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I. INTRODUCTION

In developed countries, work-related musculoskeletal disorders (MSDs) are a major health issue. MSDs affect almost 50 % of industrial workers and represent an important cost for companies [START_REF] Schneider | Osh in figures: occupational safety and health in the transport sector-an overview[END_REF]. In order to reduce the prevalence of workrelated MSDs, the ergonomics of the workplace needs to be evaluated and improved. Standards ergonomic assessment methods rely on pen-and-paper worksheets filled by experts, such as the commonly used European Assembly Worksheet (EAWS) [START_REF] Li | Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods[END_REF] [START_REF] Schaub | The European Assembly Worksheet[END_REF]. Some digital human modeling software provide automatic filling of these ergonomic worksheets [START_REF] Bossomaier | Scientific approaches for the industrial workstations ergonomic design: A review[END_REF], but this cannot be done directly from raw data (video, motion capture, etc.) because the scoring system depends on the activity that is being performed (e.g., walking, bending, carrying an object). The software user has first to manually identify the different types of movements occurring in the task. Therefore, there exists no tool to inform a worker in real-time whether s/he is performing a task in an ergonomic way or not. Yet, such an evaluation could help reducing the risk of MSDs. This is one of the objectives of the European AnDy project [START_REF] Ivaldi | Anticipatory models of human movements and dynamics: the roadmap of the andy project[END_REF].

The first step towards a fully automatic ergonomic assessment is to automatically identify the different activities within an industrial task. To address this problem, this paper proposes a method based on wearable sensors and Hidden Markov Model (HMM). We focus our activity recognition on a pick-and-place task inspired by a manufacturing scenario. The whole-body motions of the operator are recorded with inertial sensors embedded in a suit. Though motion-capture based activity recognition using HMM already exists [START_REF] Lara | A Survey on Human Activity Recognition using Wearable Sensors[END_REF] [START_REF] Junker | Gesture spotting with body-worn inertial sensors to detect user activities[END_REF], the recognition rate is not yet perfect and could be improved. This can be an issue for industrial applications. Therefore, we propose to complement the motion capture system with a glove embedding force sensors to detect hand contacts with the manipulated objects. This paper focuses on evaluating the benefit of using the contact information for the recognition performance with HMM-based models.

The paper is organized as follows: Section II presents state-of-the-art activity recognition methods based either on external sensors or on wearable sensors. Section III describes the proposed HMM-based recognition method and presents the experimental test-bed. The results of the comparison with vs. without contact information are presented in Section IV and discussed in Section V.

II. RELATED WORK A. Motion capture based activity recognition

Human activity recognition methods can exploit external or exteroceptive sensors and wearable sensors [START_REF] Lara | A Survey on Human Activity Recognition using Wearable Sensors[END_REF][8] [START_REF] Presti | 3D skeletonbased human action classification: A survey[END_REF].

Most external sensors approaches use vision-based systems, such as RGB-D cameras or optical motion capture systems. RGB-D cameras, such as Microsoft Kinect, require image processing to extract motion features. Conversely, in optical motion capture, the 3D trajectories of markers placed on the user are directly retrieved. A major problem of visionbased systems is that the user must always be in the camera's field of view, which limits the applicability in complex spaces. Occlusion of markers is another issue for robust motion detection, especially in cluttered environments.

To avoid these issues that are frequent in industrial conditions, wearable sensors can be used. Such sensors are then directly attached to the user, and no external sensor is needed. Inertial sensors placed on the limbs and torso of the user are the most commonly used [START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF] [START_REF] Yang | Distributed segmentation and classification of human actions using a wearable motion sensor network[END_REF].

