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ABSTRACT
We introduce a dependent-type theory ∆-framework, LF∆, based

on the Edinburgh Logical Framework LF, extended with the strong
proof-functional connectives intersection, union, and relevant impli-

cation. Proof-functional connectives take into account the shape

of logical proofs, thus allowing the user to reflect polymorphic

features of proofs in formulæ. This is in contrast to classical and

intuitionistic connectives where the meaning of a compound for-

mula is dependent only on the truth value or the provability of its

subformulæ. Both Logical Frameworks and Proof Functional Logics

consider proofs as first class citizens albeit differently. The former

mention proofs explicitly, while the latter mention proofs implicitly.

Their combination therefore opens up new possibilites of formal

reasoning on proof-theoretic semantics. We study the metatheory

of LF∆ and provide various examples of applications. Moreover,

we discuss a prototype implementation of a type checker and a

refiner allowing the user to accelerate and possibly automate, the

proof development process. This proof-functional type theory can

be plugged in existing common proof assistants.

ACM Reference Format:
Furio Honsell, Luigi Liquori, Ivan Scagnetto, and Claude Stolze. 2018. The

∆-framework. In Proceedings of ACM Conference (Conference’17). ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
We extend the Edinburgh Logical Framework (LF) [13] with the

proof-functional logical connectives of intersection, union, and min-

imal relevant implication of Proof Functional Logics [3, 4, 27]. We

call this extension the ∆-framework (LF∆)
1
, since it builds on the

∆-calculus introduced in [9, 18].

Proof functional connectives take into account the shape of logi-

cal proofs, thus allowing for polymorphic features of proofs to be
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made explicit in formulæ. This differs from classical or intuition-

sitic connectives where the meaning of a compound formula is only

dependent on the truth value or the provability of its subformulæ.

Quite remarkably, both Logical Frameworks and Proof Func-

tional Logics consider proofs as first class citizens albeit differently.

The former mention proofs explicitly, while the latter mention

proofs implicitly. This calls for a natural combination of the two,

which should enhance the expressiveness of Logical Frameworks

based on Type Theory. Hence new possibilities open up to formal

reasoning on proof-theoretic semantics, beneficial to existing in-

teractive theorem provers and dependently typed programming

languages.

It is not immediate to extend the judgments-as-types Curry-

Howard paradigm to logics supporting proof functional connec-

tives. These connectives need to compare the shapes of derivations

and do not just take into account their provability, i.e. the inhabi-
tation of the corresponding type. Proof-functional connectives, or

simply strong connectives, need to consider the very structure of

proofs and thus they need to give a first-class status to the latter,

at least implicitly. In order to capture successfully strong logical

connectives such as ∩ or ∪ we need to be able to express the rules:

D1 : A D2 : B D1 ≡ D2

A ∩ B
(∩I )

D1 : A ⊃ C D2 : B ⊃ C A ∪ B D1 ≡ D2

C
(∪E)

where ≡ is a suitable equivalence between logical proofs.

Notice that the above rules suggest immediately intriguing ap-

plications in polymorphic constructions, i.e. the same evidence can

be used as a proof for different statements.

Pottinger, [27], was the first to study the strong connective ∩.

He contrasted it to the intuitionistic connective ∧ as follows: “The
intuitive meaning of ∩ can be explained by saying that to assertA∩B
is to assert that one has a reason for assertingA which is also a reason
for asserting B, while to assert A∧ B is to assert that one has a pair of
reasons, the first of which is a reason for asserting A and the second
of which is a reason for asserting B”.

A simple example of a logical theorem involving intuitionistic

conjunction which does not hold for strong conjunction is (A ⊃
A) ∧ (A ⊃ B ⊃ A). Clearly, (A ⊃ A) ∩ (A ⊃ B ⊃ A) does not hold
otherwise there should exist a closed λ term having simultaneously

only one and at least two abstractions. Lopez-Escobar [20] and

Mints [23] investigated extensively logics featuring both strong and

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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x :σ ∈ B

B ⊢ x : σ
(Var )

B ⊢ M : σ → τ B ⊢ N : σ

B ⊢ M N : τ
(App)

B,x :σ ⊢ M : τ

B ⊢ λx .M : σ → τ
(Abs )

B ⊢ M : σ B ⊢ M : τ

B ⊢ M : σ ∩ τ
(∩I )

B ⊢ M : σ ∩ τ

B ⊢ M : σ
(∩El )

B ⊢ M : σ ∩ τ

B ⊢ M : τ
(∩Er )

B ⊢ M : σ

B ⊢ M : σ ∪ τ
(∪Il )

B ⊢ M : τ

B ⊢ M : σ ∪ τ
(∪Ir )

B,x :σ ⊢ M : ρ B,x :τ ⊢ M : ρ B ⊢ N : σ ∪ τ

B ⊢ M[N /x] : ρ
(∪E)

B ⊢ M : σ σ ≤ τ

B ⊢ M : τ
(Sub)

(1) σ 6 σ ∩ σ (8) σ1 6 σ2,τ1 6 τ2 ⇒ σ1 ∪ τ1 6 σ2 ∪ τ2

(2) σ ∪ σ 6 σ (9) σ 6 τ ,τ 6 ρ ⇒ σ 6 ρ

(3) σ ∩ τ 6 σ ,σ ∩ τ 6 τ (10) σ ∩ (τ ∪ ρ) 6 (σ ∩ τ ) ∪ (σ ∩ ρ)

(4) σ 6 σ ∪ τ ,τ 6 σ ∪ τ (11) (σ → τ ) ∩ (σ → ρ) 6 σ → (τ ∩ ρ)

(5) σ 6 ω (12) (σ → ρ) ∩ (τ → ρ) 6 (σ ∪ τ ) → ρ

(6) σ 6 σ (13) ω 6 ω → ω

(7) σ1 6 σ2,τ1 6 τ2 ⇒ (14) σ2 6 σ1,τ1 6 τ2 ⇒

σ1 ∩ τ1 6 σ2 ∩ τ2 σ1 → τ1 6 σ2 → τ2

Figure 1: The type assignment of [3] and the subtype theory Ξ.

intuitionsitic connectives especially in the context of realizability
interpretations.

Dually, it is in the ∪ elimination rule that proof equality needs

to be checked. Following Pottinger, we could say that asserting
(A∪ B) ⊃ C is to assert that one has a reason for (A∪ B) ⊃ C , which
is also a reason to assert A ⊃ C and B ⊃ C . The two connectives

differ since the intuitionitic theorem ((A ⊃ B) ∨ B) ⊃ A ⊃ B is not

derivable if ∨ is replaced by ∪. Otherwise there would exist a term

which behaves both as I and as K.
Strong (orMinimal Relevant) Implication→r is yet another proof-

functional connective. As explained in [4], it can be viewed as a

special case of implication whose related function space is the sim-

plest one, namely the one containing only the identity function.

The operators ⊃ and→r differ, sinceA→r B →r A is not derivable.

