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Path tracing high-resolution volumes
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Path tracing high-resolution volumes

Microflake model [Jakob et al. 2010]

Parameters per voxel: 10 values
● Density of microflakes
● Microflake normal distribution
● Microflake albedo



Path tracing high-resolution volumes
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[Zhao, Wu et al. 2016]



Path tracing high-resolution volumes

[Zhao, Wu et al. 2016]
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Path tracing high-resolution volumes

● Very realistic
● Rendering is long (minutes, hours)
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[Zhao, Wu et al. 2016]



Solution: volume downsampling, prefiltering
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Solution: volume downsampling, prefiltering
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Input LOD 1



Solution: volume downsampling, prefiltering
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Input LOD 2LOD 1



Solution: volume downsampling, prefiltering
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Input LOD 2 LOD 3LOD 1



Benefits of volume downsampling
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Input high-res volume 
2.1 GB

LOD from [Zhao, Wu et al. 2016] 
55.3 KB

Fast, less noise



Linear downsampling
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Low-res voxel



Linear downsampling

Den y:
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Low-res voxel



Linear downsampling

Den y: Al e s:
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Low-res voxel



Linear downsampling

Den y: Al e s: Nor  d ri on : 
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Low-res voxel

[Heitz et al. 2015] 
[Zhao, Wu et al. 2016]



Linear downsampling

Linear
downsampling

500^3 voxels
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16^3 voxels (< 1%)



Linear downsampling

500^3 voxels
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16^3 voxels (< 1%)

Comparison:

Linear
downsampling



The problem with linear downsampling
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The problem with linear downsampling
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Input (density x20)



The problem with linear downsampling

Input (density x20) Linear downsampling
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The problem with linear downsampling

Input (density x20) Linear downsampling

Comparison:
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The problem with linear downsampling

Input (density x20) Linear downsampling

Comparison:
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Goal



Problem with linear downsampling

Incorrect transparency & incorrect colors 23

Input Linear downsampling Goal
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Problem with linear downsampling?



Problem with linear downsampling?
#1: Transparency
#2: Local shadowing
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Problem with linear downsampling?
#1: Transparency
#2: Local shadowing
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Problem #1: transparency
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Problem #1: transparency
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Empty voxel High-density voxel



Problem #1: transparency
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Transparency: 50%



Problem #1: transparency

Lin  ow m n :
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Transparency: 50%



Problem #1: transparency

Lin  ow m n :
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d

Transparency:               < 50%
Transparency: 50%



Problem #1: transparency

Non-li  do s l
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d

Transparency: 50%
Transparency: 50%



Problem #1: transparency

Linear downsampling of density
[Zhao et al. 2016]

Input
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Correct transparency



Problem with linear downsampling?
#1: Transparency
#2: Local shadowing
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Problem with linear downsampling?
#1: Transparency
#2: Local shadowing
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Problem #2: local shadowing
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Problem #2: local shadowing
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Problem #2: local shadowing
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Problem #2: local shadowing
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Local shadowing 
Multiple scattering
Saturated colors



Problem #2: local shadowing
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Local shadowing 
Multiple scattering
Saturated colors

Linear downsampling



Problem #2: local shadowing

Linear downsampling
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Local shadowing 
Multiple scattering
Saturated colors



Problem #2: local shadowing
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Less local shadowing 
More single scattering
Light colors

Local shadowing 
Multiple scattering
Saturated colors

Linear downsampling



Problem #2: local shadowing

Transparency 50%
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Local shadowing 
Multiple scattering
Saturated colors

Less local shadowing 
More single scattering
Light colors



Problem #2: local shadowing

Input Naïve (linear) Naïve (correct transp.) Goal
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Problem #2: local shadowing
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Input Naïve (linear) Naïve (correct transp.) Goal



Previous work: [Zhao, Wu et al. 2016]
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Much more accurate than naïve methods

Reference, 25.4 GB LODs, 45.6 MB



Previous work: [Zhao, Wu et al. 2016]

