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ABSTRACT

Context. Oceanic tides are a major source of tidal dissipation. They drive the evolution of planetary systems and the rotational dynam-
ics of planets. However, two-dimensional (2D) models commonly used for the Earth cannot be applied to extrasolar telluric planets
hosting potentially deep oceans because they ignore the three-dimensional (3D) effects related to the ocean’s vertical structure.
Aims. Our goal is to investigate, in a consistant way, the importance of the contribution of internal gravity waves in the oceanic tidal
response and to propose a modelling that allows one to treat a wide range of cases from shallow to deep oceans.
Methods. A 3D ab initio model is developed to study the dynamics of a global planetary ocean. This model takes into account com-
pressibility, stratification, and sphericity terms, which are usually ignored in 2D approaches. An analytic solution is computed and used
to study the dependence of the tidal response on the tidal frequency and on the ocean depth and stratification.
Results. In the 2D asymptotic limit, we recover the frequency-resonant behaviour due to surface inertial-gravity waves identified by
early studies. As the ocean depth and Brunt–Väisälä frequency increase, the contribution of internal gravity waves grows in importance
and the tidal response becomes 3D. In the case of deep oceans, the stable stratification induces resonances that can increase the tidal
dissipation rate by several orders of magnitude. It is thus able to significantly affect the evolution time scale of the planetary rotation.

Key words. hydrodynamics – planet-star interactions – planets and satellites: oceans – planets and satellites: terrestrial planets

1. Introduction

Even though the number of detected extrasolar planets located
in the habitable zone of their host stars has kept growing
continuously for the past two decades, two major discoveries
recently aroused excitement within the community of exoplanet
research. Firstly, in Summer, 2016, a telluric extrasolar planet
was found orbiting the Sun’s closest stellar neighbour, the red
dwarf Proxima Centauri (Anglada-Escudé et al. 2016; Ribas
et al. 2016). This planet, Proxima b, has a minimum mass of
1.3 M⊕ and an equilibrium temperature that is within the range
where water could be liquid on its surface, which makes it
resemble a potential twin sister of the Earth. A few months
later, another star was in the spotlight, the ultra-cool dwarf
star TRAPPIST-1 (Gillon et al. 2017). The system hosted by
TRAPPIST-1 drew attention due to its remarkable architecture,
composed of eight telluric planets of masses between 0.7 M⊕
and 1.2 M⊕ and radii between 0.1 R⊕ and 1.5 R⊕ (Gillon et al.
2017; Wang et al. 2017). Most of these planets (i.e. b, c, d, e, f, g,
h) exhibit small densities suggesting that water stands for a large
fraction of their masses (Wang et al. 2017). Hence, Proxima b
and several of the telluric planets orbiting TRAPPIST-1 could
host deep oceans of liquid water.

Oceans play a crucial role in the evolution of planetary sys-
tems. Similarly to rocky cores, they are distorted by the tidal
gravitational forcings of perturbers such as stars or satellites. The
energy dissipated by the resulting oceanic tides can be of the

same order of magnitude and even greater than that associated
with the solid tide, as is seen on Earth. Observed as an exoplanet,
the Earth appears as a very dry rocky planet with an oceanic
layer of depth approximatively equal to 6 × 10−4 R⊕ (Eakins &
Sharman 2010). Yet, the Earth’s ocean is today the main contrib-
utor to the total energy tidally dissipated by the Earth-Moon-Sun
system. It accounts for roughly 95% of the planetary dissipa-
tion rate of 2.54 TW generated by the Lunar semidiurnal tide
(see Lambeck 1977; Ray et al. 2001; Egbert & Ray 2001, and
references therein). Moreover, the oceanic dissipation rate can
vary significantly owing to the frequency-resonant behaviour of
the fluid layer (e.g. Webb 1980), thus leading to the present-day
high transfer of angular momentum from the spin of the Earth
to the orbit of the Moon (Lambeck 1980; Bills & Ray 1999).
More generally, oceanic tides have an impact on the history of
the spin rotation and states of equilibrium of the Earth (Neron de
Surgy & Laskar 1997) and terrestrial exoplanets (Correia et al.
2008; Leconte et al. 2015; Auclair-Desrotour et al. 2017b). There-
fore, the oceanic tidal dissipation rate needs to be quantified in
the case of extrasolar planets to study the history of observed
planetary systems and constrain their physical properties.

Since Laplace’s pioneering works (Laplace 1798), the
Earth’s oceanic tides have been examined through different
approaches. The dissipation rate they induce is now well con-
strained thanks to the fit of the altimetric data provided by
the TOPEX/Poseidon satellite with numerical simulations made
using general circulation models (GCM; Egbert & Ray 2001,
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2003). Moreover, numerous studies have characterized their
dependence on the planet parameters by developing linear
ab initio global models, such as the hemispherical ocean model
(Proudman & Doodson 1936; Doodson 1938; Longuet-Higgins
& Pond 1970; Webb 1980). This approach has recently been used
to estimate the tidal dissipation rate in the oceans of icy satellites
orbiting Jupiter and Saturn (Tyler 2011, 2014; Chen et al. 2014;
Matsuyama 2014).

Simplified ab initio models are very convenient to explore
the domain of parameters because they involve a small number
of control parameters and require a relatively small computa-
tional cost compared to numerical models taking into account
local features (e.g. topography and mean flows). They are com-
monly based on a two dimensional (2D) spherical geometry and
the thin shell hypothesis. In this approach, the tidal response of
the ocean is controlled by the Laplace tidal equations (LTE),
which describe its barotropic response, that is the component
associated with the propagation of surface-gravity waves. This is
typically the tidal response that the ocean will have if it is unstrat-
ified (uniform density). Nevertheless, solutions to the barotropic
equations can be applied to the case of stably stratified oceans
to describe the contribution of internal gravity waves, restored
by the Archimedean force. As was shown a long time ago (e.g.
Chapman & Lindzen 1970, in the case of the atmosphere), the
tidal response of a stratified fluid layer in the classical tidal the-
ory is characterized by a frequency-dependent equivalent depth,
which is analogous to the barotropic ocean depth (see e.g. Tyler
2011). Results obtained in the barotropic approximation can thus
be reinterpreted by replacing the ocean depth by the equivalent
depth associated with the studied mode. However, the com-
plete solution controlling the tidal response of a deep stratified
ocean, including its vertical component, has never been explicitly
resolved nor analysed to our knowledge.

Therefore, following along the line of Webb (1980) and Tyler
(2011), we develop here a linear global model of oceanic tides
including three-dimensional (3D) effects related to the ocean
sphericity and vertical structure. This model, by taking into
account the vertical stratification of the ocean with respect to
convection (i.e. its convective stability), allows us to quantify in
a consistent way the contribution of internal gravity waves to the
oceanic tidal response through explicit solutions derived in sim-
plified cases. The obtained results can be used as a tool to (1)
characterize the tidal behaviour of deep global oceans, (2) con-
strain the structure and history of observed telluric planets from
the architecture of their host planetary system, and (3) provide a
simplified diagnosis of the oceanic tidal dissipation rate.

In Sect. 2, we establish the equations governing the dynam-
ics of the 3D oceanic tidal response, identify the possible tidal
regimes, and express the tidal Love numbers and torque exerted
on the planet in the general case. In Sect. 3, we simplify the
dynamics by assuming a uniform stratification as a first step and
derive an analytic solution for the tidal response and the resulting
dissipation rate. This solution is then applied to idealized Earth
and TRAPPIST-1 f planets in Sect. 4 in order to illustrate the
difference between shallow and deep oceans. We also use this
solution in Sect. 5 to explore the dependence of the dissipation
rate on the ocean depth and stratification. Finally, we discuss the
simplifications assumed in the modelling in Sect. 6 and give our
conclusions in Sect. 7.

2. Dynamics of a gravitationally forced thick ocean

We establish in this section the equations that govern the dynam-
ics of tides in a thick oceanic shell submitted to the gravitational

Fig. 1. Quadrupolar semidiurnal oceanic tide in a rotating terrestrial
planet gravitationally forced by a perturber (star of satellite). Refer-
ence frame and system of coordinates used in the modelling. The spin
frequency of the planet and the orbital frequency of the perturber
are denoted Ω and norb, respectively. The notation δtide designates the
angular lag of the tidal bulge.

tidal potential of a perturber. The considered system is a
spherical telluric planet of external radius R uniformly covered
by an oceanic layer of depth H (Fig. 1). The radius of the solid
part is designated by Rc = R − H. We assume that the ocean
rotates uniformly with the rocky part at the angular velocity Ω,
the corresponding spin vector being denoted Ω. This allows us
to write the fluid dynamics in the natural equatorial reference
frame rotating with the planet, RE;T : {O,XE,YE,ZE}, where
O is the centre of the planet, XE and YE define the equatorial
plane and ZE = Ω/ |Ω|. We use the spherical basis

(
er, eθ, eϕ

)
and coordinates (r, θ, ϕ) where r is the radial coordinate, θ the
colatitude and ϕ the longitude (the position vector is r = r er).
Finally, the time is denoted t.

