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Figure 1: Comparison between naïve downsampling of microflake volumes and our method (Aniso, Sec. 7). Naïve dowsampling of dense
heterogeneous volumes often lead to inaccurate LoDs, due to the loss of masking and shadowing effects that occur between and inside
dense input voxels. Our downsampling approach is based on a new participating medium model and on local estimations of self-shadowing
probabilities. It generates LoDs with correct transparency and consistent appearance through scales. Rendered with volume path tracing
(the trunk of the cedar is a mesh).

Abstract
Naïve linear methods for downsampling high-resolution microflake volumes often produce inaccurate appearance, especially
when input voxels are very opaque. Preserving correct appearance at all resolutions requires taking into account masking-
shadowing effects that occur between and inside dense input voxels. We introduce a new microflake model whose additional
parameters characterize self-shadowing effects at a microscopic scale. We provide an anisotropic self-shadowing function and
microflake distributions for which the scattering coefficients and the phase functions of our model have closed-form expressions.
We use this model in a new downsampling approach in which scattering parameters are computed from local estimations of
self-shadowing probabilities in the input volume. Unlike previous work, our method handles datasets with spatially varying
scattering parameters, semi-transparent volumes and datasets with intricate silhouettes. We show that our method generates
LoDs with correct transparency and consistent appearance through scales for a wide range of challenging datasets, allowing
for huge memory savings and efficient distant rendering without loss of quality.

CCS Concepts
•Computing methodologies → Ray tracing; Volumetric models;

1. Introduction

Heterogeneous participating media based on voxel grids are a pow-
erful representation for rendering complex semi-transparent ap-
pearance and intricate shapes. Rendering high-resolution volume

† guillaume.loubet@gmx.fr & fabrice.neyret@inria.fr

data is challenging due to high I/O time [ZWDR16] and costly vol-
ume integration along rays, but contrary to mesh-based intricate ge-
ometry, voxel grids are convenient for level-of-details (LoDs) and
allow for efficient rendering and low memory usage when an ap-
propriate resolution is used. Unfortunately, downsampling volume
data is not as straightforward at it seems since naïve downsampling
methods based on linear pre-filtering often produce inconsistent ap-
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(a)
Input voxels

(b)
Low-res voxel
(linear method)

(c)
Low-res voxel
(correct transp.)

(d)
Low-res voxel

(using our model)

Figure 2: In the case of a highly heterogeneous volume (a), naïve
downsampling algorithms can lead to inaccurate results (b-c). (b):
linear pre-filtering densities results in incorrect transparency (blue
lines) in low-resolution voxels. (c): correct transparency can be
obtained by decreasing density in low-resolution voxels, but this
also decreases the probability of local self-shadowing and leads
to overly bright LoDs. (d): Our microscopic self-shadowing model
can represent media with correlated microflakes and it preserves
both anisotropic transparency and self-shadowing effects.

pearance through scales as shown in Fig. 1 (left), especially when
input datasets have dense voxels. Indeed, linear pre-filtering does
not preserve accurate transparency as shown in Fig. 2b, and de-
creasing density in low-resolution voxels necessarily reduces the
amount of local self shadowing and masking [ZWDR16], that is
the probability that light scattered from a point in the medium is
scattered again in its close vicinity. This loss of self-shadowing is
illustrated in Fig. 2c. The lack of local multiple scattering leads to
overly bright LoDs when naïve downsampling methods are used
(Fig. 1, left).

Among available participating medium models in Computer
Graphics, the microflake model [JAM∗10] has been used for
rendering anisotropic fiber-like and foliage-like appearance. Re-
cently, two publications overcame important problems raised by
microflake volume downsampling. Heitz et al. [HDCD15] have in-
troduced the SGGX microflake distribution which support efficient
linear pre-filtering. Zhao, Wu et al. [ZWDR16] have built on this
work and have introduced a downsampling approach that preserves
correct appearance in LoDs. As discussed in Section 2.3, their ap-
proach has some limitations due to the use of large-scale training
rendering for optimizing scattering parameters and voxel clustering
that produces artifacts when datasets have spatially varying appear-
ance. In this paper, we introduce a new downsampling approach for
generating appearance-preserving LoDs. Our main contributions
include:

• A new microflake model whose parameters characterize self-
shadowing effects at a microscopic scale (Sec. 4).

• A new downsampling algorithm that uses our model for pre-
serving both correct transparency and self-shadowing effects
in low-resolution volumes (Sec. 7).

• We derive closed-form expressions and sampling proce-
dures for implementing our model and its simplified version
(Sec. 4.3), using appropriate self-shadowing functions and mi-
croflake distributions (Sec. 5 and 6).

Our downsampling algorithm computes scattering parameters in
low-res voxels from local estimations of self-shadowing probabil-
ities in input voxels. This approach overcomes some limitations
of previous work [ZWDR16]: it allows for downsampling with-
out artifacts spatially varying datasets, because it does not require
voxel clustering, and it supports semi-transparent datasets because
it avoids the optimization of parameters in image space (Sec. 2.3).
Our downsampling approach is also faster because local estima-
tions are less expensive than large-scale rendering (Sec. 8.1).

Our new microflake model aims at adjusting anisotropic attenu-
ation and self-shadowing in low-resolution voxels. Our phase func-
tions do not model accurately scattering that occurs in very dense
voxels, which limits accuracy of our LoDs. Preserving both accu-
rate opacity and phase functions for dense heterogeneous volumes
remains an open problem as discussed in Sec. 8.4. In this work, we
did not focus on fabrics: unlike Zhao, Wu et al. [ZWDR16], we do
not address the case of multi-yarn datasets with strong correlations
between albedos and microflake distributions.

2. Related work

2.1. Volume scattering models in computer graphics

Most participating medium models in computer graphics are based
on the standard radiative transfer framework [Cha50]. Several ex-
tensions have been proposed such as discrete media approxima-
tions [MWM07, MPH∗15, MPG∗16] and models for media with
anisotropic attenuation and direction-dependent phase functions
[Ney98, MWM08, SKZ11, KSZ∗15]. Jakob et al. [JAM∗10] have
generalized the radiative transfer equation to such anisotropic me-
dia and have introduced the physically-based microflake model.
This model has been used for rendering and pre-filtering intricate
shapes such as foliage [HDCD15, LN17] and fabrics [ZJMB11,
ZWDR16]. In our work, we have focused on downsampling mi-
croflake volumes, and we believe that our approach can be adapted
to other volume models, e.g. simpler isotropic volume models.