Algorithm:
1) Downsample linearly
2) Iterative optimization:

● Render input and current LOD (several views & lights)
● Obtain pixel derivatives for each parameter, view & light
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Reference, 25.4 GB
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LODs, 45.6 MB



Previous work: [Zhao, Wu et al. 2016]

Algorithm:
1) Downsample linearly
2) Iterative optimization:

● Render input and current LOD (several views & lights)
● Obtain pixel derivatives for each parameter, view & light
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Previous work: [Zhao, Wu et al. 2016]

Algorithm:
1) Downsample linearly
2) Iterative optimization:

● Render input and current LOD (several views & lights)
● Obtain pixel derivatives for each parameter, view & light

Too costly if too many parameters: clusters
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Previous work: [Zhao, Wu et al. 2016]

LOD

52Not general, prone to artifacts
Input



Our approach
● Correct transparency (non-linear)
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Our approach
● Correct transparency (non-linear)

● Local estimation of parameters
No training rendering, no clusters
About x10 faster than [Zhao, Wu et al. 2016] 
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Our approach
● Correct transparency (non-linear)

● Local estimation of parameters
No training rendering, no clusters
About x10 faster than [Zhao, Wu et al. 2016] 

● New microflake model for correct local shadowing
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Our new model: microscopic self-shadowing
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Standard model



Our new model: microscopic self-shadowing
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Standard model Our model
Isotropic shadowing



Our new model: microscopic self-shadowing
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Standard model Our model
Isotropic shadowing

Our model
Anisotropic shadowing



Our new model: microscopic self-shadowing
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Model of transparent media with multiple scattering at micro-scales

Standard model Our model
Isotropic shadowing

Our model
Anisotropic shadowing



Our new model: microscopic self-shadowing
Input



Our new model: microscopic self-shadowing
Input Naïve (linear) Naïve (correct transp.)



Our new model: microscopic self-shadowing
Our modelInput Naïve (linear) Naïve (correct transp.)



Our new model: microscopic self-shadowing
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Our new model: microscopic self-shadowing
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Local shadowing (1 or 6 parameters)



Our new model: microscopic self-shadowing
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Local shadowing (1 or 6 parameters)



Our new model: microscopic self-shadowing
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Local shadowing (1 or 6 parameters)



Our new model: microscopic self-shadowing
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+ local multiple scattering terms, MS albedo 

Local shadowing (1 or 6 parameters)



Local estimation of parameters
We estimate:

● Transparency (easy)

● Single scattering albedo (linear)

● Microflake distributions (linear, [Heitz et al. 2015])



Local estimation of parameters
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We estimate:

● Transparency (easy)

● Single scattering albedo (linear)

● Microflake distributions (linear, [Heitz et al. 2015])

● Density and shadowing parameters

● Multiple scattering albedo



Results
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LOD 5 LOD 3 LOD 1 LOD 1 LOD 3

OurNaive (linear)

LOD 5



Results
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Input

LOD 5 LOD 3 LOD 1 LOD 1 LOD 3 LOD 5

OurNaive (linear)



Results
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Errors:

Input Naïve (linear) Naïve (correct transp.) Our
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Input Naïve (linear) Naïve (correct transp.) Our

Errors:
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Results

Input Naïve (linear) Naïve (correct transp.) Our

Errors:
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Input Naïve (linear) Naïve (correct transp.) Our

Errors:
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Results

Input Naïve (linear) Naïve (correct transp.) Our

Errors:
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Results

InputLOD 2 
[Zhao, Wu et al. 2016]

LOD 2 
Our, x10 faster
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Results

LOD 1
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Results

LOD 2
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Results

LOD 3
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Results

LOD 4
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Results

LOD 5



Main ideas
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Main ideas

● Correct transparency is important
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Main ideas

● Correct transparency is important

● Local estimation of parameters: fast, accurate, general
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Main ideas

● Correct transparency is important

● Local estimation of parameters: fast, accurate, general

● Our model: good for correct color and transparency, 
still not perfect!
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