2.1. Forced dynamics equations

The planet generates a gravity field, denoted g, oriented radially.
The centrifugal acceleration due to rotation tends to make the
effective acceleration depend on latitude. We ignore this depen-
dence by considering that Ω � Ωc, where Ωc =

√
g/r represents

the Keplerian critical rotation velocity (the rotation velocity of
the planet is far slower than the critical velocity for which the
distortion due to the centrifugal acceleration destroys the oceanic
layer). We assume then that the ocean is stratified radially in
pressure p and density ρ. These quantities are written

p (r, t) = p0 (r) + δp (r, t) , ρ (r, t) = ρ0 (r) + δρ (r, t) , (1)

where the superscript 0 refers to the background distribution and
δ to a small fluctuation at the vicinity of the equilibrium. Sim-
ilarly, the velocity of the flows generated by the perturbation is
denoted V (r, t) =

(
Vr,Vθ,Vϕ

)
and the associated displacement

ξ (such that V = ∂t ξ, Unno et al. 1989). We note that, because
of the solid rotation assumption, there is no meridional or zonal
background circulation. We consider in the following that the
tidal perturbation can be approximated by a linear model and
therefore ignore terms of order greater than 1 with respect to
ξ, V, δp and δρ. Moreover, we assume the Cowling approxi-
mation (Cowling 1941), that is, the self-gravitational effect of
the variation of mass distribution is not taken into account.
Finally, following early works (e.g. Webb 1980; Egbert & Ray
2001, 2003; Tyler 2011), we introduce dissipation by using a
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Rayleigh friction, σRV, where σR is a constant effective fre-
quency associated with the damping (we note that Egbert & Ray
2001, 2003, consider two different models to describe friction,
the Rayleigh friction model and a quadratic one depending on
the total velocity of the flow and including all tidal components).
As demonstrated by Ogilvie (2009), the results obtained with
such a simplified approach are a reasonably good approximation
of those obtained by taking into account the complete viscous
force. It also seems to be a reasonable approach for situations
such as exoplanets, where the solid-fluid coupling is naturally
unknown.

Under these assumptions, the Navier-Stokes equation
describing the distortion of the ocean forced by the tidal poten-
tial U can be expressed in the frame rotating with the planet as
(Gerkema & Zimmerman 2008)

∂tV + 2Ω ∧ V = − 1
ρ0
∇δp − g

ρ0
δρer + ∇U − σRV. (2)

It is completed by the equation of mass conservation

∂tδρ +
dρ0

dr
Vr + ρ0∇ · V = 0, (3)

and the equation of buoyancy

∂tδρ +
dρ0

dr
Vr =

1
c2

s

(
∂tδp +

dp0

dr
Vr

)
, (4)

where cs (r) = Γ (p0, ρ0, S 0) designates the sound velocity, Γ
being any state function and S 0 the salinity of the fluid. It shall
be noted here that we only consider isohaline and isentropic pro-
cesses. Diabatic processes such as the thermal expansion of the
ocean are ignored. The radial stratification of the oceanic layer is
characterized by the Brunt–Väisälä frequency (e.g. Gerkema &
Zimmerman 2008),

N2 = − g
H

[
d ln ρ0

dx
+
gH
c2

s

]
, (5)

where we have introduced the non-dimensional reduced alti-
tude x, defined by r = Rc + Hx. The three components of the
momentum equation given by Eq. (2) are strongly coupled by
the Coriolis acceleration. To make the problem tractable analyt-
ically, we assume the commonly used traditional approximation
(e.g. Eckart 1960; Mathis et al. 2008; Auclair-Desrotour et al.
2017a). This simplification consists in ignoring the latitudinal
component of the rotation vector in the Coriolis acceleration
(i.e. 2Ω sin θVr and 2Ω sin θVϕ along eϕ and er respectively),
giving

∂tVθ − 2Ω cos θVϕ = −1
r
∂θ

(
δp
ρ0
− U

)
− σRVθ,

∂tVϕ + 2Ω cos θVθ = − 1
r sin θ

∂ϕ

(
δp
ρ0
− U

)
− σRVϕ,

∂tVr = − 1
ρ0
∂rδp − g

ρ0
δρ + ∂rU − σRVr,

(6)

thus making it possible to separate θ and r coordinates in solu-
tions, as shown hereafter. As discussed in Sect. 6, the traditional
approximation is usually considered to be satisfactory in stably
stratified layers (2Ω � N2) and for tidal frequencies satisfying
the condition 2Ω < σ � N2, which corresponds to the regime of

super-inertial waves (e.g. Mathis 2009; Auclair-Desrotour et al.
2018).

Finally, the equations of mass conservation (3) and of the
buoyancy (4) can be written respectively

∂tδρ +
1
r2 ∂r

(
r2ρ0Vr

)
= − ρ0

r sin θ

[
∂θ (sin θVθ) + ∂ϕVϕ

]
, (7)

and

∂tδρ =
1
c2

s
∂tδp +

ρ0N2

g
Vr. (8)

The tidal perturbation is periodic in time and longitude.
Therefore, introducing the longitudinal wavenumber m and the
tidal frequency σ, we expand the perturbed quantities in Fourier
series of t and ϕ. Any quantity f is written

f =
∑
m,σ

f m,σ (r, θ) ei(σt+mϕ), (9)

where the f m,σ are the spatial distributions of f associated with
the doublet (m, σ). In the case of a perfect fluid (σR = 0), the
latitudinal structure of the perturbation is fully characterized by
m and the real parameter ν = 2Ω/σ, which is the so-called spin
parameter (e.g. Lee & Saio 1997). Viscous friction slightly mod-
ifies the latitudinal structure by introducing a dependence on σR.
Thus, we define the complex tidal frequency and spin parameter
as

σ̃ = σ − iσR and ν̃ =
2Ω

σ̃
, (10)

and the latitudinal operators

Lm,ν̃
θ =

1
1 − ν̃2 cos2 θ

[∂θ + mν̃ cot θ] , and

Lm,ν̃
ϕ =

1
1 − ν̃2 cos2 θ

[
ν̃ cos θ∂θ +

m
sin θ

]
,

(11)

such that

Vm,σ
θ =

i
σ̃r
Lm,ν̃
θ

(
δpm,σ

ρ0
− Um,σ

)
, and

Vm,σ
ϕ = − 1

σ̃r
Lm,ν̃
ϕ

(
δpm,σ

ρ0
− Um,σ

)
.

(12)

As mentioned above, the traditional approximation allows us
to separate the coordinates r and θ in the Fourier coefficients of
Eq. (9). Therefore, we write these functions as

ξm,σ
r =

∑
n

ξm,σ
r;n (r) Θm,ν̃

n (θ) , Vm,σ
r =

∑
n

Vm,σ
r;n (r) Θm,ν̃

n (θ) ,

ξm,σ
θ =

∑
n

ξm,σ
θ;n (r) Θ

m,ν̃
θ;n (θ) , Vm,σ

θ =
∑

n

Vm,σ
θ;n (r) Θ

m,ν̃
θ;n (θ) ,

ξm,σ
ϕ =

∑
n

ξm,σ
ϕ;n (r) Θm,ν̃

ϕ;n (θ) , Vm,σ
ϕ =

∑
n

Vm,σ
ϕ;n (r) Θm,ν̃

ϕ;n (θ) ,

δpm,σ =
∑

n

δpm,σ
n (r) Θm,ν̃

n (θ) , δρm,σ =
∑

n

δρm,σ
n (r) Θm,ν̃

n (θ) ,

Um,σ =
∑

n

Um,σ
n (r) Θm,ν̃

n (θ) , (13)

where n designates the latitudinal wavenumber of a component
(n ∈ N if |ν| ≤ 1 ; n ∈ Z if |ν| > 1), the Θ

m,ν̃
n are the so-

called Hough functions (Hough 1898), defined on the interval
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Fig. 2. Real (top) and imaginary (bottom) parts of even Hough functions (n even) associated with a quadrupolar tidal perturbation (m = 2) and
defined by ν̃ = ν/ (1 − iγ) with ν = 1 (ordinary/gravity modes) and various positive values of γ = σR/σ. From left to right, γ = 0 (non-frictional
regime), γ = 0.1 (weakly frictional regime), γ = 1 and γ = 10 (strongly frictional regime). Hough functions are plotted as functions of the latitude
δ (degrees).

θ ∈ [0, π], and the Θ
m,ν̃
θ;n (θ) = Lm,ν̃

θ

[
Θ

m,ν̃
n (θ)

]
and Θ

m,ν̃
ϕ;n (θ) =

Lm,ν̃
ϕ

[
Θ

m,ν̃
n (θ)

]
stand for the latitudinal functions associated

with the latitudinal and longitudinal velocities and displace-
ments, respectively. Hough functions are the solutions of the
eigenfunctions-eigenvalues problem defined by the Laplace’s
tidal equation (Laplace 1798),

Lm,ν̃Θ = −ΛΘ, (14)

where Θ is a function, Λ ∈ C and Lm,ν̃ the operator

Lm,ν̃ =
1

sin θ
d
dθ

(
sin θ

1 − ν̃2 cos2 θ

d
dθ

)
− 1

1 − ν̃2 cos2 θ

(
mν̃

1 + ν̃2 cos2 θ

1 − ν̃2 cos2 θ
+

m2

sin2 θ

)
.

