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We address the Cauchy problem for a nonlinear Schrödinger equation where the dispersion is modulated by a deterministic noise. The noise is understood as the derivative of a self-affine function of order H ∈ (0, 1). Due to the self-similarity of the noise, we obtain modified Strichartz estimates which enables us to prove the global well-posedness of the equation for L 2 -supercritical nonlinearities. This is an occurence of regularization by noise in a purely deterministic context.

Introduction

In this paper, we wish to study the following type of nonlinear Schrödinger equation i∂ t ψ(t, x) = ∆ψ(t, x) Ẋt + λ|ψ| 2σ ψ(t, x), (t, x)

∈ [0, 1] × R d , ψ(0, •) = ψ 0 ∈ L 2 (R d ), (1) 
where σ ∈ R + , λ ∈ R, X is a deterministic continuous function. This type of nonlinear Schrödinger equation modulated by a time-dependent function has been introduced in [START_REF] Duboscq | Applications of nonlinear fiber optics[END_REF], with d = 1, to model the electric field of a light pulse travelling in an optical fiber with dispersion management. In a standard optical fiber, the electric field of a light pulse can be described as a soliton whose evolution is governed by a nonlinear Schrödinger equation (i.e. Equation [START_REF] Duboscq | Applications of nonlinear fiber optics[END_REF] with Ẋ = 1). When propagating in the fiber, due to the dispersion, the soliton spreads and becomes difficult to detect since its amplitude decreases. This is a major issue when one wants to use optical fibers as communication devices. Since it is impossible to build fibers without dispersion, one way to avoid this problem is to engineer optical fibers with a dispersion varying rapidly around zero: these are called dispersion managed optical fibers.

By considering a random dispersion management, Marty [START_REF] Marty | On a splitting scheme for the nonlinear schrödinger equation in a random medium[END_REF] derived a nonlinear Schrödinger equation with white noise dispersion, that is Equation [START_REF] Duboscq | Applications of nonlinear fiber optics[END_REF] with Ẋ = Ẇ where W is a Wiener process. In [START_REF] De Bouard | The nonlinear schrödinger equation with white noise dispersion[END_REF], de Bouard and Debussche proved that such equations are well-posed when the nonlinearity is L2 -subcritical, i.e. σ < 2/d. Subsequently, Debussche and Tsutsumi improved this result to the L 2 -critical case σ = 2/d in [START_REF] Debussche | 1d quintic nonlinear schrödinger equation with white noise dispersion[END_REF]. Then, in [START_REF] Belaouar | Numerical analysis of the nonlinear schrödinger equation with white noise dispersion[END_REF], Belaouar, de Bouard and Debussche conducted numerical experiments and conjectured that the critical nonlinear parameter should be σ = 4/d. In [START_REF] Chouk | Nonlinear pdes with modulated dispersion i: Nonlinear schrödinger equations[END_REF], Chouk and Gubinelli studied a nonlinear Schrödinger equation modulated by a noise understood as the derivative of a (ρ, γ)-irregular function and solved the Cauchy problem in the L 2 -critical case. Let us mention that, up to now, the only examples of (ρ, γ)-irregular functions are fractional Wiener processes (see [START_REF] Catellier | Averaging along irregular curves and regularisation of odes[END_REF]). Finally, in [START_REF] Duboscq | On a stochastic hardy-littlewood-sobolev inequality with application to strichartz estimates for the white noise dispersion[END_REF], the author and Réveillac showed that, in the context of the white noise dispersion, the equation is well-posed for σ < 4/d, that is for L 2 -supercritical nonlinearities.

Since most of these result handle L 2 -critical and supercritical nonlinearities, this indicates the strong stabilizing effect of dispersions modulated by a noise. This is reminiscent of the well-known regularization by noise effect (see [START_REF] Flandoli | Random Perturbation of PDEs and Fluid Dynamic Models: École d?été de Probabilités de Saint-Flour XL-2010[END_REF] for a survey) which is characterized by the improvement of the well-posedness of an evolution equation when introducing noise in it. This effect was originally discovered in the context of SDEs by Zvonkin in [START_REF] Zvonkin | A transformation of the phase space of a diffusion process that removes the drift[END_REF] where he was able, thanks to the Wiener process, to remove the singular drift from the equation and, thus, prove the Cauchy problem. This phenomenon was then generalized [START_REF] Veretennikov | On strong solutions and explicit formulas for solutions of stochastic integral equations[END_REF][START_REF] Krylov | Strong solutions of stochastic equations with singular time dependent drift[END_REF][START_REF] Davie | Uniqueness of solutions of stochastic differential equations[END_REF] and also extended to the realm of SPDEs [START_REF] Flandoli | Well-posedness of the transport equation by stochastic perturbation[END_REF][START_REF] Da Prato | Strong uniqueness for stochastic evolution equations in hilbert spaces perturbed by a bounded measurable drift[END_REF][START_REF] Gubinelli | Regularization by noise and stochastic burgers equations[END_REF][START_REF] Gess | Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws[END_REF]. Let us remark that, to our knowledge, there is no explicit example of deterministic noise providing a regularization by noise effect.

