AB2 time integration method, as it continues to be used for DNS/ LES of flows
by solving Navier–Stokes equation [13, 14] and other references cited in [26], using many
methods for spatial discretization.

In [26] one notes the numerical solution of Eq. (1) by AB2–CD2 method for the choice
of kh = 0.3, Nc = 0.1 and c = 1, to suffer mainly from dispersion error, while the error
due to numerical amplification factor is small, while solving Eq. (1) for an aeroacoustic
benchmark problem in a domain −600 ≤ x ≤ 1200. The initial condition is given by
u(x; 0) = [2+cos(kx)]e[−(ln2)(x/10)2], with k = 1.7 [9]. In Fig. 1 on the right hand side frames,
we show the solution for this kh and Nc, at t = 380, 400 and 420. The solutions show
dispersion, in terms of location of the packet, with respect to the exact solution plotted
together. However, it is not always true that the physical mode will always suffer negligible
dissipation error for the solution of Eq. (1). In reporting the results here, we have used c = 1
for Figs. 1 and 3 and for the rest of the results in Figs. 4 to 8, we have used c = 0.5.

For three–time level methods, one boot-straps the solution from t = 0 to t = ∆t. With
these solutions at successive time steps, one starts using three–time level methods. If the
initial solution has amplitude given by A0(k), then following the two–time level method, one
has the amplitude given by A1(kh,Nc) = A0(k)GE(kh,Nc), as described in [26]. After the
application of three–time level method, this amplitude (A1) splits into A1G1M and A1G2N .
Thus, M and N are the spectral weights by which the solution at t = ∆t splits itself into
physical and numerical modes.

In Fig. 2a, we plot the numerical amplification rates for the physical mode (|G1||M |) of AB2–
CD2 and EXT2–CD2 methods. The dissipation error is small for kh = 0.3 and Nc = 0.1,
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2

Figure 1: Demonstration of focusing phenomenon for AB2–CD2 method by solving Eq. (1) for the CAA
benchmark problem [9] with kh = 0.3, Nc = 0.2 and c = 1 on the left frames and Nc = 0.1 for the results on
the right hand side frames. Solutions are shown at t = 380, 400 and 420. Demonstration of focusing is via
the additional error growing near x = 0 without convecting.

as the physical mode is mildly unstable (|G1||M | = 1.00000020) for AB2–CD2 method. The
numerical mode accounts for about 1.498% of the signal and transmits it upstream. For the
value of Nc = 0.1, the maximum growth occurs for kh = π/2, given by |G1||M | = 1.00001, as
noted from Fig. 2a. Also for kh = π/2, VgN1 = 0 for all CFL numbers, as shown in Fig. 2b,
where VgN1/c and VgN2/c are plotted in (kh,Nc) plane for AB2–CD2 method. Zero numerical
group velocity for kh = π/2 for AB2–CD2 method implies that error component with this
length scale (kh = π/2) will be stationary and such solution with |G1||M | > 1 has been
termed as absolute instability, due to the inability of the error component to convect [6]. Its
cumulative effects, as the computation advanced for long times, cause catastrophic failure
of the solution. To understand this, in the left column of Fig. 1, we show the computed
solution for the same wave–packet with increased Nc = 0.2. For this higher Nc = 0.2 with
kh = 0.3, one notices mild increase in the value of the amplification factor for the physical
mode to |G1||M | = 1.00000325 and one would expect that the result would not be greatly
different from that shown for Nc = 0.1. However, the computed solution shown in Fig. 1 for
Nc = 0.2, indicates a secondary site of error growth (around x = 0, where the initial solution
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Figure 2a: Numerical amplification rate of physical mode for AB2–CD2 method (top) and EXT2–CD2
method (bottom) for the solution of Eq. (1). Note the points R and I for AB2–CD2 method, which will be
used for discussing focusing in Figure 4. For the EXT2–CD2 method, note the existence of multiple critical
CFL numbers.

had maximum variation) in the frame shown at t = 380. This is due to growth of round–off
error, which is present at all resolved length scales. This patch of error is seen to grow rapidly
in Fig. 1, when time increases marginally from 400 to 430. This error growth corresponds to
the maximum growth rate noted in Fig. 2a, for Nc = 0.2 and kh = π/2 as |G1||M | ≈ 1.001.
This maximum growth rate is significantly higher than that noted for Nc = 0.1. This causes
growth of the error and is associated with space-time discretization methods which show
zero numerical group velocity and q-wave phenomenon [19] for the specific range of Nc, for
which one notices |G1||M | > 1 for some resolved kh. After a long-time of integration, the
cumulative growth of error would lead to catastrophic breakdown of solution. In Fig. 1, such
growth was not visible for Nc = 0.1 up to t = 600 (as shown in [26]), while for Nc = 0.2 one
can see perceptible error growth by t = 420, and if it is computed for a little longer, then
the solution breaks down. Essentially focusing is noted for a particular higher CFL number,
for which there is some length scale, which has zero numerical group velocity and for which
the numerical amplification factor indicates numerical instability.