(15)

Hence, for a given n, Θ
m,ν̃
n is such thatLm,ν̃Θ

m,ν̃
n = −Λ

m,ν̃
n Θ

m,ν̃
n ,

the parameter Λ
m,ν̃
n being the associated eigenvalue. We note

here that the only difference with the usual case where fric-
tion is not taken into account (e.g. Lee & Saio 1997) is the
nature of ν̃ which is a complex number and not a real one (see
Eq. (10)). It follows that the Θ

m,ν̃
n and Λ

m,ν̃
n are complex func-

tions and parameters in the general case (e.g. Volland 1974a,b).
Looking at the expression of ν̃, one can identify two dissipation
regimes:
• A weakly frictional regime (|σ| � σR), where Hough func-

tions and eigenvalues are real (they are denoted Θ
m,ν
n and

Λ
m,ν
n ). This regime corresponds to the case treated usually

in the theory of tides (Chapman & Lindzen 1970; Lee &
Saio 1997; Auclair-Desrotour et al. 2014). Tidal modes can
be divided into two families: the so-called gravity modes
(n ≥ 0), which are defined both in the regime of super-
inertial waves (|ν| ≤ 1) and in the regime of sub-inertial
waves (|ν| > 1), and the inertial modes (n < 0), defined only
in the regime of sub-inertial waves (see Lee & Saio 1997).

The Hough functions associated with gravity modes degen-
erate in the associated Legendre polynomials1 Pm

l (with
l = m + n) when ν→ 0.

• A strongly frictional regime (|σ| . σR), where friction sig-
nificantly affects the horizontal structure of tidal waves. In
this regime, the hierarchy of eigenvalues can change, as
demonstrated by Volland (1974a) who notes that the cor-
responding critical points appear for |σ| ∼ σR. For σR &
|Ω|, inertial modes converge towards gravity modes. Grav-
ity and Rossby Hough functions merge asymptotically when
σR → +∞, and converge to the associated Legendre poly-
nomials. Thus, a strong friction makes the Coriolis effects
negligible, as if the planet were not rotating. In this asymp-
totic regime, the angular lag between the tidal bulge and the
direction of the perturber is given by the imaginary part of
the vertical profiles of perturbed quantities. The behaviour of
tidal modes in the dissipative regime is discussed thoroughly
by Volland & Mayr (1972) and Volland (1974a).

Hough functions associated with symmetric modes of degree
m = 2 are plotted in Fig. 2 for various values of the ratio σR/σ.
The equations describing the vertical structure are obtained
by substituting the expansions given by Eqs. (9) and (13) in
Eqs. (6–8). In order to lighten expressions, the superscripts
(m, σ) is omitted up to the end of Sect. 2.1, where no con-
fusion will arise. Let us introduce the notation yn = δpn/ρ0
and assume the ocean to be at the hydrostatic equilibrium
(dp0/dx = −Hgρ0), where x is the reduced altitude introduced
in Eq. (5). After some manipulations, one obtains

dY
dx

=

[
A1 (x) B1 (x)
A2 (x) B2 (x)

]
Y +

[
C1 (x)
C2 (x)

]
, with Y =

[
yn

r2ξr;n

]
, (16)

1 The Pm
l represent here the normalized associated Legendre polynomi-

als, expressed as Pm
l =

[
(−1)m /

(
2ll!

)] (
1 − x2

)m/2 (
dl+m/dxl+m

) (
x2 − 1

)l

(Abramowitz & Stegun 1972).
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and the coefficients

A1 =
N2H
g

, A2 = H
(
Λ

m,ν̃
n

σσ̃
− r2

c2
s

)
,

B1 =
H
r2

(
σσ̃ − N2

)
, B2 =

gH
c2

s
,

C1 =
dUn

dx
, C2 = −HΛ

m,ν̃
n

σσ̃
Un.

(17)

This system is then written as a single second-order ordinary
differential equation,

d2yn

dx2 + A (x)
dyn

dx
+ B (x) yn = C (x) , (18)

with the coefficients

A (x) =
d ln ρ0

dx
− K◦, (19)

B (x) =
H2

r2 Λm,ν̃
n

(
N2

σσ̃
− 1

) (
1 − εs;n

)
(20)

−
(

d
dx
− gH

c2
s
− K◦

) (
N2H
g

)
,

C (x) =
H2

r2 Λm,ν̃
n

(
N2

σσ̃
− 1

)
Un −

(
gH
c2

s
+ K◦

)
dUn

dx
+

d2Un

dx2 . (21)

Here, we have introduced the frequency-dependent, dimension-
less acoustic, and sphericity parameters

εs;n =
r2σσ̃

Λ
m,ν̃
n c2

s

and K◦ =
r2

N2 − σσ̃
d
dx

(
N2 − σσ̃

r2

)
. (22)

The acoustic parameter can be written εs;n = σσ̃/σ2
s;n,

where σs;n =
(
Λ

m,ν̃
n

)1/2
cs/r is the cut-off frequency of acous-

tic waves (also called the Lamb frequency) for the degree-n
mode when Λ

m,ν̃
n ∈ R+. The regime of acoustic waves thus corre-

sponds to
∣∣∣εs;n

∣∣∣ & 1. Typically, for an Earth-like planet of radius
R⊕ = 6371 km and angular velocity Ω⊕ = 7.25 × 10−5 s−1 (NASA
fact sheets), with a water oceanic layer characterized by
cs ≈ 1.545 km.s−1 (Gerkema & Zimmerman 2008), the gravest
acoustic modes of the quadrupolar semidiurnal tide (m = 2,
n = 0, Λ

2,ν̃
0 ∼ 11) appear for Ω & 5.5 Ω⊕. The other parame-

ter, K◦, corresponds to the effect of the spherical geometry of
the layer on the structure of tidal waves. It is usually ignored
in 2D modellings where r = R. We see in the following section
that K◦ ∝ H/R when H/R � 1. Eventually, using the change of
variables yn = Φ

m,σ
n Ψ

m,σ
n , where Φ

m,σ
n is the radial function

Φm,σ
n (x) = exp

[
−1

2

∫ x

0
A

(
x′
)

dx′
]
, (23)

we write the vertical structure equation (Eq. (18)) as the
Schrödinger-like equation

d2Ψ
m,σ
n

dr2 + k̂2
nΨm,σ

n =
(
Φm,σ

n
)−1 C, (24)

in which k̂n represents the vertical wavenumber of the mode,
defined as

k̂2
n = B − 1

2

(
dA
dx

+
A2

2

)
. (25)

The vertical profiles of the other quantities are deduced from
Ψ

m,σ
n straightforwardly thanks to polarization relations. We get,

for the velocity field

Vm,σ
r;n = − iσ

H
(
N2 − σσ̃) [

Φn

(
dΨn

dx
+AnΨn

)
− dUn

dx

]
, (26)

Vm,σ
θ;n =

i
σ̃r

(ΦnΨn − Un) , (27)

Vm,σ
ϕ;n = − 1

σ̃r
(ΦnΨn − Un) , (28)

for the displacement

ξm,σ
r;n = − 1

H
(
N2 − σσ̃) [

Φn

(
dΨn

dx
+AnΨn

)
− dUn

dx

]
, (29)

ξm,σ
θ;n =

1
σσ̃r

(ΦnΨn − Un) , (30)

ξm,σ
ϕ;n =

i
σσ̃r

(ΦnΨn − Un) , (31)

and for scalar quantities

δpm,σ
n = ρ0ΦnΨn, (32)

δρm,σ
n = − ρ0

gH
N2

N2 − σσ̃
[
Φn

(
dΨn

dx
+ BnΨn

)
− dUn

dx

]
, (33)

with the frequency-dependent factors

An (x) =
1
2

[
gH
c2

s
− N2H

g
+ K◦

]
, (34)

Bn (x) =
1
2

[
Hg
c2

s

(
2
σσ̃

N2 − 1
)
− HN2

g
+ K◦

]
. (35)

Through equations describing the tidal dynamics, we iden-
tify the families of waves involved in the tidal response. First,
because of rotation, inertial waves are generated in the frequency
range |σ| < 2Ω. Then, we identify surface-gravity waves, which
are restored by gravity and are characterized by the cut-off fre-
quency σg =

√
gH/r. If the ocean is stably stratified (N > 0),

internal gravity waves can propagate in the frequency range
|σ| < N. These waves are restored by the Archimedean force.
Finally, in the high-frequency range delimited by the acous-
tic cut-off frequency σs = cs/r, the tidal response is partly
composed of horizontally propagating acoustic Lamb modes,
restored by compressibility. The possible regimes of oceanic
tides are determined by the hierarchy of the characteristic fre-
quencies of the system, namely σ, σR, 2Ω, N, σg and σs.
The frequency spectrum of waves composing the oceanic tidal
response is summarized by Fig. 3.