2.2. Normal distributions in the microflakes framework

The key ingredient of the microflake model is the microflake nor-
mal distribution function, from which phase functions and attenua-
tion coefficients are derived. Rendering with the microflake model
requires efficient evaluation of the projected area of microflakes
as well as efficient evaluation and sampling procedures for phase
functions. We briefly review here existing microflake normal dis-
tribution functions because choosing appropriate distributions has
been essential in our work for implementing our new microflake
model (Sections 5 and 6).

In the seminal work of Jakob et al. [JAM∗10], the authors have
proposed distributions based on powers of sine and cosine func-
tions: Dsurf(ω) = cosn(v,ω) and Dfiber(ω) = sinn(v,ω). They have
not provided closed-form expressions for attenuation coefficients
and they have used spherical harmonic approximations for eval-
uation and sampling. In our work, we combine similar distribu-
tions because of their good mathematical properties (Sec. 5). We
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provide the missing closed-form expressions for attenuation coef-
ficients and phase functions, as well as exact importance sampling
procedures.

Zhao et al. [ZJMB11] have used another distribution called the
Gaussian Fiber Distribution. Their implementation is more effi-
cient than the original implementation of Jakob et al. [JAM∗10],
although they have not provided closed-form expression of the at-
tenuation coefficient – but they provided an efficient approxima-
tion [Jak10]. They have used a rejection algorithm for sampling the
distribution of visible normals [HDCD15] based on the sampling of
the normal distribution, which is inefficient in some configurations.
We also rely on rejection sampling for some of our phase functions
but we provide robust sampling procedures for the distributions of
visible normals.

Heitz et al. [HDCD15] have introduced the SGGX distribution.
It has overcome limitations of previous distributions since it sup-
ports fast and exact evaluation of attenuation coefficients, as well
as efficient evaluation and sampling of specular phase functions.
We have used the SGGX distribution for implementing our simpli-
fied self-shadowing model (Section 6).

2.3. Downsampling volume data

Several authors have proposed volume downsampling methods
in various contexts including simple RGBA data [KB08] and
anisotropic voxels for real-time global illumination [CNS∗11].
Heitz et al. have addressed the problem of downsampling mi-
croflakes normal distributions [HDCD15] and Zhao, Wu et al.
[ZWDR16] have built on this work for downsampling microflakes
volumes taking into account shadowing effects. They have pro-
posed an iterative optimization of scattering parameters using
large-scale training rendering. The optimization stops when appear-
ance of LoDs matches the reference volume. This approach has
proven to produce accurate LoDs for several challenging datasets
including complex multi-fibers fabrics. However, the enormous
amount of parameters requiring optimization makes the problem
intractable unless low-resolution voxels are assigned to a few clus-
ters that share some scattering parameters. Voxel clustering reduces
dimensionality but leads to artifacts when input dataset have spa-
tially varying scattering parameters. Another limitation of their
work is that their optimization using image space errors assumes
that each pixel value depends mostly on the first non-empty vox-
els that are seen directly. It is unclear how their algorithm could
be adapted to semi-transparent datasets, or datasets that have both
transparent and very dense voxels.

In this paper, we address the same problem as Zhao, Wu et
al. [ZWDR16], that is generating low-resolution microflake vol-
ume while preserving the appearance at all scales. We add the con-
straint that our LoDs must have correct transparency and silhou-
ettes, and we do not rely on linear downsampling for density pa-
rameters. Correct transparency is important when downsampling
intricate datasets such as the cedar in Fig. 1. We overcome prob-
lems raised by voxel clustering and optimization with image space

Symbol Meaning Unit
D(ω) Microflake normal distribution st−1

A(ω) Microscopic self-shadowing -
ρ Total area of flakes per unit volume m−1

σt Attenuation coefficient m−1

σs, σss, σms Scattering coef. (wavelength dep.) m−1

f , fss, fms Normalized phase functions st−1

α, αss, αms Albedos (wavelength dep.) -
( · ) Dot product -
〈 · 〉 Clamped dot product -

Table 1: Main symbols used in this paper.

errors, using local estimations of self-shadowing probabilities in-
stead of large-scale training rendering.

3. Background: the standard microflake model

Jakob et al. [JAM∗10] have introduced a physically-based model in
which the medium is, at a microscopic scale, a homogeneous cloud
of microflakes whose orientations are statistically described by
a microflake normal distribution function. Anisotropic microflake
normal distributions result in anisotropic attenuation coefficients
and direction-dependent phase functions.

Our self-shadowing model (Sec. 4) is an extension of the stan-
dard microflake model, in which we added correlations of mi-
croflakes position at a microscopic scale (Fig. 2d). In this section,
we briefly review the anisotropic radiative transfer equation intro-
duced by Jakob et al. [JAM∗10] and their microflake model, which
will be referred to as the standard microflake model in this paper.

Anisotropic RTE. The anisotropic radiative transfer equation
(RTE) proposed by Jakob et al. [JAM∗10] writes:

(ω ·∇)L(ω)+σt(ω)L(ω) = σs(ω)
∫
S2

f (ω→ ω
′)L(ω′)dω

′+Q(ω)

with σt(ω) the anisotropic attenuation coefficient, σs(ω) the
anisotropic scattering coefficient (which is usually wavelength de-
pendent), and f the anisotropic phase function (in the sense that it
depends on ω and ω

′, and not only on the angle between ω and ω
′).

In this paper, we use phase functions that are normalized over the
second parameter: ∫

S2

f (ω→ ω
′)dω

′ = 1, ∀ω.