Relevant implication allows for a natural introduction of subtyp-
ing, in that A ⊃r B morally means A 6 B. Relevant implication

amounts to a notion of “proof-reuse”. Combining the remarks in

[3, 4], relevant implication, strong intersection and strong union

correspond respectively to the implication, conjunction and dis-

junction operators of Meyer and Routley’s Minimal Relevant Logic

B+ [22].
Strong connectives arise naturally in investigating the proposi-

tions-as-types analogy for intersection and union type assignment
systems. Intersection types were introduced by Coppo, Dezani and

Barendregt in the early 80’s [6] to support a form of ad hoc poly-
morphism, for untyped λ-calculi, à la Curry. Intersection types

were used originally as an (undecidable) type assignment system

for untyped λ-calculi, i.e. for finitary descriptions of denotational

semantics [8]. This line of research was later expanded by Abram-

sky [1] in a full-fledged Stone duality. Union types were introduced
later, semantically, by MacQueen, Plotkin, and Sethi, [3, 21], again

à la Curry. In [3] strong intersection, union and subtyping were

thoroughly studied in the context of type-assignment systems, see

Fig. 1.

Intersection and union type disciplines started to be investigated

in typed settings,i.e. à la Church, much later, in the context of the

programming language Forsythe, by Reynolds and Pierce [26, 28].

Other solutions were proposed by Castagna [12], Wells [31] and

Dunfield [11]. A classical example of the expressiveness of such

type disciplines, due to Pierce, is the following:

Test
△
= if b then 1 else −1 : Pos ∪ Neд

Is_0 : (Neд → F ) ∩ (Zero → T ) ∩ (Pos → F )
(Is_0 Test) : F

Without union types the best information we can get for (Is_0Test)
is a Boolean type.

Designing a λ-calculus à la Curry featuring intersection and

union types is problematic. The usual approach of simply adding

types to binders does not work, as the following example shows:

x :σ ⊢ x :σ
(Var )

⊢ λx :σ .x :σ → σ
(→I )

x :τ ⊢ x :τ
(Var )

⊢ λx :τ .x :τ → τ
(→I )

⊢ λx :???.x :(σ → σ ) ∩ (τ → τ )
(∩I )

Liquori et al. were the first, [10, 18], to extend the theory of type

assignment systems, i.e. type disciplines à la Curry, to explicitly

typed calculi, i.e. type disciplines à la Church, for all strong connec-
tives. In [9], two of the present authors proposed the ∆-calculus as
a typed λ-calculus à la Church corresponding to the type assign-

ment system à la Curry with intersection, union and subtyping,

but without ω. The relation between Church-style and Curry-style

λ-calculi was expressed using an essence function, denoted by ≀ − ≀,

that intuitively erases all the type information in terms (the full

definition is shown in Figure 5). The ∆-calculus is a typed calculus

corresponding to the type assignment system of [3], without ω and

subtyping. Throughout the paper we will call this system B.

Pfenning’s work on Refinement Types [25] pioneered an ex-

tension of the Edinburgh Logical Framework with subtyping and

intersection types. The logical strength of this system however, did

not go beyond LF.

In this paper, building on [9], we introduce the ∆-framework LF∆,

which extends LF and features a full-fledged strong conjunction,

strong disjunction, and minimal relevant implication, whereby all

strongly normalizing ∆-terms have a computational counterpart.
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Miquel [24] discusses an extension of the Calculus of Construc-

tions with implicit typing, which subsumes a kind of proof func-

tional intersection. His approach has opposite motivations to ours.

While LF∆ provides a Church-style version of Curry-style type

assignment systems, Miquel’s Implicit Calculus of Constructions

encompasses some features of Curry-style systems in an otherwise

Church-style Calculus of Constructions. In LF∆ we can discuss also

ad hoc polymorphism, while in the Implicit Calculus only structural

polymorphism is encoded. In fact not all terms typed by intersection

types have an equivalent, for instance λx .x : ((σ ∩τ ) → σ ) ∩ (ρ →
ρ)) appears to be problematic [17].

Of course we could have carried out an encoding of the systemB

in LF. But due to the side-conditions characterizing proof-functional

connectives, however, this can be achieved only through a deep

encoding (see Fig. 8). This encoding illustrates the expressive power

of LF in treating proofs as first-class citizens, and it was also a source

of inspiration for LF∆.

In this paper we outline the implementation of an experimental

proof development environment for LF∆ and discuss experiments

with it. It allows, of course, an agile and shallow encoding of proof-

functional connectives in presence of dependent-types.

The main contributions of the present paper are the definition

and the metatheory of LF∆, together with a discussion of the main

design decisions. We provide also some motivating examples and

outline the details of the implementation. Throughout the paper

we assume the reader familiar with [3, 5].

2 THE ∆-FRAMEWORK: LF WITH
PROOF-FUNCTIONAL OPERATORS

We could formulate LF∆ in the style of [14], using only canonical

forms and without reductions, but we use the standard LF format

to better support the intuition. The syntax of LF∆-pseudo-terms is

given by the following grammar:

Kinds K ::= Type | Πx :σ .K as in LF

Families σ ,τ ::= a | Πx :σ .τ | σ ∆ | as in LF

Πrx :σ .τ | relevant family

σ ·∆ | relevant dependency

σ ∩ τ | intersection family

σ ∪ τ union family

Objects ∆ ::= c | x | λx :σ .∆ | ∆∆ | as in LF

λrx :σ .∆ | relevant abstraction

∆ ·∆ | relevant application

⟨∆ , ∆⟩ | intersection objects

[∆ , ∆] | union objects

pr l ∆ | pr r ∆ | projections objects

inτl ∆ | in
σ
r ∆ injections objects

General terms, namely kinds, families, and objects are denoted by

U , and V . For the sake of simplicity, we suppose that α-convertible
terms are equal. Signatures and contexts are defined as finite se-

quence of declarations, like in LF.

There are three proof-functional objects, namely strong conjunc-

tion (typed with σ ∩ τ ) with two corresponding projections, strong

disjunction (typed with σ ∪ τ ) with two corresponding injections,

and strong (or relevant) λ-abstraction (typed with Πr
). Note that

injections ini need to be decorated with the injected type σ in order

to ensure the unicity of typing. We need to generalize the notion

of essence, which was introduced in [9] to syntactically connect

pure λ-terms (denoted by M) and type annotated LF∆-terms (de-

noted by ∆). The essence function compositionally erases all type

annotations, see Fig. 5.

In order to be able to prove a simple subject reduction result, we

need to constrain pairs and co-pairs, i.e. objects of the form ⟨∆i , ∆j ⟩
and [∆i , ∆j ] to have congruent components “up-to” erasure of type

annotations. This is achieved by imposing that the ≀∆i ≀ ≡ ≀∆j ≀
in both constructs. We will therefore assume that such pairs and

co-pairs are simply not well defined terms, if the components have

a different “infrastructure”. The effects of this choice are reflected

in the congruence rules in the reduction relation, in order to ensure

that reductions can only be carried out “in parallel” along the two

components.