2.2. Tidal potential, Love numbers, and tidal torque

The variation of mass distribution due to the tidal distortion
modifies the self-gravitational potential of the planet. The tidal
potential of the excitation is usually expanded in Fourier series
and spherical harmonics (see for instance the Kaula’s multipolar
expansion; Kaula 1962). It is thus convenient to write the fluctu-
ations of the self-gravitational potential, denotedU, in the same
form,

U =
∑
σ,l,m

Um,σ
l (x) Pm

l (cos θ) ei(σt+mϕ). (36)
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Fig. 3. Frequency spectrum of waves likely to be excited by the tidal
perturbation and of the corresponding tidal regimes. The characteristic
frequencies of the system are, from left to right, the drag frequency σR,
the inertia frequency 2Ω, the surface-gravity waves cut-off frequency
σg =

√
gH/R, the Brunt–Väisälä frequency N, and the acoustic cut-

off frequency σs = cs/r. Their hierarchy can vary as a function of
the physical and dynamical properties of the planet. In the case of
the Earth’s ocean, σR ≈ 10−5 s−1 (Webb 1980), 2Ω = 1.46 × 10−4 s−1,
σg = 3.1×10−5 s−1, N ≈ 2.2×10−3 s−1 (Gerkema & Zimmerman 2008),
and σs = 6.3 × 10−3 s−1.

The radial profiles of the (m, σ)-components are themselves
written

Um,σ
l = Um,σ

ξ;l +Um,σ
ρ;l , (37)

where we have introduced the contribution of the surface dis-
placement Um,σ

ξ;l and of the internal density variations Um,σ
ρ;l . In

the following, we use the subscripts ξ and ρ to make the distinc-
tion between the two contributions in a systematic way. At the
planet surface (x = 1), the two components of the potential are
expressed as

Um,σ
ξ;l (1) =

4πG R
2l + 1

ρ0 (1) ξm,σ
r;l (1) , (38)

Um,σ
ρ;l (1) =

4πG R
2l + 1

H
[∫ 1

0

(
1 +

H
R

x′
)l+2

δρm,σ
l dx′

]
, (39)

with G representing the universal gravity constant. Expanded in
Hough functions, they write

Um,σ
ξ;l (1) =

4πG R
2l + 1

ρ0 (1)
∑

n

∑
k≥m

Cm,ν̃
l,n,kξ

m,σ
r;n,k (1) , (40)

Um,σ
ρ;n (1) =

4πG R
2l+1

H
∑

n

∑
k≥m

Cm,ν̃
l,n,k

∫ 1

0

(
1+

H
R

x′
)l+2

δρm,σ
n,k dx′.

(41)

In these expressions, the complex weighting coefficients
Cm,ν̃

l,n,k are expressed as

Cm,ν̃
l,n,k = Bm,ν̃

k,n Am,ν̃
n,l , (42)

where the Am,ν̃
n,l and Bm,ν̃

k,n designate the mutual projection coeffi-
cients of the Hough functions on normalized associated Legen-
dre polynomials, defined respectively by the expansions

Θm,ν̃
n (θ) =

∑
l≥m

Am,ν̃
n,l Pm

l (cos θ) , (43)

Pm
k (cos θ) =

∑
n

Bm,ν̃
k,n Θm,ν̃

n (θ) . (44)

The Cm,ν̃
l,n,k coefficients quantify the coupling induced by the

Coriolis effects in the dynamics of the tidal response. They
are real in the non-frictional case (σR = 0 and ν̃ = ν), where
Am,ν

n,l = 〈Pm
l ,Θ

m,ν
n 〉 and Bm,ν

k,n = 〈Θm,ν
n , Pm

k 〉 = Am,ν
n,k , the notation

〈·, ·〉 standing for the scalar product defined for any Pm
l and Θ

m,ν
n

as

〈Pm
l ,Θ

m,ν
n 〉 =

∫ π

0
Pm

l (cos θ) Θm,ν
n (θ) sin θ dθ. (45)

In the case of a non-rotating planet (Ω = 0 and ν = 0), there is no
coupling. Therefore, Cm,0

l,n,k = 1 if l = n + m = k, else Cm,0
l,n,k = 0.

The notations ξm,σ
r;n,k = ξm,σ

r;n

(
Um,σ

k

)
and δρm,σ

n,k = δρm,σ
n

(
Um,σ

k

)
in

Eqs. (40) and (41) stand for the vertical displacement and density
variations due to the Pm

k -component of the forcing projected on
the (n,m, ν̃)-Hough function. The expressions of the components
of the tidal potential (Eqs. (40) and (41)) allow us to compute
complex Love numbers, which are commonly used to quantify
tidal dissipation in celestial bodies (Tobie et al. 2005; Remus
et al. 2012; Ogilvie 2014). Love numbers are defined as the ratio
between the gravitational potential due to the distortion and the
tidal gravitational potential taken at the external surface of the
body (r = R). Thus, oceanic Love numbers associated with the
triplet (l,m, σ), denoted km,σ

l , are defined as

km,σ
l =

Um,σ
l

Um,σ
l

∣∣∣∣∣∣
x=1

. (46)

Here, <
{
km,σ

l

}
and =

{
km,σ

l

}
stand for the tidal response of the

ocean to the (l,m)-component of the excitating tidal potential.
The Um

l are provided by the Kaula’s multipolar expansion of the
tidal gravitational potential and are expressed as functions of the
Keplerian elements of the planet-perturber system (Kaula 1966;
Mathis & Le Poncin-Lafitte 2009).

Because of internal dissipation, the variation of mass distri-
bution due to the tidal perturbation generates a tidal torque. The
torque exerted by the perturber on the oceanic layer with respect
to the spin axis of the planet, denoted T , is given by

T =
∑
m,σ

(
T m,σ
ξ + T m,σ

ρ

)
. (47)

The components T m,σ
ξ and T m,σ

ρ of the (m, σ)-mode are defined
as

T m,σ
ξ = <

{
1
2
ρs

∫
∂V0

∂Um,σ

∂ϕ

∣∣∣∣∣
r=R

[
ξm,σ

r (1)
]∗ dS

}
, (48)

T m,σ
ρ = <

{
1
2

∫
V0

∂Um,σ

∂ϕ
(δρm,σ)∗ dV

}
, (49)

where ∗ stands for the conjugate of a complex number and< its
real part (= will be used here for the imaginary part), ρs = ρ0 (1)
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denotes the density at the surface ocean, V0 the spatial domain
filled by the oceanic shell at rest, ∂V0 its upper boundary, and dS
and dV infinitesimal surface and volume parcels, respectively.
Similarly to the tidal potential due to the distortion, these two
components can be expanded on Hough functions and associated
Legendre polynomials. For l ≥ m and k ≥ m, one thus obtains,

T m,σ
ξ = −mπR2ρs

∑
l,n,k

=
{(

Cm,ν̃
l,n,k

)∗
Uσ,m

l (1)
[
ξm,σ

r;n,k (1)
]∗}
, (50)

T m,σ
ρ = −mπR2H

∑
l,n,k

=
{(

Cm,ν̃
l,n,k

)∗ ∫ 1

0
Um,σ

l

[
δρm,σ

n,k

]∗
dx

}
. (51)

3. Tides in a thin stably stratified ocean

In some observed cases, the oceanic layer of terrestrial planets
and satellites is thin compared to the radius of the body (for
instance, the Earth’s ocean has an aspect ratio of 6×10−4; Eakins
& Sharman 2010). Therefore, in this section, we apply our gen-
eral modelling to the simplified case of an oceanic layer of small
depth H � R, and compute an analytic solution of the oceanic
tidal response, Love numbers, and tidal torque.

3.1. Tidal waves dynamics

The thin shell hypothesis allows us to simplify the physical setup.
Given that the relative difference of gravity between the lower
and the upper boundaries is proportional to the ratio H/R, g
is supposed to be constant in the oceanic layer. Similarly, the
radial variations of the tidal gravitational potential with x can
be neglected (dUn/dx ≈ 0 and d2Un/dx2 ≈ 0). Furthermore,
for simplicity, we assume uniform stratification and compress-
ibility, that is, that the Brunt–Väisälä frequency (N) and the
sound velocity (cs) are constants. We note that the case of the
Earth’s ocean does not well follow this assumption since N
decays over several orders of magnitude from the pycnocline
(the upper region of the ocean where the density is changing
most rapidly) where its typical values are about 0.01 s−1, to the
abyssal ocean, where they fall to 0.001 s−1 (e.g. Gerkema &
Zimmerman 2008). Although a more realistic model would be
more appropriate in this case, the uniform stratification appears
as a useful first step to solve the vertical structure equation and
derive explicit solutions controlling the tidal response of a strati-
fied ocean. As shown by Eq. (5), setting N2 to a constant implies
a density decreasing exponentially with altitude,

ρ0 (x) = ρseτ(1−x), (52)

where τ designates the decreasing rate given by

τ = H
(

N2

g
+
g

c2
s

)
. (53)

The acoustic and sphericity terms (Eq. (22)) are simplified into

εs;n ≈ R2σ2

Λ
m,ν̃
n c2

s

and K◦ ≈ −2
H
R
. (54)

It follows that Φn (see Eq. (22)) writes

Φn (x) = eδx with δ =
1
2

(τ + K◦) . (55)

Hence, we express the vertical structure equation (Eq. (24))

d2Ψ
m,σ
n

dx2 + k̂2
nΨm,σ

n =
H2

R2 Λm,ν̃
n

(
N2

σσ̃
− 1

)
Une−δx. (56)

