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SOME INEQUALITIES OF THE TURÁN TYPE FOR

CONFLUENT HYPERGEOMETRIC FUNCTIONS OF THE

SECOND KIND

RAVI BHUKYA, VENKATALAKSHMI AKAVARAM, AND FENG QI

Abstract. In the paper, the authors derive some inequalities of the Turán
type for confluent hypergeometric functions of the second kind, for the Mellin

transforms, and for the Laplace transforms, and improve some known inequal-

ities of the Turán type.

1. Introduction

In 1950, P. Turán [15] proved that the Legendre polynomials Pn(x) satisfy

Pn(x)Pn+2(x)− P 2
n+1(x) ≤ 0

for |x| ≤ 1 and n = 0, 1, 2, . . . , where the equality holds only if x = ±1. An
inequality of this kind is known as an inequality of the Turán type. This classical
inequality has been extended to various special functions. For recent development
on this classical inequality, please refer to [2, 3, 4, 6, 7, 9] and closely related
reference therein.

It is known [1, p. 504–505] that confluent hypergeometric functions of the second
kind ψ(a, c, x) are also known as the Tricomi confluent hypergeometric functions,
are a special solution of Kummer’s differential equation

xy′′(x) + (c− x)y′(x)− ay(x) = 0,

and have the integral representation

ψ(a, c, x) =
1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−xt d t (1.1)

for a > 0, c ∈ R, and x > 0, where

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

is the classical Euler gamma function [11, 12, 13, 14].
The Laplace transform and the Mellin transform of a function f(t) are respec-

tively defined by

L(s) = L (f)(s) =

∫ ∞
0

f(t)e−st d t, s > 0
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and

M(s) = M (f)(s) =

∫ ∞
0

f(t)ts−1 d t.

These transforms are widely-used integral transforms with many applications in
physics and engineering.

In this paper, we will study some Turán type inequalities for confluent hyperge-
ometric functions of the second kind ψ(a, c, x).

2. Inequalities of Turán type

We are now in a position to find some inequality of the Turán type for confluent
hypergeometric functions of the second kind. These newly-founded inequalities
improve existed inequality of the Turán type in [4, Theorem 2].

Theorem 2.1. For x > 0, a > 0, and c ∈ R, we have

ψ2(a+ 1, c, x) <
a+ 1

a
ψ(a, c, x)ψ(a+ 2, c, x). (2.1)

Proof. The equality (1.1) can be reformulated as

f(a) , ψ(a, c, x)Γ(a) =

∫ ∞
0

(
t

1 + t

)a
(1 + t)c−1e−xt

1

t
d t.

Replacing a by αp + (1 − α)q for p, q > 0, p 6= q, and α ∈ (0, 1) and using the
well-known Hölder’s integral inequality give

f(αp+ (1− α)q) =

∫ ∞
0

(
t

1 + t

)αp+(1−α)q

(1 + t)c−1e−xt
1

t
d t

=

∫ ∞
0

[
tp−1(1 + t)c−p−1e−xt

]α[
tq−1(1 + t)c−q−1e−xt

]1−α
<

[∫ ∞
0

tp−1(1 + t)c−p−1e−xt
]α[∫ ∞

0

tq−1(1 + t)c−q−1e−xt
]1−α

= fα(p)f1−α(q).

This implies that the function f is strictly logarithmically convex on (0,∞). Con-
sequently, taking α = 1

2 , p = a, and q = a + 2 leads to f2(a + 1) < f(a)f(a + 2)
which is equivalent to (2.1). The proof of Theorem 2.1 is complete. �

Theorem 2.2. For x > 0, 0 < a1, a2 < a, and c ∈ R, we have

ψ2(a, c, x) <
Γ(a1)Γ(a2)

Γ2(a)
ψ(a1, c, x)ψ(a2, c, x). (2.2)

Proof. We continue to adopt the notation f(a) in the proof of Theorem 2.1. Then

f ′(a) =
d

d a

[∫ ∞
0

(
t

1 + t

)a
(1 + t)c−1

1

t
e−xt d t

]
=

∫ ∞
0

(
t

1 + t

)a
ln

(
t

1 + t

)
(1 + t)c−1

1

t
e−xt d t

< 0.