Above discussion also indicates that increasing CFL number can lead to focusing of error. To
explain this, we compute another case with Nc = 0.2 for EXT2–CD2 method, for which we
noted excellent match between computed and exact solutions in [26] for the CAA benchmark
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AB2 - CD2

Figure 2b: Numerical group velocity for the physical and numerical modes for AB2–CD2 method for the
solution of Eq. (1). Note the point I corresponds to input signal to be used in Fig. 4. The response will
correspond to point R, which also has zero numerical group velocity.

problem [9] with kh = 0.3 and Nc = 0.1 up to t = 1000, as also shown in the right hand
side frames of Fig. 3. For the case computed with Nc = 0.2, results are shown in the left
frames of Fig. 3. From the amplification property shown in Fig. 2a, one notices the center of
the packet to move upstream, which appears as a large dispersion error. This method also
displays q-waves for kh > π/2, which is not dependent on Nc. However, for kh = π/2, the
method becomes unstable and leads to focusing for 0.4118 ≤ Nc ≤ 0.5101, a range where
|G1||M | > 1. Such focusing will be intense as the maximum growth rate is very high in this
range of CFL numbers, as noted from Fig. 2a, with maximum growth rate crossing over 24.
For the choice of Nc = 0.2, there is no likelihood of focusing, which is also apparent from
Fig. 3. At the same time dispersion error is prominent, while we noted very accurate results
for Nc = 0.1 in [26] and here in Fig. 3.
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2

Figure 3: Demonstration of solution for EXT2–CD2 method for Eq. (1) for the CAA benchmark problem [9]
(c = 1) with kh = 0.3, Nc = 0.1 results shown in the right column. The solutions for Nc = 0.2 are as shown
in the left column, which show significant dispersion error at t = 600, 800 and 1000, without any symptoms
of focusing.

3. Focusing of Error for AB2–Scheme for 1D Convection Equation

Next, we discuss about AB2 time integration scheme to show how focusing is caused by
the instability of the physical mode itself, in the linear framework for both explicit central
spatial schemes and two Hermitian spatial discretizations. If the explicit spatial discretization
scheme is strongly upwinded, as in the case of AB2–UD3 scheme, the same linear mechanism
will come into play through the amplification of either the physical mode or the numerical
mode (results not shown here). The details of third order upwind scheme, UD3, can be seen
in [12, 18, 25].

To explain focusing, we revisit the problem in Eq. (1), with an initial condition of the
monochromatic signal convoluted by a Gaussian envelope given by

u(x, 0) = e−α(x−x0)2 sin(k0x) (4)

10
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The parameters chosen here are: α = 0.01, x0 = 0 and k0 = 20, with number of points
in the computational domain indicated later. The first time step is obtained by Euler
integration scheme. Four different spatial schemes with AB2 method have been analyzed
and the values of Nc and k0h are chosen in a way, such that the effects of focusing due to the
choice of numerical method are clearly demonstrated. For AB2–CD2 method, Nc = 0.6 and
k0h = 0.417825 (this point is marked in Fig. 2a as I) are chosen for the periodic problem
and results are shown in Fig. 4. In Figs. 4 to 8, the sharp spike near the origin of the plotted
spectrum, represents the input signal given by the initial condition of Eq. (4). The periodic
problem has been solved to avoid any additional issues arising out of reflections from the
boundaries. It is important that the input wave is resolved sufficiently in the k-plane. This
is the reason that in the domain, from 0 to 3000 we have taken uniformly spaced points
with h = 0.02089125. In the top frame of the figure, the initial condition is displayed for
the representative range of x in the center of the domain where the function is non-zero. Its
spectrum at t = 0 can be noted in the bottom frame of Fig. 4 as the bottom-most curve in the
ensemble. The bottom frame shows the spectrum of the computed solutions at different time
steps. The variation with time of the spectrum is indicated by successive curves displaying
growing peaks. The numerical solution shown in Fig. 4b at t = 520∆t, displays formation of
wave-packets with ever-growing amplitude in time. For the initial condition taken in solving
Eq. (1), the response is noted to focus around kh = 1.565, as shown in Fig. 4c, where the
Fourier transform of the numerical solution is shown for increasing time instants to grow
monotonically due to zero group velocity of this spectral component, shown all the way up
to t = 520∆t.