B. Algorithms for activity recognition

Classification algorithms have been widely used to recognize human daily activities, such as walking, sitting or lying [START_REF] Dubois | Human activities recognition with RGB-Depth camera using HMM[END_REF] [START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF]. Using three inertial sensors placed on the chest, right thigh and left ankle, Attal et al. [START_REF] Attal | Physical human activity recognition using wearable sensors[END_REF] compared the k-Nearest Neighbor (k-NN), Support Vector Machines (SVM), and HMM algorithms for both supervised and unsupervised learning. They showed that with supervised learning k-NN gives the best performance, whereas with unsupervised learning HMM performs best. They showed that main advantage of using HMM was that the model took the temporal aspect into account. Dubois and Charpillet [START_REF] Dubois | Human activities recognition with RGB-Depth camera using HMM[END_REF] showed that HMM can efficiently discriminate falls from other daily life activities. Mandery et al. [START_REF] Mandery | Dimensionality reduction for whole-body human motion recognition[END_REF] used HMM to identify the best performing sets of features for dimensionality reduction of motion capture data. They showed that a small subset of features was sufficient to perform accurate recognition. Interestingly, the velocity of the whole-body center of mass was always included in the relevant features.

All the aforementioned studies only used motion capture data. Conversely, Wächter and Asfour [START_REF] Wächter | Hierarchical segmentation of manipulation actions based on object relations and motion characteristics[END_REF] used optical devices to track not only humans but also objects motions. The distance between the human and tracked objects was used to detect contact and pre-segment the data before the recognition step. Coupeté et al. [START_REF] Coupeté | Recognition of Technical Gestures for Human-Robot Collaboration in Factories[END_REF] addressed the problem of real-time activity recognition in an industrial environment using HMM and object-related information. They used depth-cameras to capture human motion and inertial sensors to track tools manipulated by the worker. They showed that the tool-related information improved the classification performance from 80% to 94%.

III. METHOD A. Experimental protocol 1) Material:

We used two wearable systems: the MVN Link suit from Xsens [START_REF] Roetenberg | Xsens MVN: full 6DOF human motion tracking using miniature inertial sensors[END_REF] (Figure 1a) and the e-glove from Emphasis Telematics [START_REF]e-glove | Emphasis Telematics[END_REF] (Figure 1b). The XSens MVN suit was used to capture the whole-body human motion with 17 wireless inertial sensors embedded in a lycra suit. The suit information was combined with a glove containing force sensors on the fingertips of thumb, index and middle fingers and on the palm. However, in this paper, we used only the palm force information to detect contacts.

The sample rates of the MVN suit and the glove are 240 Hz and 100 Hz, respectively. To synchronize the data, both systems used the same wireless network during data collection, and each recorded sample was associated to an absolute timestamps value. 2) Task description: To evaluate our method, we designed a pick-and-place task of a 6 kg bar, inspired by packaging tasks on assembly lines in manufacturing industry.

One male participant performed 8 sequences of the task, with each sequence consisting of 6 to 8 pick-and-place. Each sequence started and ended in the same neutral pose. The bar was initially placed at a height of 45 cm on a 100 × 50 cm flat support. The participant was instructed to take the bar with both hands, carry it to the other side of the support, place the bar there and return to the initial position to perform the next iteration. Each sequence lasted around one minute. In order to add variability in the data, the participant was instructed to change the position of his hands on the bar, and to follow two different paths when going to and coming from the bar final position.

We defined seven states/activities (Figure 2): 

Q k = {q k 0 , q k 1 , .
.., q k t , ...q k T } and a series of T observations X k = {x k 1 , ..., x k t , ..., x k T } corresponding to motion capture and glove data. For each instant, the goal is to infer the current hidden state, such as q k t = s i . Three parameters {Π, A, B} represent the model. Π = {π 1 , π 2 , ..., π N } denotes the initial state probabilities and is learned from the training set. For each state, π i is equal to the frequency of appearance of this state at the start of a sequence as in [START_REF] Schneider | Osh in figures: occupational safety and health in the transport sector-an overview[END_REF]. A = {a ij } is the transition matrix probability, where a ij is equal to the frequency of s i following s j in the training set [START_REF] Li | Current techniques for assessing physical exposure to work-related musculoskeletal risks, with emphasis on posture-based methods[END_REF] The transition matrix can also be represented by a probability transition diagram (Figure 3). B = {b 1 , ..., b N } represents the emission distribution that models the observation (3). For each state, the emission b i is computed as a multivariate Gaussian N (X, µ i , Σ i ) with µ i and Σ i the mean vector and the covariance matrix of the Gaussian variable, respectively. µ i and Σ i are learned from the observations X related to the state s i in the training set.