≀ c ≀
△
= c

≀x ≀
△
= x

≀ λx :σ .∆ ≀
△
= λx .≀∆ ≀

≀ λrx :σ .∆ ≀
△
= λx .≀∆ ≀

≀ ⟨∆1 , ∆2⟩ ≀
△
= ≀∆i ≀ i = 1,2

≀ [∆1 , ∆2] ≀
△
= ≀∆i ≀ i = 1,2

≀pr i ∆ ≀
△
= ≀∆ ≀

≀ ini ∆ ≀
△
= ≀∆ ≀

≀∆1 ∆2 ≀
△
= ≀∆1 ≀ ≀∆2 ≀

≀∆1 ·∆2 ≀
△
= ≀∆2 ≀

Figure 5: The essence function

The rule for the essence of a relevant application is justified by

the fact that the operator amounts to just a type decoration. The

six basic reductions for LF∆ objects appear on the left in Fig. 6.

Congruence rules are as usual, except for the two cases dealing

with pairs and co-pairs which appear on the right of Fig. 6. Here

redexes need to be reduced “in parallel” in order to preserve identity

of essences in the components We denote by =∆ the symmetric,

reflexive, and transitive closure of→∆, i.e. the reduction induced

by the rules in Fig. 6.

The restriction on reductions in pairs/co-pairs and the new con-

structs do not cause any problems in showing that→∆ is locally

confluent:

Proposition 2.1. The reduction relation on well-formed LF∆-
terms is locally confluent.
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Let Γ
△
= {x1:σ1, . . . ,xn :σn } (i , j implies xi . x j ), and Γ,x :σ

△
= Γ ∪ {x :σ }

Let Σ
△
= {c1:σ1, . . . ,cn :σn }, and Σ,c:σ

△
= Σ ∪ {c:σ }

Valid Signatures

⟨ ⟩ sig
(ϵΣ)

Σ sig ⊢Σ K a < dom(Σ)

Σ,a:K sig

(KΣ)
Σ sig ⊢Σ σ : Type c < dom(Σ)

Σ,c:σ sig

(σΣ)

Valid Contexts

Σ sig

⊢Σ ⟨ ⟩
(ϵΓ)

⊢Σ Γ Γ ⊢Σ σ : Type x < dom(Γ)

⊢Σ Γ,x :σ
(σΓ)

Figure 2: Valid Signatures and Contexts

Valid Kinds

⊢Σ Γ

Γ ⊢Σ Type
(Type )

Γ,x :σ ⊢Σ K

Γ ⊢Σ Πx :σ .K
(ΠK )

Valid Families

⊢Σ Γ a:K ∈ Σ

Γ ⊢Σ a : K
(Const )

Γ ⊢Σ σ : K1 Γ ⊢Σ K2 K1 =∆ K2

Γ ⊢Σ σ : K2

(Conv )

Γ,x :σ ⊢Σ τ : Type

Γ ⊢Σ Πx :σ .τ : Type
(ΠI )

Γ ⊢Σ σ : Πx :τ .K Γ ⊢Σ ∆ : τ

Γ ⊢Σ σ ∆ : K[∆/x]
(ΠE)

Γ,x :σ ⊢Σ τ : Type

Γ ⊢Σ Πrx :σ .τ : Type
(ΠrI )

Γ ⊢Σ σ : Πrx :τ .K Γ ⊢Σ ∆ : τ

Γ ⊢Σ σ ·∆ : K[∆/x]
(ΠrE)

Γ ⊢Σ σ : Type Γ ⊢Σ τ : Type

Γ ⊢Σ σ ∩ τ : Type
(∩I )

Γ ⊢Σ σ : Type Γ ⊢Σ τ : Type

Γ ⊢Σ σ ∪ τ : Type
(∪I )

Figure 3: Valid Kinds and Families

The extended type theory LF∆ is a formal system for deriving

judgements of the following forms:

⊢ σ σ is a valid signature

⊢Σ Γ Γ is a valid context in Σ

Γ ⊢Σ K K is a kind in Γ and Σ

Γ ⊢Σ σ : K σ has kind K in Γ and Σ

Γ ⊢Σ ∆ : σ ∆ has type σ in Γ and Σ

The set of rules are defined in Figures 2, 3, and 4. They are syntax-

directed. In the rule (Conv ) we rely on the external notion of equal-

ity =∆.

An option could have be to add an internal notion of equality

directly in the type system (Γ ⊢Σ σ =∆ τ ), and prove that the

external and the internal definitions of equality are equivalent, as

was proved for semi-full PTS [29].

Yet another possibility could be to compare type essences ≀σ ≀ =∆
≀τ ≀, for a suitable extension of essence to types and kinds. Unfor-

tunately, this would lead to undecidability of type checking, in

connection with relevant implication, as the following example

shows. For any pure λ-termM , one can define a ∆-term such that

≀∆ ≀ =β M .

c1 : Πrx :σ .(Πy:σ .σ )
c2 : Πrx :(Πy:σ .σ ).σ

Ω
△
= (λx :σ .c1 ·x x ) (c2 · (λx :σ .c1 ·x x )) : σ

≀Ω ≀ = (λx .x x ) (λx .x x )

Since the intended meaning of relevant implication is “essen-

tially" the identity, introducing variables or constants whose type is

a relevant implication, amounts to assuming axioms corresponding

to type inclusions such as those that equate σ and σ → σ . As a
consequence, β-equality of essences becomes undecidable. We will
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Valid Objects

⊢Σ Γ c:σ ∈ Σ

Γ ⊢Σ c : σ
(Const )

⊢Σ Γ x :σ ∈ Γ

Γ ⊢Σ x : σ
(Var )

Γ,x :σ ⊢Σ ∆ : τ

Γ ⊢Σ λx :σ .∆ : Πx :σ .τ
(ΠI )

Γ ⊢Σ ∆1 : Πx :σ .τ Γ ⊢Σ ∆2 : σ

Γ ⊢Σ ∆1 ∆2 : τ [∆2/x]
(ΠE)

Γ,x :σ ⊢Σ ∆ : τ ≀∆ ≀ =η x

Γ ⊢Σ λrx :σ .∆ : Πrx :σ .τ
(ΠrI )

Γ ⊢Σ ∆1 : Π
rx :σ .τ Γ ⊢Σ ∆2 : σ

Γ ⊢Σ ∆1 ·∆2 : τ [∆2/x]
(ΠrE)

Γ ⊢Σ ∆1 : σ Γ ⊢Σ ∆2 : τ ≀∆1 ≀ ≡ ≀∆2 ≀

Γ ⊢Σ ⟨∆1 , ∆2⟩ : σ ∩ τ
(∩I )