Since ln
(

t
1+t

)
< 0 for t > 0, the function f(a) is decreasing on (0,∞) with respect

to a. Accordingly, for 0 < a1, a2 < a, we have f(a) < f(a1) and f(a) < f(a2).
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Consequently, it follows that f2(a) < f(a1)f(a2) which is equivalent to (2.2). The
proof of Theorem 2.2 is complete. �

Theorem 2.3. For x > 0, a > 0, and c1, c2 < c ∈ R, we have

ψ(a, c, x)ψ(a, c− 1, x) < ψ2(a, c+ 1, x) < ψ(a, c, x)ψ(a, c+ 2, x) (2.3)

and

ψ(a, c1, x)ψ(a, c2, x) < ψ2(a, c, x). (2.4)

Proof. A straightforward computation yields

ψ′(c) =
1

Γ(a)

d

d c

[∫ ∞
0

ta−1(1 + t)c−a−1e−xt d t

]
=

1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1 ln(1 + t)e−xt d t

> 0.

This means that the function ψ(a, c, x) is increasing with respect to c ∈ R. Hence,
for c1, c2 < c, it follows that ψ(a, c1, x) < ψ(a, c, x) and ψ(a, c2, x) < ψ(a, c, x).
Consequently, we obtain the inequality (2.4).

Taking c1 = c− 1 and c2 = c and replacing c by c+ 1 in (2.4) deduce that

ψ(a, c− 1, x)ψ(a, c, x) < ψ2(a, c+ 1, x).

From this inequality and the inequality ψ2(a, c + 1, x) < ψ(a, c, x)ψ(a, c + 2, x) in
the paper [4], the inequality (2.3) follows immediately. The proof of Theorem 2.3
is complete. �

Theorem 2.4. For x, y > 0, a > 0, p, q > 0 such that 1
p + 1

q = 1, and c ∈ R, we

have

ψ

(
a, c,

x

p
+
y

q

)
< ψ1/p(a, c, x)ψ1/q(a, c, y). (2.5)

Proof. Applying the well-known Hölder integral inequality to the third variable x
in ψ(a, c, x) arrives at

ψ

(
a, c,

x

p
+
y

q

)
=

1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−(x/p+y/q)t d t

=
1

Γ(a)

∫ ∞
0

[
ta−1(1 + t)c−a−1e−xt

]1/p[
ta−1(1 + t)c−a−1e−yt

]1/q
<

[
1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−xt
]1/p[

1

Γ(a)

∫ ∞
0

tq−1(1 + t)c−q−1e−yt
]1/q

= ψ1/p(a, c, x)ψ1/q(a, c, x).

Therefore, the inequality (2.5) is proved. The proof of Theorem 2.4 is complete. �

Theorem 2.5. For x, y > 1 such that 1
x + 1

y ≤ 1, a > 0, p, q > 0 such that
1
p + 1

q = 1, and c ∈ R, we have

ψ

(
a, c,

xp

p
+
yq

q

)
< ψ1/p(a, c, px)ψ1/q(a, c, qy). (2.6)
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Proof. Applying Young’s inequality to the third variable x in ψ(a, c, x) results in

ψ

(
xp

p
+
yq

q

)
=

1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−(x
p/p+yq/q)t d t

≤ 1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−xyt

≤
[

1

Γ(a)

∫ ∞
0

ta−1(1 + t)c−a−1e−pxt
]1/p[

1

Γ(a)

∫ ∞
0

tq−1(1 + t)c−q−1e−qyt
]1/q

= ψ1/p(a, c, px)ψ1/q(a, c, qx).

The inequality (4.3) is thus proved. The proof of Theorem 2.5 is complete. �

Theorem 2.6. For x, y > 0, a > 0, and c ∈ R, we have

ψ2(a, c, x+ y) < ψ(a, c, x)ψ(a, c, y). (2.7)

For x > 0, 0 < y < 1, a > 0, and c ∈ R, we have

ψ(a, c, x+ y) < ψ(a, c, xy). (2.8)

Proof. It is easy to see that the function ψ(a, c, x) is decreasing with respect to
x ∈ (0,∞). Since x < x+ y and y < x+ y, it follows that ψ(a, c, x+ y) < ψ(a, c, x)
and ψ(a, c, x+ y) < ψ(a, c, y). This means the inequality (2.7).

Similarly, the inequality (2.8) follows readily. The proof of Theorem 2.6 is com-
plete. �

3. Inequalities of Turán type for Mellin transform

Now we discover an inequality of the Turán type for the Mellin transform.