The vertical wavenumber to square k̂2
n, given by Eq. (25) in the

general case, is now the constant

k̂2
n =

H2

R2 Λm,ν̃
n

(
N2

σσ̃
− 1

) (
1 − εs;n

)
+

(
gH
c2

s
+ K◦

)
N2H
g
− δ2. (57)

In this expression, the first term is the vertical wavenumber
of internal gravity waves; it dominates when |σσ̃| � N2, that
is, for a stable stratification. Other terms correspond to acous-
tic and sphericity terms usually ignored in anelastic (cs = +∞)
and thin-shell (H/R → 0) approximations. Here, we will only
ignore sphericity terms,that is, we assume that K◦ = 0. We will
keep acoustic terms because they do not bring supplementary
mathematical complexities into the analytic treatment and can,
furthermore, be comparable to those associated to stratification.
For instance, in the case of the Earth’s ocean, density increases
from 1022 kg m−3 at the surface to 1070 kg m−3 at 10 km depth
(Gerkema & Zimmerman 2008), which gives the mean gra-
dient dρ0/dz = −0.0048 kg m−2. As ρ0g/c2

s ≈ 0.0043 kg m−2,
the two terms of Eq. (5) are comparable and must be retained.
To solve the vertical structure equation, two boundary condi-
tions are required. At x = 0, we set the impenetrable rigid-wall
condition ξr = 0. At the upper boundary, we apply the usual free-
surface condition (e.g. Unno et al. 1989), δp = gρ0ξr. It follows
that

Ψn (x) =
Ψ

(0)
n

Dn

{
Dne−δx

+ (Cn − δ) e−δ
[
An sin

(
k̂nx

)
− k̂n cos

(
k̂nx

)]
+ (An − δ) k̂n cos

(
k̂n (1 − x)

)
+ (An − δ)Cn sin

(
k̂n (1 − x)

)}
,

(58)

where Ψ
(0)
n is the constant given by

Ψ(0)
n =

H2Λ
m,ν̃
n

R2
(
k̂2

n + δ2
) (

N2

σσ̃
− 1

)
Un, (59)

and Cn andDn the dimensionless coefficients expressed as

Cn = An +
H
g

(
N2 − σσ̃

)
, (60)

Dn = k̂n (Cn −An) cos
(
k̂n

)
−

(
AnCn + k̂2

n

)
sin

(
k̂n

)
. (61)

3.2. Second-order tidal Love number and tidal torque

By substituting Eq. (58) in Eqs. (29) and (33) we obtain the com-
ponents of the variation of mass distribution intervening in the
Love numbers and tidal torque (see Eqs. (50) and (51)) as explicit
functions of the internal structure parameters,

ξm,σ
r;n,k (1) = HQm,σ

ξ;n Um,σ
k and

∫ 1

0
δρm,σ

n,k (x) dx = ρsQm,σ
ρ;n Um,σ

k ,

(62)
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Fig. 4. Vertical displacement due to the quadrupolar semidiurnal
tide (σ = 2 (Ω − norb), norb being the dynamical frequency) obtained
using the analytic solution established for the thin layer approxima-
tion (Eq. (58)). The displacement, normalized by the quadrupolar tidal
potential, is plotted in the equatorial plane of the planet as a func-
tion of longitude (horizontal axis) and normalized altitude (vertical
axis). The position ϕ = 0 corresponds to the sub-perturber point; the
oceanic floor and surface are located at x = 0 and x = 1, respectively.
For this computation, the rotation period of the planet Pspin = 2π/Ω
and orbital period of the perturber Porb = 2π/norb are set to Pspin =
6.0 d and Porb = 365.25 d. The used values of parameters are R = R⊕,
H = 100 km, g = 9.81 m s−2, N = 10−3 s−1, cs = 1545 m s−1 and
σR = 10−5 s−1.

where the frequency-dependent parameters Qm,σ
ξ;n and Qm,σ

ρ;n are
expressed as

Qm,σ
ξ;n = − Λ

m,ν̃
n

R2σσ̃
(
k̂2

n + δ2
) {
An − δ +D−1

n

[
En + Fn sin

(
k̂n

)]}
,

(63)

Qm,σ
ρ;n = − N2HΛ

m,ν̃
n

gR2σσ̃
(
k̂2

n + δ2
) {
τ−1 (Bn − δ) (eτ − 1) (64)

+
Gn +Hn cos

(
k̂n

)
+Kn sin

(
k̂n

)
Dn

(
γ2 + k̂2

n

)
 ,

with γ = δ − τ and the dimensionless coefficients

En =k̂n (An − δ) (An − Cn) eδ, (65)

Fn = (Cn − δ)
(
A2

n + k̂2
n

)
, (66)

Gn =k̂n

{
(An − δ) eδ

[
γ (Bn − Cn) + BnCn + k̂2

n

]
(67)

+ (Cn − δ) e−γ
[
γ (Bn −An) +AnBn + k̂2

n

]}
,

Hn = − k̂n

{
eτ (An − δ)

[
γ (Bn − Cn) + BnCn + k̂2

n

]
(68)

+ (Cn − δ)
[
γ (Bn −An) +AnBn + k̂2

n

]}
,

Kn = (Cn − δ)
[
γ
(
AnBn + k̂2

n

)
+ k̂2

n (An − Bn)
]

(69)

− eτ (An − δ)
[
γ
(
BnCn + k̂2

n

)
+ k̂2

n (Cn − Bn)
]
.

Hence, Qm,σ
ξ;n stands for the intrinsic response of the planet

due to the variations of the oceanic surface level, while Qm,σ
ρ;n cor-

responds to the contribution of internal inertial-gravity waves.
This will later be equal to zero in the case of an incompress-
ible and neutrally stratified ocean (τ = 0). The contribution of
internal gravity waves to the tidal response with respect to that
of surface-gravity waves is weighted by the ratio

∣∣∣Qρ;n/Qξ;n
∣∣∣. By

using the expressions of the solution, we retrieve the weight-
ing factor given in the literature (see e.g. Hendershott 1981,
Eq. 10.40), that is,

∣∣∣Qρ;n/Qξ;n
∣∣∣ ∼ N2H/g. The oceanic second-

order Love number k2
2 is then deduced from Eqs. (40), (41) and

(46) straightforwardly. In the quadrupolar approximation, where
terms of degrees l > 2 are neglected, it writes

k2
2 =

G Moc

5R

∑
n∈Z

C2,ν̃
2,n,2

(
Q2,σ
ξ;n + Q2,σ

ρ;n

)
, (70)

where Moc = 4πR2Hρs designates the total mass of the ocean
in the weak stratification approximation (τ � 1). Similarly, the
tidal quality factor Q =

∣∣∣∣k2
2/=

{
k2

2

}∣∣∣∣ (Mathis & Le Poncin-Lafitte
2009) is expressed as

Q =

∣∣∣∣∣∣∣∣∣∣∣
∑

n

C2,ν̃
2,n,2

(
Q2,σ
ξ;n + Q2,σ

ρ;n

)
∑

n

=
{
C2,ν̃

2,n,2

(
Q2,σ
ξ;n + Q2,σ

ρ;n

)}
∣∣∣∣∣∣∣∣∣∣∣ , (71)

and the quadrupolar tidal torque, which corresponds to the l =
m = 2 component, as

T 2,σ =
1
2

Moc
∣∣∣U2,σ

2

∣∣∣2 ∑
n

=
{
C2,ν̃

2,n,2

(
Q2,σ
ξ;n + Q2,σ

ρ;n

)}
. (72)

where the quadrupolar component of the tidal potential U2,σ
2 is

given by

U2,σ
2 =

√
3
5

(R
a

)2 G M?

a
. (73)

Expressed as a function of the degree-two tidal Love number
given by Eq. (70), the tidal torque is written

T 2,σ =
3
2
G M2

?

R5

a6 =
{
k2

2

}
, (74)

which is the well-known expression of the tidal torque associ-
ated with the quadrupolar semidiurnal tide (e.g. Efroimsky &
Williams 2009; Makarov 2012; Correia et al. 2014).