Γ ⊢Σ ∆1 : Πy:σ .ρ (inτl y) ≀∆1 ≀ ≡ ≀∆2 ≀

Γ ⊢Σ ∆2 : Πy:τ .ρ (inσr y) Γ ⊢Σ ρ : Πy:(σ ∪ τ ).Type

Γ ⊢Σ [∆1 , ∆2] : Πx :σ ∪ τ .ρ x
(∪E)

Γ ⊢Σ ∆ : σ ∩ τ

Γ ⊢Σ pr l ∆ : σ
(∩El )

Γ ⊢Σ ∆ : σ ∩ τ

Γ ⊢Σ pr r ∆ : τ
(∩Er )

Γ ⊢Σ ∆ : σ Γ ⊢Σ σ ∪ τ : Type

Γ ⊢Σ inτl ∆ : σ ∪ τ
(∪Il )

Γ ⊢Σ ∆ : τ Γ ⊢Σ σ ∪ τ : Type

Γ ⊢Σ inσr ∆ : σ ∪ τ
(∪Ir )

Γ ⊢Σ ∆ : σ Γ ⊢Σ τ : Type σ =∆ τ

Γ ⊢Σ ∆ : τ
(Conv )

Figure 4: Valid Objects

(λx :σ .∆1) ∆2 −→β ∆1[∆2/x]

pr l ⟨∆1 , ∆2⟩ −→pr l ∆1

pr r ⟨∆1 , ∆2⟩ −→pr r ∆2

[∆1 , ∆2] in
σ
l ∆3 −→inl ∆1 ∆3

[∆1 , ∆2] in
σ
r ∆3 −→inr ∆2 ∆3

(λrx :σ .∆1) ·∆2 −→βr ∆1[∆2/x]

∆1−→∆′
1

∆2−→∆′
2
≀∆′

1
≀ ≡ ≀∆′

2
≀

⟨∆1 , ∆2⟩−→⟨∆
′
1
, ∆′

2
⟩

(Conдr∩)

∆1−→∆′
1

∆2−→∆′
2
≀∆′

1
≀ ≡ ≀∆′

2
≀

[∆1 , ∆2]−→[∆′
1
, ∆′

2
]

(Conдr∪)

Figure 6: Reduction semantics

have to rule out such options in relating relevant implications in

LF∆ to subtypes in the type assignment system B of [3].

2.1 Relating LF∆ to B
In this subsection we compare and contrast certain design decisions

of LF∆ to the type assignment system introduced in [3], without

subtyping rules and the typeω, which we callB. The proof of strong
normalization for LF∆ will rely, in fact, on a forgetful mapping from
LF∆ to B.

As pointed out in [3], the elimination rule for union types in B

breaks subject reduction for one-step β-reduction, but this can be

recovered using a suitable parallel β-reduction. The well-known

counter-example for one-step reduction, due to Pierce, is the fol-

lowing:

x ((Iy) z) ((Iy) z)−→β
1β x (y z) ((Iy) z) %β

%β x ((Iy) z) (y z) 1β
x (y z) (y z),

where I is the identity. In the typing context B
△
=x :(σ1 → σ1 →

τ ) ∩ (σ2 → σ2 → τ ),y:ρ → (σ1 ∪ σ2),z:ρ, the first and the last

terms can be typed with τ , while the terms in the “fork” cannot.

The root reason is that the subject in the conclusion of the (∪E)
rule uses a context which can have more than one hole, as in the

present case. We point out that the problem would not arise if (∪E)
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is replaced by the rule schema

B,x1:σ , . . . ,xn :σ ⊢ M : ρ
B,x1:τ , . . . ,xn :τ ⊢ M : ρ B ⊢ Ni : σ ∪ τ i = 1 . . .n

B ⊢ M[N1/x1 . . .Nn/xn] : ρ
(∪E ′)

In LF∆ the formulation of the (∪E) rule takes a completely different

route which does not trigger the counterexample. Indeed, we have

introduction and elimination constructs inl ,inr and [ , ] which al-

low to reduce the term only if we know that the argument, stripped

off from the construct, has one of the types of the undisjunction.

Pierce’s critical term can be expressed in LF∆ only in the form

[ (λx1:σ1.(pr l x ) x1 x1)︸                     ︷︷                     ︸
∆1

, (λx2:σ2.(pr r x ) x2 x2)︸                      ︷︷                      ︸
∆2

] (((λx3:ρ
′.x3)︸       ︷︷       ︸

∆3

y) z)

fora:σ1∪σ2 → σ1∪σ2 → Type and x :Πx1 : σ1a (in
σ2
l x1) (in

σ2
l x1)∩

Πx2 : σ2a (in
σ1
r x2) (in

σ1
r x2),y:ρ

′,z:ρ, where ρ ′ ≡ ρ → (σ1 ∪ σ2).
There is only one redex, namely ∆3 y, and the reduction of this

redex leads to [∆1,∆2] (y z), and no other intermediate (untypable)

∆-terms are possible.

The following result will be useful in the following section.

Theorem 2.2. The systems B and B′, where the rule (∪E) is
replaced by (∪E ′), are strongly normalizing.

The proof is embedded in Theorem 4.8 of [3]. But it can also

be straightforwardly obtained using the general Computability

Method presented in [16] Section 4.

2.2 LF∆ metatheory
LF∆ can play the role of a logical framework only if decidable. The

road map which we follow to establish decidability is the standard

one, see e.g. [13]. In particular, we prove in order: uniqueness of

types and kinds, structural properties, normalization for raw well-

formed terms, and hence confluence. Then we prove the inversion

property, the subderivation property, subject reduction, and finally

decidability. Apart from normalization all the other results are long

structural inductions, albeit ultimately routine.

Theorem 2.3. Let α be either σ : K or ∆ : σ . Then:

(1) Weakening: If Γ ⊢Σ α and ⊢Σ Γ,Γ′, then Γ,Γ′ ⊢Σ α .
(2) Strengthening: If Γ,x :σ ,Γ′ ⊢Σ α , then Γ,Γ′ ⊢Σ α , provided

that x < FV (Γ′) ∪ FV (α ).
(3) Transitivity: If Γ ⊢Σ ∆ : σ and Γ,x :σ ,Γ′ ⊢Σ α , then Γ,Γ′[∆/x] ⊢Σ

α[∆/x].
(4) Permutation: If Γ,x1:σ ,Γ′,x2:τ ,Γ′′ ⊢Σ α , then Γ,x2:τ ,Γ′,x1:σ ,Γ′′

⊢Σ α , provided that x1 does not occur free in Γ′ or in τ , and
that τ is valid in Γ.

Theorem 2.4 (Unicity of Types and Kinds).

(1) If Γ ⊢Σ ∆ : σ and Γ ⊢Σ ∆ : τ , then σ =∆ τ .
(2) If Γ ⊢Σ σ : K and Γ ⊢Σ σ : K ′, then K =∆ K ′.

Strong Normalization. In order to prove strong normalization we

will map LF∆-terms into B-terms taking advantage of Theorem 2.2.