In Fig. 2a for Nc = 0.6, split amplification rate |G1||M | is maximum for the physical mode
for k0h = 1.565 indicated by R, while the input signal is marked as I. It is noted that as
Nc reduces, maximum value of |G1||M | also reduces. This strengthens the argument that
one should remain close to origin, i.e., Nc → 0, as the maximum |G1||M | continuously
reduces with reduction in Nc. If additional filtering is applied on the numerical solution (as
explained later), then this will delay focusing to much later times or not at all. The initial
packet formation noted in Fig. 4b is due to the fact that the side–bands of k0h = 1.565
are also unstable and have similar amplitudes, which have their origin in round–off error,
acting like band–limited white noise. Such neighbouring signals with higher growth rates
dominate and form wave–packets. This provides the initial algebraic growth due to mutual
reinforcement of neighbouring wavenumbers and is noted in the physical plane. Thus, the
focusing phenomenon causes localization in k–space, while in physical space the numerical
solution displays wave–packets at early stages (as we noted in Fig. 1 for Nc = 0.2). In a few
time steps after t = 520∆t, the solution of Fig. 4 blows up. The side–band of k0h = 1.565
tapers off to lower growth rate, decided upon by the numerical properties obtained by GSA.
Thus computing with higher precision, occurrence of focusing will be delayed, yet focusing
will always occur for Nc ≥ (Nc)cr1 (as noted in Fig. 2a). One also notices that the focused
signal at the center does not propagate, as the central kh has zero group velocity, according
to Fig. 2b. This has also been noted for other cases reported below, except when stated
otherwise.

Similarly, AB2–CD4 method is used for the same problem and the results are reported in
Fig. 5. As we have used the same domain with same initial condition, the response of the
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Figure 4: Demonstration of focusing phenomenon for AB2–CD2 method by solving Eq. (1) for Nc = 0.6;
k0h = 0.417825 and h = 0.02089125. (a) Initial signal shown centered at x0 = 1500. (b) Signal at t = 520∆t,
with focusing affecting the entire domain. (c) Demonstration of focusing as a function of kh with time as
parameter, increasing from t = 0 (bottom line) to t = 520∆t (the top most line).

system will be dictated by the properties shown in [26]. In this case, for the same value
of Nc = 0.6, one notices more violent instability as compared to the CD2 scheme results
shown in Fig. 4. Also, apart from having higher growth rates, it is also noted to occur
at higher wavenumber, kh = 1.8 for which VgN1 = 0. The physical plane solution is on
the verge of breakdown at an earlier time shown at t = 140∆t in Fig. 5a. Corresponding
spectral plane data are shown in Fig. 5b. Once again, the scale selection of error is based
on the maximum growth rate for fixed Nc value starting from the side–band of the chosen
wave–packet at t = 0. The maximum growth rate components will mutually interfere with
its immediate neighbouring wavenumbers and form response wave–packet at kh = 1.8 and
is readily evident from Fig. 5b.

Hermitian spatial discretization, OUCS3 [22] and Lele’s 10th–order schemes, in conjunction
with AB2 and variable–time step predictor–corrector (VTSPC) time integration methods
[7, 8], respectively, have been analyzed next. In Fig. 6, results for AB2–OUCS3 method are
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Figure 5: Demonstration of focusing phenomenon for AB2–CD4 method by solving Eq. (1) with the same
initial solution used in Fig. 4; (a) Solution at t = 140∆t indicate focusing, that affects the entire domain.
(b) Demonstration of focusing by plotting U(k) as a function of kh, with time as parameter increasing from
bottom (t = 0) to the top line (t = 140∆t).

shown for the solution of Eq. (1), in an identical domain using same initial condition as the
ones used for Figs. 4 and 5. Here the input signal has k0h = 0.406710, while Nc has the same
value of 0.6. Corresponding numerical stability properties have been shown in [26], which
help one identify the property of the response shown in Fig. 6. The computed solution in
physical space, as shown in Fig. 6a, shows focusing to occur at even higher wavenumbers for
this method, as noted in Fig. 6b. This wavenumber is also higher than that of the AB2–CD4
method shown in Fig. 5.