3.3. Case of the neutrally stratified ocean (N = 0)

In analytic solutions describing oceanic tides, the stratification is
usually not taken into account, the layer being 2D and the fluid
assumed to be incompressible (e.g. Webb 1980; Tyler 2011, 2014;
Chen et al. 2014; Matsuyama 2014). This reduces the oceanic
tidal dynamics to horizontal flows. We show here that we recover
the results given by this approach with our modelling, in which
the shallow-water case is a particular case.
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Following the early works mentioned above, let us set N = 0
(neutral stratification) and cs = +∞ (incompressible fluid). The
vertical wavenumber thus becomes

k̂n = i
H
R

√
Λ

m,ν̃
n . (75)

As shown by Eq. (75), k̂n is now directly proportional to the

horizontal wavenumber k̂⊥;n =

√
Λ

m,ν̃
n /R2. In the weak-friction

approximation (σR � |σ|) and the regime of super-inertial waves
(|ν̃| ≤ 1), it does not depend on the tidal frequency. Indeed,
in this case, the associated eigenvalues are Λ

m,ν̃
n ≈ Λ

m,0
n =

(m + n) (m + n + 1) with n ∈ N (the relation between the degree
l of associated Legendre polynomials and the degree n has been
defined as l = m + n). The frequency dependence of Λ

m,ν̃
n can-

not be ignored any more in the regime of sub-inertial waves.
Because of the thin-layer approximation,

∣∣∣k̂n

∣∣∣ � 1. It follows
that sin

(
k̂nx

)
≈ k̂nx and cos

(
k̂nx

)
≈ 1. Hence, in the case of the

neutrally stratified incompressible ocean, the analytic solution of
Eq. (58) simply reduces to

Ψm,σ
n = Un

gHk̂2
⊥;n − H

Rσσ̃x(
σ − σ−n

) (
σ − σ+

n
) , (76)

where σ−n and σ+
n are the frequencies of resonance of large-scale

(
∣∣∣k̂⊥;nR

∣∣∣ � 1) damped surface inertial-gravity waves (see Fig. 3)
associated with the gravity mode of degree n. These frequen-
cies characterize the tidal response of the 2D incompressible
ocean, where only surface-gravity waves can propagate (e.g.
Webb 1980, Eq. (2.12)). They are expressed as

σ±n = i
σR

2
±

√
gHk̂2

⊥;n −
(
σR

2

)2
. (77)

We recognize in this expression the dispersion relation of
large-scale surface-gravity waves, σ2 = gHk̂2

⊥ (see e.g. Vallis
2006, in the adiabatic limit). Like the vertical wavenumber, σ−n
and σ+

n formally depend on σ through Λ
m,ν̃
n but this depen-

dence can be neglected in the regime of super-inertial waves if
the weak-friction approximation is assumed. The above approx-
imations imply τ = 0 and Qm,σ

ρ;n = 0. Thus, the Love numbers
and tidal torque (Eqs. (70) and (72)) are determined by the
contribution of the surface displacement solely, which reads

Qm,σ
ξ;n = −Λ

m,ν̃
n

R2

1(
σ − σ−n

) (
σ − σ+

n
) . (78)

The expression of Qm,σ
ξ,n shows that, in the absence of stable strat-

ification, the coupling induced by the Coriolis effect will lead to
a set of resonances (one per Hough mode) enhancing the tidal
dissipation and tidal torque at frequencies σ±n .

4. Application to illustrative cases

In this section, we apply the results established above to repre-
sentative telluric planets by using the thin-shell approximation of
Sect. 3. We first treat the case of the Earth, which illustrates the
thin-layer asymptotic behaviour. However, we shall bear in mind
that the global ocean approximation is a rough hypothesis in the
case of the Earth, where the interaction of the tidal perturbation
with continents plays a central role (Webb 1980; Egbert & Ray
2001, 2003). We then apply the model to TRAPPIST-1 f, which
could be covered with a deep global ocean of liquid water owing
to its small density (Mp ≈ 0.36 M⊕ and R ≈ 1.045 R⊕, see Wang
et al. 2017).

Table 1. Values of parameters used in Sect. 4.

Parameters Units Earth TRAPPIST-1 f

M M⊕ 1 0.36
R R⊕ 1 1.045
g m s−2 9.81 3.23
H km 4.0 1000
ρs kg m−3 1022 1022
cs m s−1 1545 1545
N s−1 10−3 10−3

Mpert kg 7.346 × 1022 1.59 × 1029

Porb days 27.32 9.20

Notes. For the Earth, M⊕, R⊕, g, Porb and Mpert are given by NASA
fact sheets. The oceanic parameters H, ρs, cs and N come from
Gerkema & Zimmerman (2008). For TRAPPIST-1 f, we use the val-
ues given by Wang et al. (2017) for M, R, Mpert and Porb. The surface
gravity g is estimated using the definition g = G M/R and we use the
oceanic parameters of the Earth. The ocean depth is arbitrarily set to
H = 1000 km.

4.1. The Earth

The Sun and the Moon exert on the Earth gravitational forc-
ings of comparable intensities. The resulting tidal perturbation
is the sum of two contributions, the solid and oceanic tides,
which drive the rotational evolution of the planet as well as the
orbital evolution of the Earth-Moon system. We focus here on
the Lunar quadrupolar tide, which corresponds to the tidal fre-
quency σ = 2 (Ω − norb), where Ω and norb stand for the spin
frequency of the Earth and orbital frequency of the Moon. We
introduce the corresponding rotation (Prot = 2π/Ω) and orbital
(Porb = 2π/norb) periods. Following Webb (1980), we use for
the uniform oceanic depth the mean depth of the Earth’s ocean,
that is H = 4 km (Webb 1980). The radius of the planet is
set to R = R⊕ km (with R⊕ = 6378 km), the surface grav-
ity and density to g = 9.81 m s−2 and ρs = 1022 kg m−3. The
Earth’s ocean is characterized by N ∼ 10−4 − 10−2 s−1 and
cs ≈ 1545 m s−1 (Gerkema & Zimmerman 2008), which means
that τ � 1. Thus, the effects of stratification are negligible in
this case. We set the Brunt–Väisälä frequency to the intermedi-
ate value N = 10−3 s−1. All these quantities are summarized in
Table 1.

The drag frequency characterizing the effective Rayleigh
friction (σR) is more difficult to specify because it models the
effects of several mechanisms, such as turbulent friction, vis-
cous friction, friction with topography, and breaking of tidal
waves (Garrett & Munk 1979; Garrett & Kunze 2007). Thus, we
begin by studying the dependence of the oceanic tidal response
on σR. The frequency spectra of the imaginary part of the tidal
Love number (Eq. (70)) and of the associated tidal quality fac-
tor (Eq. (71)) are plotted in Fig. 5 (left column) as functions
of the normalized frequency ω = (Ω − norb) /Ω⊕ (Ω⊕ stands for
the today Earth rotation rate) for various orders of magnitude of
σR. We observe on these plots the resonances associated with
surface-gravity modes modified by rotation. They correspond to
the eigenfrequencies σ±n given by Eq. (77). As σR decreases, the
variability of =

{
k2

2

}
increases. Particularly, the level of the non-

resonant background decreases proportionally to σR, while the
peaks heights increase as σ−1

R , which is in good agreement with
the scaling laws derived in Auclair Desrotour et al. (2015). In
the asymptotic regime of strong friction, the behaviour of the
ocean is regular. The imaginary part of the tidal Love number
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Fig. 5. Semidiurnal oceanic tide of the Earth (left column) and Trappist-1 f (right column). The logarithms of the imaginary part of the tidal Love
number (left) and tidal quality factor (right) are plotted as functions of the normalized forcing frequency ω = (Ω − norb) /Ω⊕ (where Ω⊕ designates
the today rotation rate of the Earth) for various orders of magnitude of the drag parameter γ = log (σR). These frequency spectra are computed
using the expressions given by Eqs. (70) and (71). In each case, the parameter norb is assumed to be constant and the rotation rate of the planet
varies with the tidal frequency following the formula Ω = norb +σ/2. The resonances associated with surface inertial-gravity modes are designated
by black dashed lines in the top panels and numbers indicate the degree n of the corresponding Hough modes and the sign of eigenfrequencies
given by Eq. (77).The values of parameters used for this evaluation are summarized in Table 1.

orbital evolution of the Earth-Moon system. We focus here on
the Lunar quadrupolar tide, which corresponds to the tidal fre-
quency σ = 2 (Ω − norb), where Ω and norb stand for the spin
frequency of the Earth and orbital frequency of the Moon. We
introduce the corresponding rotation (Prot = 2π/Ω) and orbital
(Porb = 2π/norb) periods. Following Webb (1980), we use for
the uniform oceanic depth the mean depth of the Earth’s ocean,
that is H = 4 km (Webb 1980). The radius of the planet is set to
R = R⊕ km (with R⊕ = 6378 km), the surface gravity and den-
sity to g = 9.81 m.s−2 and ρs = 1022 kg.m−3. The Earth’s ocean
is characterized by N ∼ 10−4 − 10−2 s−1 and cs ≈ 1545 m.s−1

(Gerkema & Zimmerman 2008), which means that τ � 1. Thus,
the effects of stratification are negligible in this case. We set the
Brunt-Väisälä frequency to the intermediate value N = 10−3 s−1.
All these quantities are summarized in Table 1.

The drag frequency characterizing the effective Rayleigh
friction (σR) is more difficult to specify because it models the ef-
fects of several mechanisms, such as turbulent friction, viscous
friction, friction with topography, and breaking of tidal waves
(Garrett & Munk 1979; Garrett & Kunze 2007). Thus, we be-
gin by studying the dependence of the oceanic tidal response
on σR. The frequency spectra of the imaginary part of the tidal
Love number (Eq. 70) and of the associated tidal quality fac-

Table 1. Values of parameters used in Sect. 4. For the Earth, M⊕, R⊕,
g, Porb and Mpert are given by NASA fact sheets. The oceanic param-
eters H, ρs, cs and N come from Gerkema & Zimmerman (2008). For
TRAPPIST-1 f, we use the values given by Wang et al. (2017) for M,
R, Mpert and Porb. The surface gravity g is estimated using the definition
g = G M/R and we use the oceanic parameters of the Earth. The ocean
depth is arbitrarily set to H = 1000 km.