Definition 2.5. Let the forgetful mappings || · || and | · | be defined

as in Figure 7.

The forgetful mappings are extended to contexts and signatures

in the obvious way. The clauses for strong pairs/co-pairs are justi-

fied by the following lemma:

Lemma 2.6. If Γ ⊢Σ ⟨∆1 , ∆2⟩ : σ ∩ τ is provable then |∆1 |≡|∆2 |

and similarly if Γ ⊢Σ [∆1 , ∆2] : Πx : σ ∪ τ .ρ (x ) then |∆1 |≡|∆2 |.

The following lemmas are proved by straightforward structural

induction.

Lemma 2.7.

(1) If σ =∆ τ , then ||σ ||=β ||τ ||.
(2) If K1 =∆ K2, then ||K1 ||=β ||K2 ||.

Lemma 2.8.

(1) |∆1[∆2/x] |=β |∆1 | [|∆2 | /x].
(2) |σ [∆/x] |=β |σ | [|∆ | /x].

Lemma 2.9.

(1) If Γ ⊢Σ σ : K , then || Γ ||⊢B+ |σ |:||K ||.
(2) If Γ ⊢Σ ∆ : σ , then || Γ ||⊢B+ |∆ |:||σ ||.

where ⊢B+ denotes the type system B, augmented by the infinite set
of axioms for kinds (K) cσ : ω → (σ → ω) → ω, for each type σ .

Lemma 2.10.

(1) If σ−→βτ , then |σ |= −→+β |τ |.

(2) if ∆1−→β ∆2, then |∆1 | −→
+
β |∆2 |.

Parallel reduction enjoys the strong normalization property, i.e.

Theorem 2.11.

(1) The LF∆ is strongly normalizing, i.e.,
(a) If Γ ⊢Σ K , then K is strongly normalizing.
(b) If Γ ⊢Σ σ : K , then σ is strongly normalizing.
(c) If Γ ⊢Σ ∆ : σ , then ∆ is strongly normalizing.

(2) Every strongly normalizing term can be type-annotated so as
to be the essence of a ∆-term.

Proof. 1) Strong normalization derives directly fromLemma 2.10

and Theorem 2.2.

2) Use rules (∩I ) and (∩E) to encode the SN terms of λ-calculus
inductively defined by: ∆1 . . . ∆n ∈ SN ⇒ x ∆1 . . . ∆n ∈ SN and

∆[∆′/x]∆1 . . . ∆n ∈ SN , and ∆′ ∈ SN ⇒ (λx :σ .∆) ∆′ ∆1 . . . ∆n ∈
SN . �

Incidentally, we point out that to our knowledge LF∆ is the first

fully typed system to exhibit this property.

Local confluence (Proposition 2.1) and strong normalization (The-

orem 2.11) entail confluence, so we have

Theorem 2.12. LF∆ is confluent, i.e.:
(1) If K1−→

∗
∆K2 and K1−→

∗
∆K3, then there exists an K4 such that

K2−→
∗
∆K4 and K3−→

∗
∆K4.

(2) If σ1−→∗∆σ2 and σ1−→
∗
∆σ3, then there exists a σ4 such that

σ2−→
∗
∆σ4 and σ3−→

∗
∆σ4.

(3) If ∆1−→
∗
∆∆2 and ∆1−→

∗
∆∆3, then there exists a ∆4 such that

∆2−→
∗
∆∆4 and ∆3−→

∗
∆∆4.

The following lemmas are proved by structural induction.

Lemma 2.13 (Inversion properties).
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||Type || = ω

||Πx :σ .K || = ||σ ||→||K ||

||a || = a

||Πx :σ .τ || = ||σ ||→||τ ||

||Πrx :σ .τ || = ||σ ||→||τ ||

||σ ∆ || = ||σ ||

||σ ·∆ || = ||σ ||

||σ ∩ τ || = ||σ || ∩ ||τ ||

||σ ∪ τ || = ||σ || ∪ ||τ ||

|x | = x

|c | = c

|σ ∆ | = |σ | |∆ |

|σ ·∆ | = |σ | |∆ |

|∆1 ∆2 | = |∆1 | |∆2 |

|λx :σ .∆ | = (λy.λx . |∆ |) |σ | y < f v (∆)

|λrx :σ .∆ | = (λy.λx . |∆ |) |σ | y < f v (∆)

|Πx :σ .τ | = c ||σ || ||σ || (λx . ||τ ||)

|Πrx :σ .τ | = c ||σ || ||σ || (λx . ||τ ||)

| ⟨∆1 , ∆2⟩ | = |∆1 |

| [∆1 , ∆2] | = |∆1 |

|pr l ∆ | = |∆ |

|pr r ∆ | = |∆ |

| inσl ∆ | = |∆ |

| inσr ∆ | = |∆ |

Figure 7: The forgetful mappings || · || and | · |.

(1) If Πx :σ .T =∆ T ′′, then T ′′ ≡ Πx :σ ′.T ′, for some σ ′, T ′, such
that σ ′ =∆ σ , and T ′ =∆ T .

(2) If Πrx :σ .T =∆ T ′′, then T ′′ ≡ Πrx :σ ′.T ′, for some σ ′, T ′,
such that σ ′ =∆ σ , and T ′ =∆ T .

(3) If σ ∩ τ =∆ T , then T ≡ σ ′ ∩ τ ′, for some σ ′, τ ′, such that
σ ′ =∆ σ , and τ ′ =∆ τ .

(4) If σ ∪ τ =∆ T , then T ≡ σ ′ ∪ τ ′, for some σ ′, τ ′, such that
σ ′ =∆ σ , and τ ′ =∆ τ .

(5) If Γ ⊢Σ λx :σ .∆ : Πx :σ .τ , then Γ,x :σ ⊢Σ ∆ : τ .
(6) If Γ ⊢Σ λrx :σ .∆ : Πx :σ .τ , then Γ,x :σ ⊢Σ ∆ : τ and ≀∆ ≀ =η x .
(7) If Γ ⊢Σ ⟨∆1 , ∆2⟩ : σ ∩ τ , then Γ ⊢Σ ∆1 : σ , Γ ⊢Σ ∆2 : τ , and
≀∆1 ≀ =β ≀∆2 ≀.

(8) If Γ ⊢Σ [∆1 , ∆2] : Πx :σ ∪ τ .ρ, then Γ ⊢Σ ∆1 : Πy:σ .ρ (in
τ
l y),

Γ ⊢Σ ∆2 : Πy:τ .ρ (in
σ
r y), and ≀∆1 ≀ =β ≀∆2 ≀.