Helmholtz’s reciprocity principle for anisotropic media. In
general, phase functions in the anisotropic RTE framework do not
satisfy f (ω→ω

′) = f (ω′→ω). The Helmholtz’s reciprocity prin-
ciple, which states that radiative transfer remains the same when
interchanging sources and receivers, writes

σs(ω) f (ω→ ω
′) = σs(ω

′) f (ω′→ ω).
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This is the reason why using arbitrary phase functions for medium
with anisotropic attenuation coefficient often break reciprocity.

Microflake model. Based on their anisotropic RTE, Jakob et al.
[JAM∗10] have studied the case of medium made of microflakes,
given a microflake normal distribution D. They derived attenu-
ation coefficients and phase functions for such media and the
Helmholtz’s reciprocity principle is satisfied by construction. The
microflake BRDF is often considered perfectly specular because
this greatly simplifies evaluation and sampling.

In this work, we assume like Heitz et al. [HDCD15] that mi-
croflakes reflect on both side and we only consider normal distri-
butions D that satisfy

D(ω) = D(−ω).

Given D, the attenuation coefficient is derived from the integral of
projected areas over microflake orientations:

σt(ω) = ρ

∫
D(ωm)〈ω ·ωm〉dωm (3.1)

where ρ, which will be referred to as density in this paper, is the
amount of microflake surface per unit volume (Table 1). Assum-
ing that the microflake albedo is not view-dependent, the scattering
coefficient for a wavelength λ is given by

σs(ω) = ρα(λ)
∫

D(ωm)〈ω ·ωm〉dωm = α(λ)σt(ω) (3.2)

with α(λ) the albedo of the microflakes. In the case of specular
microflakes, the phase function writes

f (ω→ ω
′) =

ρα(λ)D(ωh)

4σs(ω)
(3.3)

with ωh =
ω+ω

′

‖ω+ω′‖ the half-vector.

4. The microscopic self-shadowing microflake model

In this section, we introduce a new participating medium model
based on the microflake model. We call it the microscopic self-
shadowing model because it models media whose microflakes have
correlated positions at a microscopic scale, leading to microscopic
shadowing and masking. Microscopic self-shadowing impacts at-
tenuation coefficients, as shown in Fig. 2, as well as scattering co-
efficients and phase functions.

4.1. Motivations for a new model

Volume downsampling raises the problem of how to best represent
a set of heterogeneous input voxels with a single low-resolution
voxel. The approach of Zhao, Wu et al. consists in using standard
microflake volumes and optimizing microflake albedos in low-res
voxels in order to take into account self-shadowing. Instead, we
introduce a new microflake model whose parameters allow:

• the control of the anisotropic attenuation due to anisotropic
correlations, independently of the microflake normal distribu-
tion (Fig. 2d),

• the control of the amount of microscopic self-shadowing, us-
ing different phase functions and albedos for single scattering
and multiple scattering at the microscopic scale.

4.2. Our model

Let’s consider a volume whose microflakes are spatially correlated
at a microscopic scale, as shown in Fig. 2d. We characterize mi-
croflakes correlations with the probability that a microflake is shad-
owed or masked by a neighboring microflake, in a given direction.
We introduce a dimensionless scalar function A on the sphere such
that 1−A(ω) gives the probability of shadowing by other neigh-
boring microflakes in the direction ω. A satisfies:

∀ω ∈ S2, 0 < A(ω)≤ 1 and A(ω) = A(−ω). (4.1)

The case A(ω) = 1 corresponds to the standard microflake model
in which microflakes are well separated at a microscopic scale and
not correlated [JAM∗10]. Given this shadowing behavior at a mi-
croscopic scale, we derive new expressions for attenuation coeffi-
cients, scattering coefficients and phase functions.

Attenuation coefficient (σt ). The attenuation coefficient is given
by the standard microflake model times the self-shadowing func-
tion A characterizing microflake correlations:

σt(ω) = A(ω)ρ
∫

D(ωm)〈ω ·ωm〉 dωm. (4.2)

Single scattering coefficient (σss). We consider the amount of lo-
cal single scattering σss(ω) at microscopic scale, from an incoming
direction ω. Single scattering occurs when microflakes are both un-
masked and un-shadowed:

σss(ω) = ραss(λ)A(ω)
∫

A(ω′)D(ωm)〈ω ·ωm〉 dωm (4.3)

where ω
′ = 2ωm(ωm ·ω)−ω is the reflected direction given an

input direction ω and a microflake normal ωm. This can be written
as an integral over outgoing directions, using the Jacobian of the
transformation from normals to specular reflections provided by
Walter et al. [WMLT07]:

σss(ω) =
ραss(λ)A(ω)

4

∫
A(ω′)D(ωh) dω

′. (4.4)

The single scattering phase function ( fss). Microscopic self-
shadowing also impacts the single scattering phase function fss,
which is the standard phase function attenuated in some directions
due to microscopic shadowing (and normalized):

fss(ω→ ω
′) =

A(ω′)D(ωh)∫
A(ω′′)D((ω′′+ω)/‖ω′′+ω‖) dω′′

=
ραss(λ)A(ω)A(ω′)D(ωh)

4σss(ω)
. (4.5)

Again, when A = 1, this reduces to the standard microflake spec-
ular phase function. It is easy to check that our model satisfies
Helmholtz’s reciprocity principle by construction:

σss(ω) fss(ω→ ω
′) =

ραss(λ)A(ω)A(ω′)D(ωh)

4
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which is symmetric in ω and ω
′.

Microscopic multiple scattering. We want our model to take into
account microscopic multiple scattering so that it satisfies the white
furnace test, meaning that all incoming light should be scattered
in the case of microflakes with albedo 1, for any self-shadowing
function A.