Our main motivation to study Equation ( 1) is to prove that there can be a regularization effect by a deterministic noise for modulated nonlinear Schrödinger equations. Here, we investigate the case where X is a self-affine function. This choice is motivated by the fractal property of these functions and the possibility of constructing explicit examples of them (see [START_REF] Kamae | A characterization of self-affine functions[END_REF][START_REF] Bertoin | Sur la mesure d'occupation d'une classe de fonctions self-affines[END_REF][START_REF] Okamoto | A remark on continuous, nowhere differentiable functions[END_REF]). Since X is not differentiable, it is difficult in general to give a meaning to noise term Ẋ from Equation (1), whereas, in the Wiener setting, it is possible to employ Itô or Stratonovich's integration. Hence, as in [START_REF] Chouk | Nonlinear pdes with modulated dispersion i: Nonlinear schrödinger equations[END_REF], we rather consider the mild formulation of Equation ( 1), which is given by

ψ(t, x) = P 0,t ψ 0 (x) -iλ t 0 P s,t |ψ| 2σ ψ(s, x)ds, ∀(t, x) ∈ [0, 1] × R d , (2) 
with (P s,t ) 0≤s≤t≤1 the propagator associated to the linear operator of (1). That is, we have,

∀s, t ∈ [0, 1], with s ≤ t, ∀ϕ ∈ C ∞ 0 (R d ) and ∀x ∈ R d , P s,t ϕ(x) := F -1 e i|ξ| 2 (Xt-Xs) φ(ξ) (x) = 1 (4π(X t -X s )) d/2 R d e i |x-y| 2 4(X t -Xs) ϕ(y)dy, (3) 
where we denote F -1 the inverse Fourier transform and φ the Fourier transform of ϕ.

In order to solve the Cauchy problem of Equation (2), we investigate Strichartz estimates to apply a fixed-point argument. This is the classical strategy for this type of nonlinear dispersive equations [START_REF] Cazenave | Semilinear schrödinger equations[END_REF]. Our argument somehow follow the one from [START_REF] Duboscq | On a stochastic hardy-littlewood-sobolev inequality with application to strichartz estimates for the white noise dispersion[END_REF] in the sense that we start by deriving a modified Hardy-Littlewood-Sobolev inequality adapted to our situation. The regularization effect will take its roots in this new inequality and mainly relies on the scaling invariance of self-affine functions. From there, the Strichartz estimates are directly obtained by the usual T T * method [START_REF] Keel | Endpoint strichartz estimates[END_REF].

The rest of the paper is organized as follows: in Section 2 we introduce the class of self-affine functions that we consider and describe our main results, in Section 3 we derive the Strichartz estimates associated to modulated dispersion and finally, in Section 4, we solve the Cauchy problem associated to Equation (2).

Self-affine functions and main results

Let us start by recalling the definition of self-affine functions. Here, we follow the definition given by Kamae in [START_REF] Kamae | A characterization of self-affine functions[END_REF]. Definition 1. Let (X t ) 0≤t≤1 be a continuous real-valued function such that X 0 = 0 and X = 0, and b ∈ N such that b ≥ 2. We say that X is a self-affine function of order H ∈ (0, 1] and base b if there exists a finite set of real-valued functions

Y X = (Y (m) t ) 0≤t≤1 1≤m≤N , N ∈ N, such that 1. for any n ∈ N and j ∈ {0, • • • , b n -1}, there exists Y ∈ Y X such that X j+t b n -X j b n = b -Hn Y t , ∀t ∈ [0, 1], (4) 

for any

m ∈ N, k ∈ {0, • • • , b m -1} and Y ∈ Y X , there exists integers n and i with m ≤ n and kb n-m ≤ i < (k + 1)b n-m ,
such that (4) holds.

Throughout this paper, we will consider a specific subset of self-affine functions that satisfy the following assumption.

Assumption 1. Let X be a self-affine function. There exists a constant C > 0 such that

min n∈N,j∈{0,••• ,b n -1} b Hn |X j+t b n -X j b n | = C -1 .
(

) 5 
Remark 1. This assumption is required to prove Theorem 4 below since it prevent singularities in the study of the discretized inequality.

Notation 1. We denote A the set of self-affine functions that satisfy Assumption 1.