In Fig. 6b, one observes response of the system focusing at kh = 2.4, which is consistent
with the point R marked in Fig. 6c. These property chart has been obtained and shown
in [26]. The response field remains frozen in space, with amplitude growing in time, due to
the fact that the group velocity corresponding to kh = 2.4 is zero [26]. Such a growth, only
with time and with the error localized, has been identified in [6] as absolute instability. This
attribute has been already noted in Figs. 4 and 5 for AB2–CD2 and AB2–CD4 methods, for
which the focused error does not convect due to VgN1 = 0.

In Fig. 7 we display the solution of Eq. (1) for the case of VTSPC time integration method
used with Lele’s 10th–order spatial discretization scheme. Qualitatively, one observes a be-
haviour similar to that shown in Fig. 6. In this case, the input signal propagation is studied

13



1000 
[£B+OUCSJI lime-51611 

a) 

500 

= 0 

-500 

-1000 
1496 1498 x 1500 1502 1504 

c) llG,UMI I 
3 

2.5 

2 
.c � 1.5 

ACCEPTED MANUSCRIPT

Figure 6: Solution of Eq. (1) by AB2–OUCS3 method with k0h = 0.406710 and Nc = 0.6; (a) Signal at
t = 51∆t. (b) Demonstration of focusing by plotting time evolution of U(k) as a function of kh. (c) The
numerical growth rate of the physical mode |G1||M | in the (Nc, kh)-plane with the input signal marked as
I and the focused output identified by R.

for Nc = 0.6 and k0h = 0.1723782, as shown in Fig. 7a. For the VTSPC method, corre-
sponding numerical instability properties have been shown in Fig. 7d, for which one notices
a maximum value of |G1||M | corresponding to kh = 2.502 at R, a value which is higher than
that was noted for AB2–OUCS3 scheme. Apart from higher wavenumber of the response
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wave–packet with VTSPC method, the growth rate is also significantly higher, as Fig. 7b
shows the response only after 51∆t. Also, the constituent wavenumbers of the response
wave–packet are so close together that the wave–packet obtained is also very wide. The
Fourier transform of all the 51 solutions at each time step is shown in Fig. 7c.

In Fig. 8 we display the solution of Eq. (1) for the case of VTSPC method used with
Lele’s 10th–order spatial discretization scheme, along with an eighth–order compact filter
described in [8]. This filter was needed to numerically stabilize the basic method. In this
case, the filter being central, is a real function of kh. Hence, application of the filter with
the basic numerical method will not change the dispersion properties, as explained in [18].
However, |G1||M | and |G2||N | contours will change radically for higher kh, as shown in Fig.
8c. Qualitatively, one observes the response field to display a similar behavior, as that is
shown in Fig. 7. In this case also, the input signal propagation is studied for Nc = 0.6 and
k0h = 0.1723782.

As compared to Fig. 7, effects of filtering is clearly observed in bringing out a qualitatively
different error propagation phenomenon. Unlike the case of Fig. 7 (with response station-
ary, due to corresponding numerical group velocity being zero), in this case the dispersion
property remains the same, while maximum error growth is seen to occur for a lower value
of kh = 1.774, for which the group velocity is non-zero. Thus, the response field represents
propagating wave–packets, with constituents of every wave–packet having very large resolved
wavenumbers. It is also interesting to note that such wave–packets mutually interact and
create secondary wave–packets, where each of the constituents have larger distance from
each other. Thus, the effect of filtering is to transform the numerical absolute instability
to numerical convective instability [6], a distinctly interesting positive feature of using cen-
tral filter that removes the absolute instability. In this methods, one may not see explosive
growth at a fixed location for the filtered case, as opposed to the basic method which will
be centered at a fixed location and amplitude continuously growing in time. This must have
motivated the authors in [7, 8] to use filter in the first place, along with lower value of Nc,
for which the focusing would be delayed further.