Ideally, our model should have one scattering coefficient and one
phase function for each number of local scattering events. Unfortu-
nately, their expressions involve spherical convolutions of the mi-
croflake phase function, for which there are no analytic expressions
in general. In this paper, we chose to use a single multiple scattering
coefficient σms(ω) and a single multiple scattering albedo αms(λ)
that approximate contributions of all scattering orders except sin-
gle scattering. The multiple scattering coefficient is given by the
amount of light that scattered and then masked locally, times the
multiple scattering albedo:

σms(ω) = αms(λ)ρA(ω)
∫ (

1−A(ω′)
)

D(ωm)〈ω ·ωm〉dωm

= αms(λ)

(
σt(ω)−

σss(ω)

αss(λ)

)
. (4.6)

The multiple scattering albedo αms(λ) is a parameter of our model.
We assume that multiple scattering is roughly diffuse, and we use
the multiple scattering phase function

fms(ω→ ω
′) = fms(ω

′) =
σms(ω

′)∫
σms(ω′′) dω′′

. (4.7)

It satisfies reciprocity since

σms(ω) fms(ω→ ω
′) =

σms(ω)σms(ω
′)∫

σms(ω′′) dω′′

which is symmetric in ω and ω
′. This phase function scatters light

in directions in which there is strong microscopic shadowing. Also
note that in the case αss(λ) = αms(λ) = 1, we have

σss(ω)+σms(ω) = σss(ω)+αms(λ)

(
σt(ω)−

σss(ω)

αss(λ)

)
= σt(ω)

meaning that our model preserves energy when microflakes do not
absorb light, meaning that the model passes the white furnace test.

Summary. We introduced a self-shadowing function A, where
1−A(ω) represents the probability of shadowing and masking by
neighboring microflakes at a microscopic scale. Self-shadowing
impacts attenuation coefficient σt , the single scattering coefficient
σss and the associated phase function fss. For energy conservation,
we take into account local multiple scattering introducing a multi-
ple scattering coefficient σms and its associated phase function fms.
Rendering with this model requires evaluating these functions (σt ,
σss, fss, σms, fms) and sampling procedures for fss and fms.

In practice, Eq. 4.2, 4.3 and 4.7 rely on spherical integrals of the
microflakes distribution D with the shadowing function A, meaning
that for most functions D and A no closed-form expressions can be
found. In the next section, we present appropriate functions D and
A that lead to closed-form expressions, allowing efficient imple-
mentations of our self-shadowing model.

4.3. Simplified model with isotropic self-shadowing

Our model greatly simplifies when the self-shadowing function is
isotropic, i.e. when A(ω) = A, ∀ω. As discussed in Sec. 6, this
simplified model is easier to implement, requires less parameters
at rendering and has sufficient accuracy in practice. In the case of
isotropic self-shadowing, expressions reduce to

σt(ω) = Aρ

∫
D(ωm)〈ω ·ωm〉 dωm (4.8)

σss(ω) = αss(λ)Aσt(ω) (4.9)

fss(ω→ ω
′) =

ραss(λ)A2D(ωh)

4σss(ω)
(4.10)

σms(ω) = αms(λ)σt(ω)(1−A) (4.11)

fms(ω
′) =

σms(ω
′)∫

σms(ω′′) dω′′
=

σt(ω
′)∫

σt(ω′′) dω′′
(4.12)

Note that σt(ω) is equal to A times the attenuation coefficient of
the standard microflake model, and fss is exactly the specular phase
function of the standard microflake model.

5. Implementing the self-shadowing model using
trigonometric lobes cos2n and sin2n

As we highlighted before, functions in our shadowing model
(Eq. 4.2, 4.3 and 4.7) involve spherical convolutions and inte-
grals of microflake distributions D and self-shadowing functions
A. The microflake normal distribution D is defined in the space of
microflake normals, while A is defined in the space of incoming
or outgoing directions. Because of this, it is very difficult to find
closed-form expressions of integrals such as Eq. 4.3. For instance,
we could not find solutions using the commonly used SGGX distri-
bution, the Gaussian Fiber Distribution [ZJMB11], Spherical Gaus-
sians [TS06] or Anisotropic Spherical Gaussians [XSD∗13] despite
their interesting mathematical properties.

Fortunately, we found closed-form expressions using microflake
distributions based on trigonometric lobes D(ω) = cos2n(ω,ξD)
and D(ω) = sin2n(ω,ξD) (Sec. 5.2), and using an appropriate self-
shadowing function (Sec. 5.1). We give here our main results (ex-
pressions for σt and σss). Complete derivations, proofs and sam-
pling procedures can be found in our supplemental material.

5.1. Choosing the self-shadowing function A.

We introduce an anisotropic self-shadowing function A of the form

A(ω) = ω
T S ω (5.1)

with S a symmetric positive definite matrix encoding anisotropy as
in SGGX distributions [HDCD15] (this function can be seen as the
square projected area of an ellipsoid). As we want 0 < A(ω) ≤ 1,
we ensure that S has eigenvalues equal to or below 1. We found
that this representation is simple and flexible enough for encoding
smooth directional changes of the self-shadowing probability, and
it can be stored with only 6 parameters.
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Figure 3: (top): trigonometric lobes
(Eq. 5.2). (bottom): SGGX distribu-
tions. These distributions can rep-
resent similar foliage-like (left) and
fiber-like (right) media.

Figure 4: Notations for
Eq. 7.10, for a ray in a
block of input voxels or in
a low-res voxel.

5.2. Using trigonometric lobes for distribution D.

Using self-shadowing functions described by Eq. 5.1, we found
closed-form expressions for our model using the following mi-
croflake normal distributions:

Dcos(ω,ξ,n) =
cos2n(ω,ξ)

Ncos(n)
=

(ω ·ξ)2n

Ncos(n)

Dsin(ω,ξ,n) =
sin2n(ω,ξ)

Nsin(n)
=

(1− (ω ·ξ)2)n

Nsin(n)

with n∈N and Ncos(n) and Nsin(n) the normalization factors whose
closed-form expressions can be found in our supplemental material.
These distributions will be referred to as trigonometric lobes in this
paper. Any linear combination of such lobes still leads to closed-
form expressions in our model. These lobes can represent the same
kinds of distributions as the SGGX distribution (Fig. 3), using for
instance

D(ω) = wcDcos(ω,ξc,nc)+wsDsin(ω,ξs,ns)+
wiso

4π
(5.2)

with wc, ws, wiso positive weights such that wc +ws +wiso = 1.

5.3. Attenuation coefficients for cos2n and sin2n lobes.

In our supplemental material, we derive a general closed-form ex-
pression for the attenuation coefficient σ

cos
t , but this expression

involves costly Gauss hypergeometric functions 2F1 and cannot
be evaluated efficiently at rendering. However, for each particu-
lar value n, we have found efficient closed-form expressions of the
form:

σ
cos
t (ω) = ρA(ω)


1

(ω ·ξD)
2

. . . .