(9) If Γ ⊢Σ pr l ∆ : σ , then Γ ⊢Σ ∆:σ ∩ τ , for some τ .
(10) If Γ ⊢Σ pr r ∆ : τ , then Γ ⊢Σ ∆:σ ∩ τ , for some σ .
(11) If Γ ⊢Σ inτl ∆ : σ ∪ τ , then Γ ⊢Σ ∆ : σ and Γ ⊢Σ σ ∪ τ : Type.
(12) If Γ ⊢Σ inσr ∆ : σ ∪ τ , then Γ ⊢Σ ∆ : τ and Γ ⊢Σ σ ∪ τ : Type.

Proposition 2.14 (Subderivation).

(1) A derivation of ⊢Σ ⟨⟩ has a subderivation of Σ sig.
(2) A derivation of Σ,a:K sig has subderivations of Σ sig and ⊢Σ K .
(3) A derivation of Σ, f :σ sig has subderivations of Σ sig and ⊢Σ

σ :Type.
(4) A derivation of ⊢Σ Γ,x :σ has subderivations of Σ sig, ⊢Σ Γ,

and Γ ⊢Σ σ :Type.
(5) A derivation of Γ ⊢Σ α has subderivations of Σ sig and ⊢Σ Γ.
(6) Given a derivation of the judgement Γ ⊢Σ α , and a subterm

occurring in the subject of this judgement, there exists a deriva-
tion of a judgement having this subterm as a subject.

Theorem 2.15 (Subject reduction of LF∆).

(1) If Γ ⊢Σ K , and K →∆ K ′, then Γ ⊢Σ K ′.
(2) If Γ ⊢Σ σ : K , and σ →∆ σ ′, then Γ ⊢Σ σ ′ : K .
(3) If Γ ⊢Σ ∆ : σ , and ∆→∆ ∆′, then Γ ⊢Σ ∆′ : σ .

Finally, we define a possible algorithm for checking judgements

in LF∆ by computing a type or a kind for a term, and then testing

for definitional equality, i.e. =∆, against the given type or kind. This

is achieved by reducing both to their unique normal forms and

checking that they are identical up to α-conversion. Therefore we
finally have:

Theorem 2.16 (Decidability). All the type judgments of LF∆ are
recursively decidable.

Relevant Implications and Type Inclusion. Relevant implication is

related to the notion of type inclusion and the rules of subtyping, see
[4, 9]. In the following theorem we show how relevant implication

subsumes the type-inclusion rules of the theory Ξ of [3], without

rule (10): we call Ξ′ the resulting set.

Theorem 2.17 (Type Inclusion). The judgement ⟨⟩ ⊢⟨⟩ ∆ : Πrx :τ .σ
holds iff τ ≤ σ holds in the subtype theory Ξ′ of B.

Proof. For the “only if” part, it is possible to write a “type-

annotated” term whose essence is an η−expansion of the identity

corresponding to each of the axioms and rules in Ξ. The converse
follows from Lemma 2.13. �

To encompass also rule (10) of the subtype theory Ξ, we need to

strenghten rule (Πr) taking essence up to β-equality and use the

term λzσ∩(ρ∪τ ) .λxσ .[λzρ .inl
σ∩τ ⟨x , z⟩,λzτ .inr

σ∩ρ ⟨x , z⟩](pr l z)
(pr r z):(σ ∩ ρ) ∪ (σ ∩ τ ).

Similarly if we make assumptions of relevant type these induce

new axioms for ≤.

3 EXAMPLES
In order to highlight the advantages of LF∆ we assume the view-

point of a user interested in reasoning formally with a logical system

featuring strong intersection and union types, which we call L (in-

spired by the logical systems appearing in [4, 20, 23]). It amounts

essentially to a system for inhabitability in B or in the system of

[9]. We start by comparing the signatures of L in LF and in LF∆.

The intuition behind these encodings, which can be substantiated

by an appropriate adequacy result, is the following: in the given

signatures, if Γ ⊢Σ ∆ : σ then there exist B,M ,σ ′ such that B ⊢B
M : σ ′ whereM ,B, and σ ′ are the “decodings” respectively of ∆,Γ,
and σ , and conversely, if B ⊢B M : σ ′ then there exist ∆, σ , and Γ,
i.e. “encodings” ofM ,B and σ respectively, such that Γ ⊢Σ ∆ : σ .

Thus, in the appropriate signature and context, each LF∆-typable

term ∆ of type encoding of σ , encodes a type assignment derivation

in B, i.e. the decoding of ∆, of type σ .
LF encoding of L. Figure 8 presents a pure LF encoding of L in

Coq syntax using HOAS. We use HOAS in order to take advantage



Conference’17, July 2017, Washington, DC, USA F. Honsell et al.

(* Define our types *)

Axiom o : Set.

(* Axiom omegatype : o. *)

Axioms (arrow inter union : o → o→ o).

(* Transform our types into LF types *)

Axiom OK : o → Set.

(* Define the essence equality as an equivalence relation *)

Axiom Eq : forall (s t : o), OK s → OK t→ Prop.

Axiom Eqrefl : forall (s : o) ( M : OK s), Eq s s M M.

Axiom Eqsymm : forall (s t : o) ( M : OK s) ( N : OK t), Eq s t M N → Eq t s N M.

Axiom Eqtrans : forall (s t u : o) ( M : OK s) ( N : OK t) ( O : OK u), Eq s t M N → Eq t u N O → Eq s u M O.

(* constructors for arrow (→ I and → E) *)

Axiom Abst : forall (s t : o), (( OK s) → (OK t)) → OK (arrow s t).

Axiom App : forall (s t : o), OK ( arrow s t) → OK s→ OK t.

%(* constructors for strong/relevant arrows *)

%Axiom Sabst : forall (s t : o) ( M : OK s → OK t), ( forall (N : OK s), ( Eq s t N ( M N))) → OK (relev s t).

%Axiom Sapp : forall (s t : o), OK ( relev s t) → OK s→ OK t.

(* constructors for intersection *)

Axiom Proj_l : forall (s t : o), OK ( inter s t) → OK s.

Axiom Proj_r : forall (s t : o), OK ( inter s t) → OK t.

Axiom Pair : forall (s t : o) ( M : OK s) ( N : OK t), Eq s t M N → OK (inter s t).

(* constructors for union *)

Axiom Inj_l : forall (s t : o), OK s → OK (union s t).

Axiom Inj_r : forall (s t : o), OK t → OK (union s t).

Axiom Copair : forall (s t u : o) ( X : OK ( arrow s u)) ( Y : OK ( arrow t u)), OK ( union s t) → Eq (arrow s u) ( arrow t u) X Y → OK u.

(* define equality wrt arrow constructors *)

Axiom Eqabst : forall (s t s' t' : o) ( M : OK s → OK t) (N : OK s' → OK t'), ( forall (x : OK s) ( y : OK s'), Eq s s' x y →

Eq t t' ( M x) ( N y)) → Eq (arrow s t) ( arrow s' t') ( Abst s t M) ( Abst s' t' N).