Parameters Units Earth Trappist-1 f
M M⊕ 1 0.36
R R⊕ 1 1.045
g m.s−2 9.81 3.23
H km 4.0 1000
ρs kg.m−3 1022 1022
cs m.s−1 1545 1545
N s−1 10−3 10−3

Mpert kg 7.346 × 1022 1.59 × 1029

Porb days 27.32 9.20

tor (Eq. 71) are plotted in Fig. 5 (left column) as functions of
the normalized frequency ω = (Ω − norb) /Ω⊕ (Ω⊕ stands for
the today Earth rotation rate) for various orders of magnitude
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Fig. 5. Semidiurnal oceanic tide of the Earth (left column) and TRAPPIST-1 f (right column). The logarithms of the imaginary part of the tidal
Love number (left) and tidal quality factor (right) are plotted as functions of the normalized forcing frequency ω = (Ω − norb) /Ω⊕ (where Ω⊕
designates the today rotation rate of the Earth) for various orders of magnitude of the drag parameter γ = log (σR). These frequency spectra are
computed using the expressions given by Eqs. (70) and (71). In each case, the parameter norb is assumed to be constant and the rotation rate of
the planet varies with the tidal frequency following the formula Ω = norb + σ/2. The resonances associated with surface inertial-gravity modes
are designated by black dashed lines in the top panels and numbers indicate the degree n of the corresponding Hough modes and the sign of
eigenfrequencies given by Eq. (77).The values of parameters used for this evaluation are summarized in Table 1.

scales as =
{
k2

2

}
∝ σ in the zero-frequency limit (σ→ 0) and as

=
{
k2

2

}
∝ σ−3 at |σ| → +∞.

The observed receding of the Moon is estimated to 3.82
cm per year (Dickey et al. 1994; Bills & Ray 1999). This
corresponds to =

{
k2

2

}
≈ 2.56 × 10−2 for the tidal Love number

and T ≈ 4.50 × 1016 N m for the tidal torque, which are the
values obtained by setting the Rayleigh drag frequency to
σR = 10−5 s−1 in our model (Fig. 5, right panel). We hence
retrieve the ∼30 h friction time scale estimated by Webb (1980)
with a similar approach. This value of σR is used in Sect. 5 to
explore the domain of parameters.

4.2. TRAPPIST-1 f

To illustrate the behaviour of a deep, stably stratified ocean, we
consider the case of TRAPPIST-1 f. TRAPPIST-1 f is one of
the eight telluric planets recently discovered in the vicinity of
the star TRAPPIST-1 (Gillon et al. 2017; Wang et al. 2017). Its
radius is very close to that of the Earth (R = 1.045 M⊕) whereas
its mass is only M = 0.36 M⊕. As a consequence, its mean den-
sity is equal to ρ̄ = 1740 kg m−3, which is far smaller than those

of rocky planets (for instance, the mean density of the Earth is
ρ̄⊕ = 5514 kg m−3; see NASA fact sheets). This means that
water could stand for an important fraction of the planet mass.
Typically, the water fraction is estimated to be between 25 and
100% of the planet mass. Moreover, with a greenhouse effect,
TRAPPIST-1 f is sufficiently irradiated by its host star to have
a surface temperature compatible with liquid water (its black
body equilibrium temperature is estimated to 219 K, see Wang
et al. 2017). All these features argue for the possible presence
of a deep oceanic layer on TRAPPIST-1 f. In such a case, if
the layer is stably stratified, the effect of stratification cannot
be ignored any more because the variation rate of the density
profile (τ defined by Eq. (53)) is not necessary very small with
respect to 1. Thus, as in the case of the Earth, the tidal response is
mainly composed of surface-gravity waves modified by rotation.
But it is also composed of internal gravity waves, restored by
the Archimedean force and inducing internal density variations
(Fig. 3).

We investigate this complex behaviour by considering an
idealized TRAPPIST-1 f planet with a global ocean of depth
H = 1000 km and a stratification similar to that of the Earth’s
ocean, that is N = 10−3 s−1. Assuming the orbital period of the
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planet (norb) to be constant, we study the frequency dependence
of the quadrupolar component of the semidiurnal stellar tide (cf.
Table 1) by letting Ω vary with σ. Similarly to the previous
case, the corresponding spectra of =

{
k2

2

}
and Q are plotted on

Fig. 5 (right column) as a function of the forcing frequency. In
the high-frequency range we retrieve the resonances associated
with surface-gravity modes. The two peaks appearing around
ω ≈ ±4.5 correspond to the Hough mode of degree n = 0, which
is the surface-gravity mode of lowest eigenfrequency. Given
that σ±n ∝

√
gH in the weakly frictional regime (see Eq. (77)),

the resonances are translated towards the high-frequency range
with respect to the case of the Earth (left column). In addi-
tion to surface-gravity modes, we observe resonances caused by
the propagation of internal gravity waves in the low-frequency
range. These modes can exist for |σ| . N (see Fig. 3), which
corresponds to |ω| . 5.

5. From shallow to deep oceans

In the previous sections, we identified the depth of the ocean
and the stability of its stratification as the key structure parame-
ters characterizing the oceanic tidal response. The depth deter-
mines the eigenvalues of resonant surface-gravity modes and
the Brunt–Väisälä frequency, the frequency range of internal
gravity modes. Further, the contribution of these modes is
weighted by the dimensionless number N2H/g, which compares
the Archimedean force to the gravity force. Therefore, we exam-
ine in this section the sensitivity of tidal dissipation to H and
N. We consider the case of idealized Earth sisters hosting a
global ocean and submitted to the semidiurnal gravitational forc-
ing of any perturber orbiting in their equatorial plane. These
planets are characterized by various orders of magnitude of
ocean depths (H = 10, 100, and 1000 km) and Brunt–Väisälä
frequency (N = 10−4, 10−3 s−1), all the other parameters being
unchanged (see Table 1). Following the discussion of the pre-
vious section, the frequency associated with the Rayleigh drag
is set to σR = 10−5 s−1 in a first case (friction time scale of
the Earth’s ocean). In a second case, it is set to σR = 10−6 s−1,
which corresponds to a weaker friction, to broaden the explored
parameter space. Hence, for each planet, we plot in Fig. 6 the
imaginary part of the tidal Love number as a function of the
orbital period of the perturber and the rotation period of the
planet. Then, assuming that the perturber is a Moon-like satel-
lite (Mpert = 7.346 × 1022 kg), we plot the corresponding tidal
torque exerted on planets in Fig. 7.

As it may be noted, the three maps plotted for H = 10 km
(bottom panels of Figs. 6 and 7) have the same aspect what-
ever the value of N. This can be interpreted as the fact that
the tidal response generated by the gravitational forcing exerted
on the ocean is mainly composed of surface-gravity waves. In
other words, the tidal response is dominated by its barotropic
component, which causes the role played by the stratification to
appear negligible in this case, as mentioned before. We identify
the resonances due to surface inertial-gravity modes observed
in the case of the Earth in the previous section (Fig. 5, left
column). They form a typical wings pattern, which is proper
to these waves (see e.g. Fuller & Lai 2014, Fig. 7, in the
case of white dwarves). However, we note that this pattern is
not symmetrical with respect to the diagonal line designating
synchronization. This is a consequence of the effects of the Cori-
olis acceleration. In the super-synchronous regime (area located
below the diagonal line), they induce a distortion that cou-
ples the quadrupolar forcing to several Hough modes. These

inertial-gravity waves tend to be mixed with acoustic waves
while Prot → 0. In the sub-synchronous regime (area located
above the diagonal line), the forcing frequency is greater than
the inertia frequency (super-inertial regime) and the only mode
coupled with the forcing is the gravity mode of degree n = 0.
As a consequence, only one resonance appears in the super-
inertial regime. As the tidal potential scales as U2,σ

2 ∝ n2
orb (see

Eq. (73)), the tidal torque scales as P−4
orb (see Eq. (72)), which cor-

responds to the horizontal colour gradient of the maps plotted in
Fig. 7.

By moving to deeper oceans, we observe that the resonances
are translated towards the small-period range, following the scal-
ing law σ±n ∝

√
gH identified above. For N = 10−3 s−1, the

stratification is sufficiently strong to allow internal gravity waves
to propagate. Therefore, new resonances appear in the frequency
range |σ| . N (see right panels of Figs. 6 and 7). This effect is
enhanced for H = 1000 km. As the eigenfrequencies of internal
gravity waves do not depend on Ω like those of surface gravity
waves, their wings patterns are symmetrical with respect to the
diagonal axis. Moreover, given that the contribution of internal
waves is weighted by the dimensionless number N2H/g, the non-
resonant background is amplified in the frequency range |σ| . N.
The effects of the resonances associated with internal gravity
waves are attenuated by the Rayleigh drag. When σR → 0, reso-
nances tend to increase the dependence of the tidal torque and
Love number on the forcing frequency (as expected from the
general scaling laws derived in Auclair Desrotour et al. 2015).