(ω ·ξD)
2n

 ·C1 (5.3)

with C1 a n+1 vector of coefficients. We computed coefficients for
each n between 1 and 20, using symbolic integration [MGH∗05].
Note that for each n, these expressions are exact. We have found
similar expressions for sin2n lobes (only coefficients C1 change).

5.4. Single Scattering coefficients

Similarly, we have found closed-form expressions for σss for each
n:

σ
cos
ss (ω) = αss(λ)ρA(ω)


1

(ω ·ξD)
2

. . . .

(ω ·ξD)
2n

 ·C2 ·

ω
T SA ω

ξ
T
DSA ξD

trace(A)



+αss(λ)ρA(ω)
(

ω
T SA ξD

) (ω ·ξD)
. . . . .

(ω ·ξD)
2n−1

 ·C3 (5.4)

with C2 a (n+ 1)× 3 matrix of coefficients and C3 a vector of co-
efficients of length n. We found similar expression for sin2n lobes.

5.5. Evaluating and sampling fss and fms

Details concerning phase functions can be found in our supplemen-
tal material. The evaluation of our multiple scattering phase func-
tion fms (Eq. 4.7) involves the integral of the multiple scattering
coefficient:∫

σms(ω) dω = αms(λ)
∫

σt(ω) dω− αms(λ)

αss(λ)

∫
σss(ω) dω.

We provide closed-form expressions for
∫

σt(ω) and
∫

σss(ω). We
also provide sampling procedures for the visible normal distribu-
tions [HDCD15] of trigonometric lobes. We rely on rejection sam-
pling for sampling exactly fss and fms. As discussed in our sup-
plemental material, our sampling procedures are very efficient (i.e.
samples are almost always accepted) when the shadowing function
A has few anisotropic variations (which is often the case in practice)
and are less efficient when A is highly anisotropic.

5.6. Limitations

Compared to SGGX distributions, implementing our model with
the distribution proposed in Eq. 5.2 is about 2 to 3 times more ex-
pensive for evaluating σt(ω), and about 25 to 60 times more ex-
pensive for sampling the phase functions, depending on nc, ns, and
A(ω). Despite these additional costs compared to the standard mi-
croflake model, rendering our LoDs is much faster than rendering
high-resolution volumes. In the next section, we propose an im-
plementation of our simplified self-shadowing model that is more
efficient because it relies on SGGX for σt and fss.

Another limitation of the implementation proposed here is that
unlike SGGX distributions, interpolating trigonometric distribu-
tions cannot be done by linear interpolation of trigonometric lobe
parameters. This means that tri-linear spatial interpolation at ren-
dering would require 8 evaluations of σt .

6. Implementing the simplified self-shadowing model using
the SGGX distribution

In our simplified self-shadowing model, σt and σss almost reduce
to the standard microflake model, for which the SGGX distribu-
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tion allows for efficient rendering. For this reason, we propose an
implementation of the simplified model based on the SGGX dis-
tribution. However, using SGGX distributions, there is no closed-
form expression for

∫
σms(ω) dω, which is involved in the multiple

scattering phase function. Assuming normalized SGGX matrices,
meaning that the highest eigenvalue is 1, the other two eigenval-
ues belong to the interval (0,1]. We discretized this interval and
pre-computed

∫
σt(ω

′′) dω
′′ for each pair of eigenvalues using nu-

merical integration.

In the simplified self-shadowing model, sampling the multiple
scattering phase function fms is equivalent to importance sampling
σt , i.e. the projected area of the SGGX ellipsoid given by

√
ωT S ω.

In the supplemental material, we provide the details of a sampling
procedure for fms, using the fact that ω

T S ω is close enough to√
ωT S ω to allow efficient rejection sampling.

7. Downsampling with the microscopic self-shadowing model

In this section, we introduce new algorithms for downsampling
standard microflake volumes using our microscopic self-shadowing
model. We assume that input voxels contain one density value,
parameters for the microflake distribution and a specular albedo.
We describe two algorithms that we used for generating results in
Sec. 8: Aniso uses anisotropic self-shadowing functions in each
low-res voxel, and Iso relies on our simplified self-shadowing
model (Sec. 4.3) for which each low-res voxel needs less param-
eters. We also describe in this section two naïve algorithms that use
the standard microflake model in output voxels: Linear performs
linear pre-filtering for densities and albedos, and Transp performs
linear pre-filtering for albedos but computes density parameters that
preserve local transparency. These naïve algorithms are used for
comparison in Sec. 8.

Fig. 5 illustrates our downsampling pipeline and summarizes our
input and output models for each algorithm. Each of our output
voxels have a unique single scattering albedo, which could be insuf-
ficient for downsampling datasets with strong correlations between
microflake distributions and albedos (e.g. multi-yarn fabrics). We
discuss this case in Sec. 8.4.

7.1. Overview

In the four algorithms described in this section, each block of input
voxels (Fig. 5) is downsampled into one low-res voxel indepen-
dently of other low-res voxels. Parameters of each low-res voxel
are computed using different strategies summarized in the follow-
ing table:

ρ αss A αms

Linear Linear (Eq. 7.1) Linear (Eq. 7.2) - -

Transp Mean (Eq. 7.5) Linear (Eq. 7.2) - -

Aniso Max (Eq. 7.7) Linear (Eq. 7.2) Sec. 7.4.2, 7.4.1 Sec. 7.4.4

Iso Mean (Eq. 7.6) Linear (Eq. 7.2) Sec. 7.4.2 Sec. 7.4.4

We do not contribute to microflake pre-filtering. Algorithms de-
scribed in this section are valid for any number of SGGX or

Block of 
sub-voxels

Input voxel

(a) Input vol.

Low-res voxel

(b) Output vol.