π i = p(q 0 = s i ) = K-1 k=1 q k 0 = s i K , i ∈ [1, N ] (1) 
A.

B.

C. D. E. Figure 3. Probability transition diagram. The graph is not fully connected because some transitions are impossible. For instance, to PLACE an object, it first needs to be PICKED.

a ij = K-1 k=1 T t=1 (q k t = s j ).(q k t-1 = s i ) K-1 k=1 T t=1 (q k t-1 = s i ) , i, j ∈ [1, N ] (2) 
b i = p(X|q t = s i ) = N (µ i , σ 2 i ), i ∈ [1, N ] (3) 
In this paper, we used N = 7, while T is different for each recorded sequence, from 444 samples for the shortest sequence to 715 samples for the longest one.

2) Normalization: As the data (observations) have different units (e.g., Cartesian position, velocity, contact information), they need to be normalized. x t is the vector containing the data x t normalized within the range [-1,1]:

x t = 2. x t -x min x max -x min -1 (4) 
where x min and x max are constants computed from the data in the training set.

3) Sliding window: In order to decrease the computational complexity and to reduce noise in the data, a sliding window filter is applied to the recorded motion capture and glove data. For each time window, the observation vector contains the average values of the data across this window. A 60 samples window is used, with an overlap of 30 samples between each window. As the frequency of the MVN Link system is 240 Hz, a window is 250 ms long. Given the 30 frames overlap, there is a new observation every 125 ms. This rate is sufficient since each activity lasts more than one second.

4) Data annotation: Given that we used supervised learning, the recorded sequences were manually segmented and annotated with the start and end of the different activities by using the Anvil annotation software [START_REF]anvil software[END_REF]. .

C. Features selection

Based on the results of [START_REF] Mandery | Dimensionality reduction for whole-body human motion recognition[END_REF] and our pilot tests, we include the following motion-related features in the observation X: the vertical position of the center of mass, the 3D velocity of the center of mass, and the 3D velocity of both hands. The contact information is the normal force on the palm. Therefore, the observation vector x t at each instant t is x t ∈ R 10 without the contact information, and x t ∈ R 11 with it.

D. Data analysis 1) Evaluation:

The model is evaluated with crossvalidation on the dataset consisting of K = 8 recorded sequences. At each iteration, the database is split between the training set that contains K -1 sequences and the test set that contains 1 sequence. The training set is used to learn the parameters of the model, while the test set is used for the evaluation.

2) Metrics: In order to evaluate the advantage of adding the contact information, the recognition performances with and without contact information are compared on the same sequences. The model is evaluated with the Recall score, Precision score and F1-score (harmonic mean of precision and recall) as in (5 -7): Precisioni.Recalli Precisioni + Recalli [START_REF] Junker | Gesture spotting with body-worn inertial sensors to detect user activities[END_REF] For each metric, an average score is computed on all the iterations of the cross-validation.

IV. RESULTS

A. First insight

Some patterns are observable when the data of the vertical position of the center of mass and contact information are compared to the annotated activities (Figure 4). When the participant performs the activities WALK, REACH and RELEASE, the contact information data are equal to the minimum possible value. Whereas during PICK, CARRY and PLACE activities, the contact data have positive values. We can also identify when the user bends forwards and stands up straight by looking at the center of mass position. During the WALK and CARRY states, there are oscillations around a value of 0.5.

B. Margin of error

Most activities are correctly identified (Figure 5), but the transition between two states does not always happen at the exact same frame on the real and the predicted case. This kind of error is not relevant, as our future application does not require a 125 ms accuracy. Therefore, the performance scores are computed with a margin of error of one 125 ms time window before and after each observation. The classification is considered correct if the predicted state at time t corresponds to the annotated state at either time t -1, t, or t + 1.