6. Discussion

In this work, we have opted for a simplified linear analysis allow-
ing us to widely explore the domain of parameters at a reasonable
computational cost. This approach is convenient to examine the
frequency-resonant behaviour of a global ocean and highlight the
key parameters of the problem, which can be explained in more
detail in a second phase. Particularly, we identify and quantify
in a consistant way the contribution of internal gravity waves
restored by the stable stratification. This contribution can be
important in the case of deep oceans, where the combined effects
of tides and stratification induce important density fluctuations.
However, we shall discuss here the main simplifications assumed
in the model:
• Global ocean of uniform depth – The large scale topo-

graphical features of the oceanic floor and continents are
not taken into account. Because of this spherical symme-
try, the obtained oceanic tidal response is very regular and
exhibits resonances corresponding to global spherical modes
(see e.g. Fig. 5). The case of a hemispherical ocean centred
at the equator was treated in early studies in the shallow-
water approximation (Proudman & Doodson 1936; Doodson
1938; Longuet-Higgins & Pond 1970; Webb 1980). Meridian
continental shelves prevent large-scale gravity waves from
propagating. They thus couple the global gravitational forc-
ing to modes determined by the scale of the basin. This
significantly modifies the aspect of the frequency spectrum
of the tidal response (see e.g. Webb 1980).

• Rayleigh friction – All of the dissipative mechanisms damp-
ing the tidal response are reduced to a single parameter,
the effective Rayleigh coefficient σR. This approximation
is common in the literature (e.g. Webb 1980; Egbert &
Ray 2001, 2003; Ogilvie 2009; Tyler 2011) and assumed
for convenience. In addition to the traditional approxima-
tion, discussed in the following paragraph, it allows us to
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Fig. 6. Imaginary part of the tidal Love number =
{
k2

2

}
associated with the quadrupolar oceanic tide. The logarithm of =

{
k2

2

}
is plotted as a

function of the orbital (horizontal axis) and rotation (vertical axis) periods in logarithmic scale by using Eq. (70) for σR = 10−6 s−1 (bottom) and
σR = 10−5 s−1 (top), and various values of H and N. Horizontally, H = 10 km (left), H = 100 km (middle) and H = 1000 km (right). Vertically,
N = 10−4 s−1 (bottom) and N = 10−5 s−1 (top). Colours correspond to logarithmic decades (colour-bars on the right). The diagonal black dashed
line corresponds to spin-orbit synchronization.

separate the x and θ coordinates in the dynamics. Rayleigh
friction can be reasonably used to describe the drag caused
by small-scale topographical features homogeneously dis-
tributed around the planet, as in the numerical model of
Egbert & Ray (2001). It can also be considered a simplified
approximation of viscous and turbulent frictions if a length-
scale L such that ∆V ∼ V/L2 is introduced. However, it does
not at all model the local dissipation due the breaking of

waves on continental shelves although this effect stands for
the major part of the tidal energy in the case of the Earth.

• Traditional approximation – This simplification is com-
monly used in the literature to solve the latitudinal and
vertical structure of the tidal response separately (e.g. Unno
et al. 1989). It consists in neglecting the latitudinal com-
ponent of the rotation vector in the Coriolis acceleration.
This means that we ignore both the radial component of the
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Fig. 7. Tidal torque associated with the Lunar quadrupolar oceanic tide. The logarithm of T is plotted as a function of the orbital (horizontal axis)
and rotation (vertical axis) periods in logarithmic scale by using Eq. (72) for σR = 10−6 s−1 (bottom) and σR = 10−5 s−1 (top), and various values of
H and N. Horizontally, H = 10 km (left), H = 100 km (middle) and H = 1000 km (right). Vertically, N = 10−4 s−1 (bottom) and N = 10−3 s−1 (top).
Colours correspond to logarithmic decades (colour-bars on the right). The diagonal black dashed line corresponds to spin-orbit synchronization.

Coriolis force and the horizontal component of the Corio-
lis force associated with radial motions. Consequently, this
approximation is appropriate to 2D models, where vertical
motions are negligible relative to horizontal ones. In the case
of deeper oceans, its domain of applicability depends on the
hierarchy of the inertia (2Ω), Brunt–Väisälä (N), and forc-
ing (σ) frequencies. In the super-inertial asymptotic regime
(|2Ω| � |σ|), the forcing time scale is small compared to the
rotation period, which makes the traditional approximation
appropriate. However, when this condition is not satisfied,
motions are fully tridimensional in the case of a neutrally

stratified ocean (N ≈ 0). This requires one to use 3D (2D if
solutions ∝ eimϕ are assumed) numerical or semi-analytical
methods (see e.g. Ogilvie & Lin 2004). The Archimedean
force acts as a restoring force on fluid particles in the verti-
cal direction. Therefore, if this restoring force is sufficiently
strong, it prevents vertical motions from being comparable in
amplitude to horizontal ones. This condition is expressed as
|2Ω| � N (e.g. Auclair-Desrotour et al. 2017a). The validity
of the traditional approximation has been examined in vari-
ous fluid layers, from planetary oceans and atmospheres (e.g.
Gerkema & Shrira 2005; Gerkema & Zimmerman 2008) to
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stellar interiors (e.g. Mathis 2009; Tort & Dubos 2014; Prat
et al. 2017).

• Solid rotation – As we consider in our model that the oceanic
layer rotates uniformly with the planet at the angular veloc-
ity Ω, we ignore the complex interplay existing between
tidal waves and mean flows (e.g. Favier et al. 2014; Guenel
et al. 2016). By studying the propagation of internal gravity
waves in a shear flow, Booker & Bretherton (1967) showed
that the amplitude of oscillations is attenuated by a fac-
tor depending on the local Richardson number of the fluid,
Ri = N2 |dV0/dr|−2 (where V0 stands for the velocity vec-
tor of the shear flow), as waves pass through a critical
level at which their horizontal phase speed is equal to the
zonal velocity of the flow. By this mechanism, tidal waves
can transfer horizontal momentum to mean flows, which
modifies the tidal response.

• Free-surface boundary condition – In this work, a free-
surface boundary condition is used to derive analytic solu-
tions. This condition corresponds well to the case of external
oceanic layers, where the upper surface can move freely.
However, it is not appropriate to subsurface oceans such as
those presumedly hosted by Europa-like icy satellites (e.g.
Khurana et al. 1998; Kivelson et al. 2002). In order to study
these objects, results obtained in this work can easily be
applied to the case of a rigid lid by replacing for instance the
standard free-surface condition by a rigid-wall condition.

• Coupling with the solid part – In order to simplify the anal-
ysis, the solid part of the planet has been considered as a
sphere of infinite rigidity. In reality, the solid part behaves
as a visco-elastic body (e.g. Efroimsky 2012) forced both
by the tidal potential and the loading induced by the tidal
distortion of the ocean. This solid-fluid coupling affects the
frequencies given by Eq. (77) and generates an additional
coupling between tidal modes (e.g. Matsuyama 2014). We
simply ignored this coupling so that we did not need to
consider the parameters of the solid response.

7. Conclusion

To better understand the tidal response of the deep global oceans
potentially hosted by recently discovered extrasolar planets, we
developed a linear model reducing the physics of tides to the
essentials. Our approach evolves from the traditional 2D mod-
elling inherited from the study of the Earth’s oceans to include
3D effects resulting from the properties of the oceanic ver-
tical structure. Particularly, it introduces the contribution of
internal gravity waves induced by the stable stratification and
takes into account dissipative mechanisms with a Rayleigh drag,
following the early work by Webb (1980). Hence, we wrote
the equations describing the tidal response of a deep ocean
in the general case, as well as the associated tidal torque,
Love numbers, and quality factor. We then simplified these
equations in the framework of the thin-layer approximation to
compute an analytic solution. This solution was finally used to
explore the domain of parameters. We first treated the cases
of idealized Earth and TRAPPIST-1 f planets to constrain the
Rayleigh coefficient (σR) and illustrate asymptotic regimes. In
a second phase, we examined in a systematic way the depen-
dence of the tidal Love number and torque associated with the
semidiurnal tide on the ocean depth (H) and Brunt–Väisälä
frequency (N).

In the thin layer limit, we recover the behaviour identified by
early studies (e.g. Longuet-Higgins & Pond 1970; Webb 1980).

The tidal response is composed of resonant surface inertial-
gravity modes due to the conjugated effects of gravity and
rotation. In this case, the role played by stratification is negli-
gible. The fluid compressibility can affect the tidal response in
the high-frequency range, where horizontally propagating Lamb
modes can be excited. The importance of the role played by the
stratification grows with the ocean depth. The stable stratification
allows internal gravity waves to propagate. It induces inter-
nal density fluctuations characterized by a frequency-resonant
behaviour, similar to surface gravity waves. The contribution
of this component is not negligible in the case of deep oceans
and sensitively increases the evolution timescales of the planet-
perturber system.

Although the linear analysis developed in this work is
simplified with respect to numerical models, it provides a
very convenient way to explore the broad domain of plane-
tary parameters and unravel the complex dynamics of oceanic
tides with a reasonable computational cost and few physical
control parameters. These analytical results can be used in
the future as benchmark validations for fully 3D GCM tidal
studies. A next step should be to introduce meridian bound-
aries in the model in order to study the effect of blocking
the progression of the tidal response and thus better character-
ize the role played by continental shelves in the oceanic tidal
dissipation.
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