Input ρ D(ω) α - -

Linear ρ D(ω) α - -
Transp ρ D(ω) α - -
Iso (our) ρ D(ω) αss A αms

Aniso (our) ρ D(ω) αss A(ω) αms

(c) Data in input and output voxels

Figure 5: Our input voxels (a) have parameters for the standard
microflakes model (density ρ, microflake distribution D(ω) and
albedo α). Each low-resolution voxel (b) approximates a cube of
input voxels (or block of input voxels). In this paper, we compare
four downsampling algorithms (c). Linear and Transp use the
standard microflake model. Iso and Aniso use our self-shadowing
model and output voxels store additional parameters in this case,
for the self-shadowing function A and for the multiple scattering
albedo αms.

trigonometric lobes in input and output voxels. In our implementa-
tion, we used a single SGGX lobe in each low-resolution voxel, or
its equivalent using trigonometric lobes (Fig. 3), and we pre-filtered
normal distributions using linear SGGX pre-filtering [HDCD15].

7.2. Algorithm Linear

This is the naïve linear algorithm: given ρi and αi, densities and
albedos of Niv input voxels (Fig. 5), the parameters of the corre-
sponding low-resolution voxel are computed using

ρ =
1

Niv
∑ρi (7.1)

and

α =
∑αiρi

∑ρi
. (7.2)

7.3. Algorithm Transp

This algorithm first computes transparency of the block of input
voxel in the three axis of the voxel grid: T (ωX ), T (ωY ) and T (ωZ).
These quantities are computed exactly from directional transparen-
cies of each input voxel. Given the width of input voxels Liv, the
transparency of one input voxel in direction ωi is given by

exp
(
−Livρi

∫
Di(m)〈ωi ·m〉dm

)
. (7.3)

Similarly, transparency of the low-resolution voxel in direction ωi
is given by

exp(−Lσt(ωi)) = exp
(
−Lρ

∫
D(m)〈ωi ·m〉dm

)
(7.4)

with L the size of the low-resolution voxel. We compute density
parameters that preserve transparency in each direction ωi, and we
average them:

ρ =
1
3 ∑

i∈{X ,Y,Z}

− log(T (ωi))

L
∫

D(m)〈ωi ·m〉dm
. (7.5)



Guillaume Loubet and Fabrice Neyret / A new microflake model with microscopic self-shadowing

7.4. Downsampling using our self-shadowing model (Iso and
Aniso)

Given a pre-filtered microflake distribution D, our algorithms first
compute directional transparencies of the block of input voxels
as in algorithm Transp. Then, they compute a temporary density
value ρ0 and temporary parameters for a self-shadowing function
A0. These temporary parameters are used for estimating the amount
of self-shadowing in the low-resolution voxel. The amount of self-
shadowing is also computed in the block of input voxels (Fig. 5).
The final density ρ and self-shadowing parameters are computed
so that the amount of self-shadowing is the same in the block of
input voxels and the low-res voxel. Single scattering albedos are
downsampled linearly using Equation 7.2, and the computation the
multiple scattering albedo is discussed in Sec. 7.4.4.

7.4.1. Computing temporary parameters ρ0 and A0 from
directional transparencies

Given the size of low-res voxels L, the transparency of a low-res
voxel in direction ωi is given by

exp(−Lσt(ωi)) = exp
(
−Lρ0A0(ωi)

∫
D(m)〈ωi ·m〉dm

)
.

Algorithm Iso only uses the simplified microflake model in which
A0(ω) = A0, ∀ω. In this case, we set A0 = 1 and compute ρ for
preserving the average transparency as in algorithm Transp:

ρ0 =
1
3 ∑

− log(T (ωi))

L
∫

D(m)〈ωi ·m〉dm
. (7.6)

Algorithm Aniso uses the anisotropic self-shadowing function in-
troduced in Section 5.1. It computes ρ0 using

ρ0 = max
i∈{X ,Y,Z}

(
− log(T (ωi))

L
∫

D(m)〈ωi ·m〉dm

)
, (7.7)

and then it computes the self-shadowing parameters with

A0(ω) = ω
T

sX 0 0
0 sY 0
0 0 sZ

ω (7.8)

with

si =
− log(T (ωi))

ρ0L
∫

D(m)〈ωi ·m〉dm
, i ∈ {X ,Y,Z} (7.9)

so that directional transparencies of the low-res voxel matches ex-
actly T (ωx), T (ωy) and T (ωz), the transparencies of the block of
input voxels.

7.4.2. Estimating self-shadowing

At this stage, the low-resolution voxel has correct transparency
but incorrect self-shadowing probability. For preserving self-
shadowing, we estimate the amount of single scattering in the
block of input voxels and in the low-res voxel, and we compute fi-
nal parameters accordingly. More precisely, we estimate the mean
amount of energy that leaves the block of input voxels after exactly
one scattering event. For one incoming ray r with direction ωr, in-
tersecting the block of input voxels in xmin and xmax as shown in

Fig. 4, the amount of single scattering writes

Pss(r) =
xmax∫

xmin

σs(x,ωr)O(xmin,ωr,x)
∫
S2

f (x,ωr→ ω)O(x,ω)dωdx

(7.10)
with

O(x1,ω,x2) = exp
(
−

∫ x2

x1

σt(s,ω)ds
)

(7.11)

and O(x1,ω) a similar transmittance probability between x1 and the
limit of the block of input voxels, in direction ω (Fig. 4). The quan-
tity Pss(r) is dimensionless but wavelength dependent. We estimate
the mean amount of single scattering in the block of input voxels by
casting Nray rays all around the block of input voxels. In our imple-
mentation, we chose rays with directions parallel to the mains axis
of the voxel grid. For each ray, we compute Pss(ri) and we average
the results:

Minput
ss =

1
Nray

∑
rays

Pss(ri). (7.12)

Similarly, we estimate the quantity Mss, the amount of single scat-
tering in the low-res voxel, using the pre-filtering distribution D,
ρ0, A0(ω) and the corresponding σss and fss (instead of σs and f )
in Eq. 7.10.