Axiom Eqapp : forall (s t s' t' : o) ( M : OK ( arrow s t)) ( N : OK s) ( M' : OK ( arrow s' t')) ( N' : OK s'),

Eq ( arrow s t) ( arrow s' t') M M' → Eq s s' N N' → Eq t t' ( App s t M N) ( App s' t' M' N').

%(* define equality wrt strong/relevant arrow constructors *)

%Axiom Eqsabst : forall (s t s' t' : o) ( M : OK ( relev s t)) ( N : OK ( relev s' t')), Eq ( relev s t) ( relev s' t') M N.

%Axiom Eqsapp : forall (s t : o) ( M : OK ( relev s t)) ( x : OK s), Eq s t x ( Sapp s t M x).

(* define equality wrt intersection constructors *)

Axiom Eqpair : forall (s t : o) ( M : OK s) ( N : OK t) ( pf : Eq s t M N), Eq ( inter s t) s ( Pair s t M N pf) M.

Axiom Eqproj_l : forall (s t : o) ( M : OK ( inter s t)), Eq ( inter s t) s M ( Proj_l s t M).

Axiom Eqproj_r : forall (s t : o) ( M : OK ( inter s t)), Eq ( inter s t) t M ( Proj_r s t M).

(* define equality wrt union *)

Axiom Eqinj_l : forall (s t : o) ( M : OK s), Eq ( union s t) s ( Inj_l s t M) M.

Axiom Eqinj_r : forall (s t : o) ( M : OK t), Eq ( union s t) t ( Inj_r s t M) M.

Axiom Eqcopair : forall (s t u : o) ( M : OK ( arrow s u)) ( N : OK ( arrow t u)) ( O : OK ( union s t)) ( pf: Eq ( arrow s u) ( arrow t u) M N) ( x : OK s),

Eq s ( union s t) x O → Eq u u (App s u M x) ( Copair s t u M N O pf).

Figure 8: LF encoding of L (Coq syntax)

of the higher order features of the frameworks: other abstract syntax

representation techniques would not be much different, but more

verbose. The Eq predicate plays the same role of the essence function
in LF∆, namely, it encodes the judgement that two proofs (i.e. two
terms of type (OK _)) have the same structure. This is crucial in

the Pair axiom (i.e. the introduction rule of the intersection type

constructor) where we can inhabit the type (inter s t) only

when the proofs of its component types s and t share the same

structure (i.e., we have a witness of type (Eq s t M N), where M
has type (OK s) and N has type (OK t)). A similar role is played by

the Eq premise in the Copair axiom (i.e., the elimination rule of the

union type constructor). We have an Eq axiom for each proof rule.

Examples of this encoding can be found in intersection_union.v.

LF∆ encoding of L. LF∆ allows for a shallow encoding of L be-

cause the metalanguage subsumes the source language. Let→ and

→r denote the non-dependent product type Π and the relevant

product type Πr
, respectively. The encoding is given below:

o : Type c→,c∩,c∪ : o → o → o
obj : o → Type

cabst : Πs t :o.(obj s → obj t ) →r obj (c→ s t )
capp : Πs t :o.obj (c→ s t ) →r obj s → obj t
cini : Πs t :o.(obj s ∪ obj t ) →r obj (c∪ s t )
csconj : Πs t :o.(obj s ∩ obj t ) →r obj (c∩ s t )
csdisj : Πs t :o.obj (c∪ s t ) →r (obj s ∪ obj t )

This encoding can be typechecked using our concrete syntax (file

intersection_union.bull). Notice the use of the relevant arrow in the

type signature constants. It is not mandatory but it paves the way

for a more perspicuous adequacy theorem, where the decoding of

LF∆term would be the very essence function!

https://github.com/cstolze/Bull/blob/master/coq_encodings/intersection_union.v
https://github.com/cstolze/Bull/blob/master/bull/intersection_union.bull
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Three base types: atomic propositions, non-atomic goals and non-atomic programs.

α , γ0, π0 : Type
Goals and programs are defined from the base types.

γ = α ∪ γ0 π = α ∪ π0
Constructors (implication, conjunction, disjunction).

impl : (π → γ → γ0) ∩ (γ → π → π0)
impl

1
= λx :π .λy :γ .inαr (pr l impl x y ) impl

2
= λx :γ .λy :π .inαr (pr r impl x y )

and : (γ → γ → γ0) ∩ (π → π → π0) and1 = λx :γ .λy :γ .inαr (pr l and x y ) and2 = λx :π .λy :π .inαr (pr r and x y )
or : (γ → γ → γ0) or1 = λx :γ .λy :γ .inαr (or x y )

solve p д indicates that the judgment p ⊢ д is valid. and bchain p a д indicates that, if p ⊢ д is valid, then p ⊢ a is valid.

solve : π → γ → Type bchain : π → α → γ → Type
Rules for solve:

− : Π(p :π ) (д1,д2 :γ )solve p д1 → solve p д2 → solve p (and1 д1 д2)
− : Π(p :π ) (д1,д2 :γ )solve p д1 → solve p (or1 д1 д2)
− : Π(p :π ) (д1,д2 :γ )solve p д2 → solve p (or1 д1 д2)
− : Π(p1,p2 :π ) (д:γ )solve (and2 p1 p2) д → solve p1 (impl

1
p2 д)

− : Π(p :π ) (a:α ) (д:γ )bchain p a д → solve p д → solve p (inγ0l a)
Rules for bchain:

− : Π(a:α ) (д:γ )bchain (impl
2
д (inl π0a)) a д

− : Π(p1,p2 :π ) (a:α ) (д:γ )bchain p1 a д → bchain (and2 p1 p2) a д
− : Π(p1,p2 :π ) (a:α ) (д:γ )bchain p2 a д → bchain (and2 p1 p2) a д
− : Π(p :π ) (a:α ) (д,д1,д2 :γ )bchain (impl

2
(and1 д1 д2) p ) a д → bchain (impl

2
д1 (impl

2
д2 p )) a д

− : Π(p1,p2 :π ) (a:α ) (д,д1 :γ )bchain (impl
2
д1 p1) a д → bchain (impl

2
д1 (and2 p1 p2)) a д

− : Π(p1,p2 :π ) (a:α ) (д,д1 :γ ), bchain (impl
2
д1 p2) a д → bchain (impl

2
д1 (and2 p1 p2)) a д

Figure 9: LF∆ encoding of Hereditary Harrop Formulas (LF∆ concrete syntax).

obj′ : Type fam′ : Type knd′ : Type sup′ : Type same : obj′ ∩ (fam′ ∩ (knd′ ∩ sup′)) term : (obj′ ∪ (fam′ ∪ (knd′ ∪ sup′))) → Type

obj = term (infam′∪(knd′∪sup′)
l (pr l same))

fam = term (inobj′
r inknd′∪sup′

l (pr l pr r same))

knd = term (inobj′
r infam′

r insup′

l (pr l pr r pr r same))

sup = term (inobj′
r infam′

r inknd′
r (pr r pr r pr r same))

tp : knd ∩ sup ∗ = pr l tp � = pr r tp
lam : (fam→ (obj→ obj) → obj) ∩ (fam→ (obj→ fam) → fam) lam1 = pr l lam lam2 = pr r lam
pi : (fam→ (obj→ fam) → fam) ∩ (fam→ (obj→ knd) → knd) pi