Theorem 3.1. For s > 0, the Mellin transform M(s) satisfies

F 2(s+ 1) ≤ F (s)F (s+ 2). (3.1)

Proof. Applying the Hölder integral inequality finds that

M(αp+ (1− α)q) =

∫ ∞
0

f(t)tαp+(1−α)q−1 d t

=

∫ ∞
0

[
f(t)tp−1

]α[
f(t)tq−1

]1−α
d t

≤
[∫ ∞

0

f(t)tp−1 d t

]α[∫ ∞
0

f(t)tq−1 d t

]1−α
= Mα(p)M1−α(q).

This means that the Mellin transform M(s) is strictly logarithmically convex on
(0,∞). Further letting α = 1

2 , p = s, and q = s + 2 in the above inequality leads
to the inequality (3.1). The proof of Theorem 3.1 is complete. �

Example 3.1. Entry 17.43.26 in [8] states that

M1(s) = M (cosech(x)) = 2(1− 2−s)Γ(s)ζ(s), s > 1.

By Theorem 3.1, it follows readily that

M2
1 (s+ 1) ≤M1(s)M1(s+ 2).
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After some simplification we acquire

ζ2(s+ 1) ≤
(
s+ 1

s

)[
(1− 2−s)(1− 2−s−2)

(1− 2−s−1)2

]
ζ(s)ζ(s+ 2), s > 1

which improves the Turán type inequality for the zeta function in [9].

Example 3.2. Entry 6.3.8 in [10] states that

M2(s) = M
(
e−ax(1− e−x)−1

)
= Γ(s)ζ(s, a), s > 0, a > 0.

By Theorem 3.1, we derive

M2
2 (s+ 1) ≤M2(s)M2(s+ 2).

After some simplification we acquire

ζ2(s+ 1, a) ≤ s+ 1

s
ζ(s, a)ζ(s+ 2, a), s > 1, a > 0. (3.2)

When a = 1 in (3.2), we recover the Turán type inequality in [9].

4. Inequalities of Turán type for Laplace transform

Finally we find out an inequality of the Turán type for the Laplace transform.

Theorem 4.1. The Laplace transform L(s) satisfies

L2(s+ 1) ≤ L(s)L(s+ 2), s > 0. (4.1)

Proof. By the Hölder integral inequality, we have

L(αp+ (1− α)q) =

∫ ∞
0

f(t)e−(αp+(1−α)q)t d t

=

∫ ∞
0

[
f(t)e−pt

]α[
f(t)e−qt

]1−α
d t

≤
[∫ ∞

0

f(t)e−pt d t

]α[∫ ∞
0

f(t)e−qt d t

]1−α
= Lα(p)L1−α(q).

In other words, the Laplace transform L(s) is strictly logarithmically convex on
(0,∞). Specially, setting α = 1

2 , p = s, and q = s+ 2 in the above inequality leads
to (4.1). The proof of Theorem 4.1 is complete. �

Example 4.1. Entry 4.15.29 in [10] states that

L3(s) = L
(
(1− e−t)ν/2Jν(a(1− e−t)1/2)

)
= Γ(s)

(
2

a

)s
Jν+s(a)

for s > 0, a > 0, ν > −1, where Jµ(z) denotes Bessel’s functions. By Theorem 4.1,
it follows that

L2
3(s+ 1) ≤ L3(s)L3(s+ 2)

which can be reformulated as

J2
ν+s+1(a) ≤ s+ 1

s
Jν+s(a)Jν+s+2(a) (4.2)

for s > 0, 1 > a > 0, and ν > − 1
2 .

When taking ν = 0 and replacing s by s − 1 for s ≥ 1 in (4.2), we derive an
upper bound of the Turán type inequality in [5, Eq. (2.3)] for 0 < a < 1.
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Example 4.2. Entry 4.3.11 in [10] reads that

L4(s) = L (t2 − a2)ν−1/2 =
1√
π

Γ

(
ν +

1

2

)(
2a

s

)ν
Kν(as) (4.3)

for s, a > 0 and ν > − 1
2 , where Kµ(z) denotes modified Bessel’s functions. By

Theorem 4.1, it follows that

L2
4(s+ 1) ≤ L4(s)L4(s+ 2)

which can be rewritten as

K2
ν (a(s+ 1)) ≤

[
s2 + 2s+ 1

s(s+ 2)

]ν
Kν(as)Kν(a(s+ 2))

for s, a > 0 and ν > − 1
2 .

Remark 4.1. Many other Turán type inequalities can be obtained for functions
whose Laplace and Mellin transforms exists. In particular, we can prove some
Turán type inequalities for the gamma, beta, extended beta, hypergeometric, error,
and compliment error functions.
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