7.4.3. Computing final density and self-shadowing parameters

Thanks to our model, we can control the amount of self-shadowing
in the low-res voxel while preserving the voxel transparency, using
ρ =

ρ0
γ

and A(ω) = γA0(ω) with γ ∈ (0,1]. Indeed, for any value

γ, using ρ and A(ω) instead of ρ0 and A0(ω) in the low-res voxel
does not impact the attenuation coefficient:

σt(ω) = ρA(ω)
∫

D(m)〈ω ·m〉dm = ρ0A0(ω)
∫

D(m)〈ω ·m〉dm.

On the contrary, the single scattering coefficient is multiplied by γ:

σss(ω) = ρA(ω)
∫

A(ω)D(m)〈ω ·m〉dm

= γρ0A0(ω)
∫

A0(ω)D(m)〈ω ·m〉dm.

This means that the amount of self-shadowing in the low-res voxel
(estimated from Eq. 7.10) would now be γMss. Given Minput

ss and
Mss, we compute the value γ that minimizes the error over various
wavelengths:

γ = argmax
g ∑

λi

∥∥∥Minput
ss (λi)−gMss(λi)

∥∥∥2
(7.13)

λi being wavelengths. We used RGB albedos in our implementa-
tion.

7.4.4. Computation of multiple scattering albedo σms

Our self-shadowing model requires a multiple scattering albedo
σms that characterizes the color of light scattered at least two times
at the microscopic scale due to self-shadowing. At rendering, mul-
tiple scattering occurs at the microscopic scale with our model, but
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it can also occur several times in the low-res voxel. We need to
estimate σms such that the effective albedo αe of the low-res voxel,
that is the resulting albedo of the voxel taking into account multiple
scattering with microscopic and non-microscopic scattering events,
is the same as the effective albedo α

input
e of the corresponding block

of input voxels.

We first estimate the effective albedo α
input
e in the block of input

voxels, that is the average color of light when it leaves the block
after 1 or more scattering events. We cast rays through the block
of input voxels as for single scattering estimations (Fig. 5). For
each ray, we compute a light path until the ray leaves the block,
exactly as a volume path tracer would do. Then, α

input
e is computed

averaging ray throughputs.

Now we want to find αms such that αe = α
input
e . Unfortunately,

there is no simple way to derive exactly αe from αms, and we want
to avoid iterative optimizations because they are time consuming.
We approximate αe using:

αe ≈∑Psh(n)(Pssαss +(1−Pss)αms)
n (7.14)

with Psh(n) the probability for a ray of having exactly n scattering
events before leaving the voxel ( ∑Psh(n) = 1 ) and Pss the prob-
ability of self-shadowing at the microscopic scale. We cast rays in
the low-res voxel and estimate probabilities Psh(n) for each n (up
to a given value), which do not depend on σms. For Pss, we use the
following approximation:

Pss ≈
∫

σss

αss(λ)
∫

σt
. (7.15)

Finally, we can estimate αms by solving numerically the equation

α
input
e = ∑Psh(n)(Pssαss +(1−Pss)αms)

n (7.16)

for each wavelength. We evaluated this method by computing the
relative errors between the effective albedos of low-res voxels
αe, measured with ray casting, and the effective albedos α

input
e in

the corresponding blocks of input voxels. Our method (Eq. 7.14
and 7.15) tends to slightly underestimate the effective albedo αe,
and its accuracy depends on the density and the amount of shadow-
ing in the voxel. Details can be found in Sec. 6 of the supplemental
material, including statistics of errors for the assets used in the next
section.

8. Implementation and results

8.1. Pre-computation time

Pre-computation time depends on the number of samples used
for estimating self-shadowing probabilities and multiple scattering
albedos (Sec. 7.4.2 and 7.4.4). In our implementation, we adapted
the number of samples to the complexity of the block of input vox-
els. For LoD i (i.e. 2i times smaller than input volume in each
dimension), blocks of input voxels viewed from one side have a
complexity of 4i voxels. We cast 40× 4i rays for each non-empty
low-res voxels so that our LoDs are not subject to noise. We got
the following pre-computation times on a Intel Xeon Processor E5-
2630 v3 (in CPU core hour):

Bunny hair Cedar Pine Hairy ball

Size of input vol. ' 5003 6003 6803 6803 6803

Aniso / LoD 1 1.1 1.4 0.1 0.13 6.8

Aniso / LoD 3 0.92 0.6 0.14 0.17 3.2

Aniso / LoD 5 0.64 0.33 0.17 0.15 1.2

In their work, Zhao, Wu et al. give pre-computation time of respec-
tively 12 and 40 CPU core hours for the bunny (LoD 2) and the
hairy ball (LoD 3). We obtained accurate results for these model
with respectively 0.97 and 3.2 CPU core hours. As our algorithm
downsamples each block of input voxels independently, paralleliz-
ing our method is straightforward.

8.2. Savings

Compared to the standard microflake model, our model requires
additional data per voxel: 2 additional values for our trigonometric
distributions compared to SGGX, 3 for multiple scattering albedos
(RGB) and 6 or 1 additional values for the shadowing function us-
ing respectively our anisotropic self-shadowing model or our sim-
plified model. Despite its additional parameters, our downsampling
method allows for huge memory savings as shown in the following
table:

Linear Iso (SGGX) Aniso (triglobe)

Per voxel values 10 14 21

Size of LoD1 wrt input 12.5% 17.5% 26.3%

Size of LoD3 wrt input 0.20% 0.27% 0.41%

On average, for the LoDs shown in Fig. 6, the render time for
naïve LoDs is around 11% of the render time for high-resolution
volumes, and around 13% for our LoDs with algorithm Aniso.
This means that our LoDs also decrease render time despite the
additional cost compared to rendering naïve LoDs.

8.3. Results

Fig. 6 compares our LoDs with input volumes and results from
naïve algorithms described in Section 7. Our downsampling
method supports semi-transparent inputs with low-density voxels.
Our LoDs are only slightly more accurate in this case because
naïve methods already perform well when there are no strong self-
shadowing effects (Fig. 6a and 6f). However, our LoDs are much
more accurate than naïve LoDs when input volumes have rela-
tively dense voxels (Fig. 6b to 6e). Because we preserve local
transparency, our results have correct silhouettes even when in-
put datasets have intricate shapes (Fig. 6d and 6e). Our LoDs can
be computed at arbitrary scales and their appearance is consistent
(Fig. 1).