4. Focusing of error for AB2-Scheme in Solving Navier–Stokes Equation

Next we discuss about AB2 time integration scheme to show how focusing is caused for the
solution of Navier–Stokes equation. For this purpose, we adopt the flow inside a square LDC
to show this absolute instability. For post–Hopf bifurcation Reynolds numbers, this flow is
known to be unsteady and a unique triangular gyrating vortex is formed in the core of the
cavity in a transient state [23, 28, 29]. In these references, high accuracy combined compact
difference (CCD) scheme [23, 28] have been used for spatial discretization and two–time level,
four-stage, fourth-order Runge–Kutta (RK4) scheme has been used for time advancement.
In the present results, the RK4 scheme is replaced by second–order AB2 scheme and we
mark out a region for a chosen CFL number, where absolute instability is noted. Thus,
this exercise extends the demonstration of focusing phenomenon for Navier–Stokes equation,
which has been shown in the previous section, in the linear framework for both explicit
central spatial schemes and two Hermitian spatial discretization schemes.
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Figure 7: Demonstration of focusing of numerical solution for Eq. (1) by VTSPC method along with Lele’s
10th–order spatial scheme for initial solution having k0h = 0.1723782 and time step given by Nc = 0.6; (a)
Initial signal shown centered at x0 = 1500; (b) Response signal at t = 51∆t, with focusing affecting the
entire domain; (c) Demonstration of focusing by plotting time evolution of U(k) as a function of kh; (d)
Numerical amplification rate of the physical mode for this method used to solve Eq. (1).

In Fig. 9, vorticity contours are shown inside the LDC computed for Re = 10, 000 at t =
40.0245 with a CFL number of Nc = 0.27136. The solution eventually blows up at a location
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Figure 8: Solution of Eq. (1) by VTSPC method with Lele’s 10th–order spatial scheme along with 8th–order
central Padé filter computed for k0h = 0.1723782 and Nc = 0.6 as initial solution; (a) Response signal shown
at t = 81∆t; (b) Demonstration of maximum growth of signal as a function of kh, with time as parameter;
(c) The numerical amplification rate of the VTSPC and Lele’s 10th–order spatial scheme used with 8th–order
Padé filter.

at x = 0.8329 and y = 0.1812, immediately after t = 40.66. This point is at the intersection
of the line shown in this figure as the P1–line and the Q1–line. To establish that the solution
breakdown is indeed due to temporal growth of error (with virtually negligible convection
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Figure 9: Vorticity contours for LDC problem at the indicated time for Re = 10,000 using CCD–AB2 for
space-time discretization. The intersection points of the horizontal and vertical lines are the locations of
absolute instability, which are the focusing points of errors.

Figure 10a: Vorticity variation along the vertical P1–line and primary absolute instability is noticed at
Q1 (y = 0.1812).

of the error at this point), we track the solution as a function of time for the horizontal and
vertical lines shown by dashed lines in Fig. 9.

In Fig. 10a, the vorticity solution along the vertical P1–line is plotted during the time interval
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Figure 10b: Vorticity variation along the horizontal Q1–line and primary absolute instability is noticed at
P1 (x = 0.8329).

Figure 10c: Vorticity variation along the horizontal Q2–line and primary absolute instability is noticed at
P2 (x = 0.8856).

t = 39.01 to 40.66. One notices temporal growth of the solution at the intersection point with
the horizontal Q1–line and at an additional secondary site at the intersection of horizontal
Q2–line, where the solution grows almost monotonically with time, but with lower magnitude.
In the same way, the computed vorticity plotted in Fig. 10b, along the horizontal Q1–line,
shows the major temporal growth corresponding to the intersection point of vertical P1–line
and a secondary site at the intersection of the horizontal Q1–line with the vertical P0–line
passing through x = 0.7699. In Fig. 10c, we plot the vorticity as a function of x along

19



ACCEPTED MANUSCRIPT

Figure 10d: Vorticity variation along the vertical P2-line and primary absolute instability is noticed at
Q2 (y = 0.24935).

Figure 10e: Vorticity variation along the horizontal Q3–line and primary absolute instability is noticed at
P3 (x = 0.9196).