C. Overall results

The performance for each score with and without glove is presented in Table I. For each score, the contact information improves the results. The results are compared with a Wilcoxon signed-rank test and we found a significant difference for the F1-score (p-value = 0.05). D. Performance for each activity Figure 6 presents the precision and recall scores for each states. There is mainly a confusion between the RELEASE and WALK activities. This is mainly due to the fact that at the end of each sequence, the subject returns to a neutral position with a little step after placing the last bar. In the annotation, it was labeled RELEASE then WAIT without WALK transition, but the step was classified by the model as walking (this error can also be seen in Figure 5).

Figure 7 presents a comparison of the scores for each state for both conditions. We computed a Wilcoxon signed-rank test on the measure performance of recall, precision and F1-score. For most of the measures, there is no significant difference with or without the use of the contact information. We found a significant difference with the F1-score of PICK task, the precision score of PLACE activity, the recall score of REACH task and the precision and F1-score of WALK activity. However, when the contact information is added, there is an improvement of the performances for the recognition of each activity and a reduction of the uncertainty.

Overall, our results show that using both kinetics information and contact information is beneficial for activity recognition with our HMM-based model.

V. CONCLUSION This paper presents a contextual use of Hidden Markov

Model for activity recognition, applied to a pick-and-place task. We evaluate the benefit of using the hand-object contact information in addition to kinetics information to improve the classification performance. The overall performance is better by about 3 % when the contact information is added. The contact information could also increase the robustness of the recognition in case of data loss. For instance, if data corresponding to the PICK activity is unavailable, WALK and CARRY can easily be confused when the recognition is based on motion features only. With the contact information, the differentiation becomes trivial. Nevertheless, the dataset we used consists of a single task. In order to test if the usefulness of the contact information can be generalized, future work includes collecting a dataset with more tasks and more variability in the tasks and related activities. Finally, the automation of the recognition process could be increased by adding an automatic selection of relevant features among all the available ones. 

Figure 1 .

 1 Figure 1. Wearable sensors used in the experiment: (a) XSens MVN suit [16]; (b) e-glove from Emphasis Telematics.
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  WAIT: standing still • REACH: bending forward, without the bar • PICK: standing up straight while holding the bar • CARRY: walking while carrying the bar in the hands • PLACE: bending forwards with the bar in the hands • RELEASE: standing up straight with empty hands • WALK: walking without holding the bar B. Activity recognition algorithm 1) Hidden Markov Model: We use HMM-based supervised learning to recognize the activities with the hmmlearn [18] library in Python. The model is defined by N states representing the activities, such as WALK or PLACE (all activities are presented in Section III-A2), with S = {s 1 , s 2 , ..., s N } being the set of possible states. Each recorded sequence k ∈ [1, K = 8] is represented by a series of discrete states

Figure 2 .

 2 Figure 2. Examples of activities extracted from the MVN Studio software. A: WAIT, B: REACH, C: CARRY, D: PLACE, E: WALK.

  Recalli = Number of samples correctly classified as class i Number of samples that belong to the class i (5) Precisioni = Number of samples correctly classified as class i Number of samples classified as class i(6)F1-scorei = 2.

Figure 4 .

 4 Figure 4. Example of normalized data used to train the model. Top: Time-series of the contact information from the e-glove; Middle: Time-series of the center of mass vertical position; Bottom: Manually labeled activities.

Figure 5 .

 5 Figure 5. Comparison of manually annotated activities (red) and predicted activities (green).

WITHOUTFigure 6 .

 6 Figure 6. Recall and Precision scores for each state without (top) and with (bottom) contact information.

Figure 7 .

 7 Figure 7. Classification performance with and without contact information for each activity: Recall score (top), Precision score (middle), and F1-score (bottom).

TABLE I .

 I RECOGNITION PERFORMANCE (%) WITH AND WITHOUT CONTACT INFORMATION (LEFT AND MIDDLE COLUMNS), AND PERFORMANCE COMPARISON WITH WILCOXON TEST (RIGHT COLUMN).

		No contact	Contact	p-value
	Recall	90.07	93.38	0.06
	Precision	94.08	96.12	0.16
	F1-score	91.99	94.71	0.05
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