Using anisotropic self-shadowing functions allows for preserv-
ing exactly directional transparency in low-res voxels indepen-
dently of the microflake distribution, for instance when the mi-
croflake distribution is isotropic as shown in Fig. 2d. How-
ever, we found in our experiments that using anisotropic self-
shadowing does not improve accuracy significantly in practice,
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Linear (naïve) Transp (naïve) Input volume Aniso (our) Iso (our)

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6: Comparison of volumes downsampled using the four algorithms described in Sec. 7.
Low-res volumes are LoD 5, meaning that the number of voxel has been divided by 85 compared to
input volumes. Insets show relative L1 errors in linear RGB, computed on low-resolution pictures.
(a): low-density bunny. (b): high density bunny (×20 compared to (a)). (c): dense hairy ball
with anisotropic microflake distributions. (d): cedar foliage with homogeneous albedo. (e): pine
tree with dark trunk. (f): hair with anisotropic microflake distribution. Our algorithm increases
significantly accuracy of LoDs when input volumes have dense voxels ((b) to (e)).

LoD 2
[ZWDR16]

Input volume
LoD 2

Iso (our)

Figure 7: Dense hairy bunny. Both meth-
ods preserve the macroscopic appear-
ance of the input volume. Silhouettes are
slightly more accurate in our LoD be-
cause we do not pre-filter density lin-
early.

LoD 5
[ZWDR16]

Input volume
LoD 5

Iso (our)

Figure 8: Close-up vs large scale view
of the velvet dataset. Our LoDs have ac-
curate transparency (bottom right). Be-
cause they have dense low-resolution
voxels (top left), LoDs from [ZWDR16]
preserve more accurately fabrics-like
appearance at large scales, especially
at grazing angles. Preserving both ac-
curate transparency and scattering be-
havior remains an open problem for such
dense input volumes.

even for datasets with dense aligned voxels such as the hairy bunny
(Fig. 6b). This means that our simplified model has sufficient ac-
curacy in most downsampling applications, and that accuracy is
more limited by albedos and phase functions than by accurate view-
dependent attenuation.

We compared our LoDs with results provided by Zhao, Wu et
al. [ZWDR16]. Fig. 7 and Fig. 8 show LoDs of the dense hairy
bunny and the velvet datasets. Both methods preserve large-scale
albedos, unlike naïve methods (1, 6b). Silhouettes of our LoDs
are more accurate because we preserve local transparency in low-
resolution voxels instead of pre-filtering density linearly.

8.4. Limitations

The main limitation of our work is that the self-shadowing func-
tions we use do not model accurately self-shadowing effects in
dense voxels. Indeed, our functions are symmetric (A(ω)=A(−ω))
while self-shadowing in a dense voxel is very strong forward and

much smaller backward. Moreover, our multiple scattering phase
function is relatively diffuse, while light scattered multiple times
in a dense voxel mainly leaves this voxel backward – because light
cannot reach the opposite side of the voxel. Hence, our phase func-
tions lack accuracy when input datasets are very dense and het-
erogeneous. This can be seen in Figure 8 where the LoD from
[ZWDR16] better preserves velvet-like reflections at grazing an-
gles because they use dense low-resolution voxels. Fig. 9 shows
that our LoDs lack accuracy for the hair datasets because input vox-
els are too dense. Our self-shadowing model allows for preserving
the mean amount of local self-shadowing, but preserving both lo-
cal transparency and accurate scattering behavior remains an open
problem for dense and heterogeneous input volumes.

We did not address the problem of colored multi-fiber datasets,
for which it is important to store multiple albedos and lobes in low-
resolution voxels. We believe that our method can be extended to
such case using self-shadowing estimations for each lobe, but a
rigorous study remains to be done. We did not work on animated
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datasets with time varying scattering parameters in input voxels.
Pre-computing low-resolution volumes at each time step would re-
duce the benefits of using LoDs in some applications.

Transp (naïve) Input volume Aniso (our)

Figure 9: Same hair dataset as in Fig. 6f, with density multiplied
by 10. This is a challenging case because of very anisotropic mi-
croflake distributions and complex self-shadowing effects due to
dense input voxels. Our LoDs are slightly better than naïve meth-
ods for this datasets but lacks accuracy (loss of bright anisotropic
reflections). This is because our self-shadowing model does not pre-
serve well appearance of very dense voxels (Sec. 8.4).

9. Summary

We have introduced a new participating medium model based on
the microflake model, with new parameters characterizing self-
shadowing effects at a microscopic scale. This model allows for
controlling independently the directional transparency of a medium
and the amount of multiple scattering that occurs at the micro-
scopic scale. Based on this model, we have introduced a new vol-
ume downsampling approach that preserves both transparency and
self-shadowing effects in low-resolution volumes.

Our downsampling approach overcomes several limitations of
previous work: it does not produce artifacts on spatially varying
data, and it can handle semi-transparent datasets or intricate shapes
with hidden parts. Our method also reduces pre-computation time
because computing local self-shadowing estimations is faster than
large scale training rendering. We tested our algorithm on several
challenging datasets and have shown that our method can down-
sample dense heterogeneous volumes for which naïve methods are
inaccurate, as well as datasets with complex silhouettes such as
trees. Our LoDs have consistent appearance through scales, allow-
ing for huge storage savings and drastic reduction of rendering time
with little loss of quality.

Our self-shadowing model can be used for adjusting anisotropic
attenuation in low-resolution voxels. However, from our results, we
have drawn the conclusion that accuracy in LoDs does not depend
much on accurate anisotropic transparency: our simplified self-
shadowing model has proven to be as accurate as our full model for
all the datasets we tested. To the contrary, we observed that accu-
racy of low-res volumes highly depends on estimated albedos and
phase functions. We found that preserving both local transparency
and accurate phase functions remains an open problem in the case
of input volumes with very dense voxels. In our model, shadowing
parameters mainly control the amount of self-shadowing, but our
self-shadowing functions do not model accurately what happens in
dense voxels. Future work may focus on new self-shadowing model
for increasing accuracy of phase functions in such cases.
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