Q2–line for the indicated time range and one notices the primary growth site to be at the
intersection with vertical P2–line, while the secondary temporal growth is noted with the
intersection point along P1–line. In Fig. 10d, we plot the vorticity along the vertical P2–
line, which similarly identifies the primary absolute instability, where it intersects with the
horizontal Q2–line. The secondary site is at the confluence with the Q3–line. In Fig. 10e, the
vorticity along the horizontal line passing through Q3 is plotted and we note, the primary
instability to occur at P3, while a secondary absolute instability is noted for P2–line.
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While discussing the flow field in Fig. 9, we have mentioned above that the solution blows up
spectacularly immediately after t = 40.66. This is further shown with the time–snapshots of
vorticity contours leading to solution blow up in the top four frames of Fig. 11. In each of
the frames, the maximum and minimum values of vorticity are marked and thereby one can
notice that the solution grows very rapidly from t = 40.62 to 40.66. This is exemplified by
tracing the vorticity at the point (x = 0.8329, y = 0.1812) as a function of time, shown in
the bottom frame of Fig. 11. The explosive growth of the solution is clearly evident from the
exponential temporal growth leading to solution breakdown by numerical absolute instability
caused by focusing.

Thus, it is evident that the maximum growth of vorticity is noted primarily at (0.8329,
0.1812) which migrates to (0.8856, 0.2493). This sequence of error growth eventually con-
taminates the entire flow field which exhibits error growth with time and complete solution
breakdown occurs immediately after t = 40.66, which follows the frames shown in Figs. 9
and 11.

5. Conclusions

Global Spectral Analysis (GSA) [18] of various spatial schemes in conjunction with the AB2
method is reported to elucidate the numerical properties of the physical and numerical modes
shown for signal propagation in [26]. AB2 method used with CD2 and CD4 schemes display
numerical amplification along with dispersion as a major source of error. For both the spatial
schemes, one observes q–waves [19], along with a specific kh for every Nc where the group
velocity is zero and the numerical amplification is maximum. As the maximum numerical
instability of the combined method increases with Nc, its evidence is shown in Fig. 1, for
AB2–CD2 method for Nc = 0.2. This figure indicates the basic signature of focusing at
its early times. However, such focusing completely depends upon the numerical property
and no single rule of thumb could be provided. For the EXT2–CD2 method, which showed
the most accurate solution for the benchmark computational aeroacoustic problem [9] for
Nc = 0.1 and k0h = 0.3 in [26], no such focusing could be noted for Nc = 0.2 in the results
shown in Fig. 3 explained with the properties shown in Figs. 2a and 2b.

The focusing phenomenon, wherein a violent instability appears in short duration of com-
puting time and causes solution to blow up eventually, at a location in k-space, is shown
for AB2 method. The solutions of the 1D convection equation with AB2–CD2, AB2–CD4,
AB2–OUCS3 and VTSPC–Lele combination are analyzed and shown in Figs. 4 to 7. Focus-
ing is associated with localization in k-space, while signal forms wave–packets everywhere in
the physical space, with the response remaining frozen in space and amplitude growing con-
tinuously in time, an attribute of numerical absolute instability [6]. The Fourier transforms
of the wave–packet show focusing to be centered around kh = 1.565, 1.8, 2.4, 2.502 for AB2–
CD2, AB2–CD4, AB2–OUCS3, VTSPC–Lele (without filter), respectively. For VTSPC-Lele
scheme (with filter) one notices maximum growth of convecting error around kh = 1.774.
Of specific interest is the finding of the present study that focusing is caused only when
a combined space-time integration method displays a value of kh for which the physical or
numerical mode display zero numerical group velocity and the numerical amplification factor
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Figure 11: Vorticity contours are shown in the top four frames, as obtained by solution of Navier–Stokes
equation, for the square LDC problem at the indicated times for Re = 10,000 using CCD–AB2 method.
In the bottom frame, time history of vorticity at the point (x = 0.8329, y = 0.1812) is shown leading to
solution breakdown by focusing.

for that combination of kh and Nc also indicates numerical instability, eventually leading
to numerical absolute instability [6]. Such absolute instability can be avoided by the use
of symmetric Padé filter, which makes the maximum growth rate for a particular Nc to
have non-zero group velocity, thereby avoiding the possibility of focusing. However, such
convective instability will also make such results of no physical relevance. This is clearly
shown from the solution of Navier–Stokes equation by CCD–AB2 method for flow inside a
square lid driven cavity for a Reynolds number of 10,000. When CCD method of spatial
discretization was used with RK4 time integration method [23, 28], one noticed polygonal
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core vortex forming transiently and the flow can be computed indefinitely. Such polygonal
core vortex forms due to Hopf–bifurcations, as explained with the help of proper orthogonal
decomposition in [29]. However for CCD–AB2 method, the solution breaks down due to
numerical absolute instability by focusing, as explained from the solution of 1D convection
equation in [26] elucidated in the numerical property charts.
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