1
= pr l pi pi

2
= pr r pi

app : (obj→ obj→ obj) ∩ (fam→ obj→ fam) app
1
= pr l app app

2
= pr r app

of : (obj→ fam→ Type) ∩ ((fam→ knd→ Type) ∩ (knd→ sup→ Type)) of1 = pr l of of2 = pr l pr r of of3 = pr r pr r of
− : of ∗ �

oflam1 : Π(t1 :fam) (t2 :obj→obj) (t3 :obj→fam)of2 t1 ∗ → (Π(x :obj)of1 x t1 → of1 (t2 x ) (t3 x )) → of1 (lam1 t1 t2) (pi1 t1 t3)
oflam2 : Π(t1 :fam) (t2 :obj→fam) (t3 :obj→knd)of2 t1 ∗ → (Π(x :obj)of1 x t1 → of2 (t2 x ) (t3 x )) → of2 (lam2 t1 t2) (pi2 t1 t3)
ofpi

1
: Π(t1 :fam) (t2 :obj→fam)of2 t1 ∗ → (Π(x :obj)of1 x t1 → of2 (t2 x ) ∗) → of2 (pi1 t1 t2) ∗

ofpi
2

: Π(t1 :fam) (t2 :obj→knd)of2 t1 ∗ → (Π(x :obj)of1 x t1 → of3 (t2 x ) �) → of3 (pi2 t1 t2) �
ofapp

1
: Π(t1 :obj) (t2 :obj) (t3 :fam) (t4 :obj→fam)of1 t1 (pi1 t3 t4) → of1 t2 t3 → of1 (app1 t1 t2) (t4 t2)

ofapp
2

: Π(t1 :fam) (t2 :obj) (t3 :fam) (t4 :obj→knd)of2 t1 (pi2 t3 t4) → of2 t2 t3 → of2 (app2 t1 t2) (t4 t2)
oflameq = ⟨oflam1 , oflam2⟩ ofpieq = ⟨ofpi

1
, ofpi

2
⟩ ofappeq = ⟨ofapp

1
, ofapp

2
⟩

Figure 10: LF in LF∆.

In the following we show the expressive power of LF∆ encoding

classical features of typing systems with strong intersection and

union.

Auto application. The provable judgement ⊢B λx .x x : σ ∩ (σ →
τ ) → τ in B, is faithfully rendered in LF∆ by the provable LF∆-

judgement of ⊢Σ λx :σ ∩ (σ → τ ).(pr r x ) (pr l x ) : σ ∩ (σ → τ ) → τ .
Polymorphic identity. The provable judgement ⊢B λx .x : (σ →
σ ) ∩ (τ → τ ) in B, is faithfully rendered in LF∆ by the provable

judgement ⊢∅ ⟨λx :σ .x , λx :τ .x⟩ : (σ → σ ) ∩ (τ → τ ).

Commutativity of union. The provable judgement λx .x : (σ ∪
τ ) → (τ ∪ σ ) in B is faithfully rendered in LF∆ by the provable

judgement λx :σ∪τ .[λy:σ .inτr y , λy:τ .in
σ
l y]x : (σ ∪ τ ) → (τ ∪ σ ).

LF∆ encoding of Hereditary Harrop Formulas. Pfenning’s en-
coding of [25] can be expressed as in Fig. 9 (file pfenning_harrop.bull).

We also add rules for solving and backchaining. The encodingmakes

a subtle use of unions and intersections. Without them the encod-

ing would be far more tedious. Hereditary Harrop formulas can

https://github.com/cstolze/Bull/blob/master/bull/pfenning_harrop.bull
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be recursively defined using two mutually recursive syntactical

objects called programs (π ) and goals (γ ).
γ := α | γ ∧ γ | π ⇒ γ | γ ∨ γ
π := α | π ∧ π | γ ⇒ π

LF∆ encoding of LF. We show a LF∆ encoding of LF making es-

sential use of intersection types. It can be typechecked using the

concrete syntax in Fig. 10 (file lf.bull). Having intersection permits

to highlight that some rules are “essentially” the same. For instance,

all the rules for typing LF’s λ-abstractions are the same, and it is

shown by oflameq.
Pierce’s program is faithfully rendered in LF∆ by

Neд : Type Zero : Type Pos : Type
T : Type F : Type

Test : Pos ∪ Neд
Is_0 : (Neд → F ) ∩ ((Zero → T ) ∩ (Pos → F ))

Is_0_Test
△
= [λx :Pos .pr r (pr r Is_0) x , λx :Neд.pr l Is_0 x] Test

The above example clearly illustrates the advantages of taking the

LF∆ framework. In plain LF we would render such an example

only deeply encoding B ending up with the verbose code in file

pierce_program.v.

4 IMPLEMENTATION AND FUTUREWORK
We have implemented in Ocaml suitable algorithms for type re-

construction, and type and subtype checking; these algorithms

are used as modules to build a protototype kernel for a Logical

Framework featuring strong union, strong intersection, and rele-

vant implication. We have implemented the subtyping algorithm

[19] which extends the well-known Hindley algorithm for intersec-

tion types [15] with union types. The subtyping algorithm has been

mechanically proved correct in Coq, in the spirit of the Bessai’s

mechanized proof of a subtyping algorithm for intersection types

[7]. A Read-Eval-Print-Loop allows to define axioms and definitions,

and performs some basic terminal-style features like error pretty-

printing, subexpressions highlighting, and file loading. Moreover,

it can type-check a proof or normalize it, using a strong reduction

evaluator. We use the syntax of Pure Type Systems to improve the

compactness and the modularity of the kernel. Binders are imple-

mented using de Brujin indexes. We implemented the conversion

rule in the simplest way possible: whenever we need to compare

types, we syntactically compare their normal form. Abstract and

concrete syntax are mostly aligned, and the concrete syntax is sim-

ilar to the concrete syntax of Coq. The developpement is available

on Bull and Bull-Subtyping.

As future work, we are planning to design a higher-order unifica-

tion algorithm for ∆-terms and a bidirectional refinement algorithm,

similar to the one found in [2]. The refinement can be split into

two parts: the essence refinement and the typing refinement. In

the same way, there will be a unification algorithm for the essence

terms, and a unification algorithm for ∆-terms.

The bidirectional refinement algorithm aims to have partial type

inference, and to give as much information as possible to a hypo-

thetical solver, or the unifier. For instance, if we want to find a ?y
such that ⊢Σ ⟨λx :σ .x , λx :τ .?y⟩ : (σ → σ ) ∩ (τ → τ ), we can infer

that x :τ ⊢?y : τ and that ≀ ?y ≀ = x .
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