In order to prove that A is not empty, we provide below a class of functions that belongs in A and that were introduced in [START_REF] Bertoin | Sur la mesure d'occupation d'une classe de fonctions self-affines[END_REF]

]. Let a, b ∈ N such that 2 ≤ a < b and M, D ∈ C([0, 1]) two functions from [0, 1] to itself such that 1. M (0) = D(1) = 0 and M (1) = D(0) = 1,

M and D are affine functions on each interval

[jb -1 , (j + 1)b -1 ] with j ∈ {0, • • • , a -1}, 3. |M ((j + 1)b -1 ) -M (jb -1 )| = |D((j + 1)b -1 ) -D(jb -1 )| = a -1 .
We now consider the sequence (X (n) ) n≥0 ⊂ C([0, 1]) of functions constructed by following the procedure

1. X (1) = M , 2. for any n ≥ 1, for any j ∈ {0, • • • , b n -1} and any t ∈ [jb -n , (j + 1)b -n ], we define X (n+1) (j+t)b -n := X (n) jb -n + a -n M (t), if X (n) is increasing on [jb -n , (j + 1)b -n ] and X (n+1) (j+t)b -n := X (n) jb -n -a -n (1 -D(t)), if X (n) is decreasing on [jb -n , (j + 1)b -n ].
We have the following result concerning the limiting function constructed this way.

Theorem 1. (see [START_REF] Bertoin | Sur la mesure d'occupation d'une classe de fonctions self-affines[END_REF]) The sequence (X (n) ) n≥0 converges in C([0, 1]) to a function X which is self-affine of order H = log(b)/ log(a) and base b.

We can see that, for any n ∈ N * , X (n) is a linear interpolation of X and that the assumption (5) is satisfied since, for any

j ∈ {0, • • • , b n -1}, a n |X (j+1)b -n -X jb -n | = 1.
Remark 2. In order to illustrate this construction, we present in Figure 1 two examples of such functions.

Let us now introduce the following definition which is a modification of the standard admissible pairs for Strichartz estimates. Definition 2. For any (q, p) ∈ (2, ∞) 2 and H ∈ (0, 1), we say that (q, p) is H-admissible if

2 q = dH 1 2 - 1 p .
We can now state our first main result on the dispersive properties of the propagator P defined in [START_REF] Bertoin | Sur la mesure d'occupation d'une classe de fonctions self-affines[END_REF]. Theorem 2. Let T ∈ (0, 1], X ∈ A of order H ∈ (0, 1) and (q, p) H-admissible. Then, there exists two constants C 1 , C 2 > 0 which depends on d, p and q such that, ∀f ∈ L 2 (R d ) and ∀g ∈ L r ([0, T ]; L l (R d )), the following inequalities holds

P 0,• f L q ([0,T ];L p (R d )) ≤ C 1 f L 2 , (6) 
T 0 P s,• g(s)ds L q ([0,T ];L p (R d )) ≤ C 2 g L r ([0,T ];L l (R d )) , (7) 
for any (r, l) H-admissible.

Thanks to the dispersive estimates of Theorem 2 and by a standard fixed point argument, we can solve the Cauchy problem for Equation [START_REF] Belaouar | Numerical analysis of the nonlinear schrödinger equation with white noise dispersion[END_REF]. Thus, we have the next theorem.

Theorem 3. Let X ∈ A of order H ∈ (0, 1), ψ 0 ∈ L 2 (R d ) and σ < 2
dH . There exists a unique solution ψ ∈ L r ([0, 1]; L 2σ+2 (R d )) to Equation (2) where r is such that (r, 2σ + 2) is H-admissible.

We can see that the order of the self-affine function X directly affects the bound on the exponent of the nonlinearity. More precisely, since the order of H is representative of the regularity of X, the more X is irregular the bigger is the critical exponent of the nonlinearity. Remark 3. We remark that this type of result is similar, in a sense, to [4, Theorem 1.9], where Catellier and Gubinelli prove that, for a SDE driven by a fractional Brownian motion of Hurst parameter H, there exists a solution if the drift belongs to C α with α > 1 -1/2H. Thus, a rougher fractional Brownian motion gives a stronger regularization effect.

We finally note that it would be interesting to investigate ODE driven by self-affine functions and, in a larger sense, to look out for an explicit examples of regularization by noise in ODE.

Strichartz estimates for the modulated dispersion

A Hardy-Littlewood-Sobolev inequality

Our first step toward the proof of Theorem 2 is to deduce the following modified Hardy-Littlewood-Sobolev inequality (see [START_REF] Hardy | Some properties of fractional integrals[END_REF][START_REF] Hardy | Some properties of fractional integrals. ii[END_REF][START_REF] Sobolev | On a theorem of functional analysis[END_REF] for the classical Hardy-Littlewood-Sobolev inequality).

Theorem 4. Let X ∈ A of order H ∈ (0, 1], α ∈ (0, 1) and f ∈ L p ([0, 1]) and g ∈ L q ([0, 1]) such that p, q ∈ (1, ∞) and

2 -αH = 1 p + 1 q .
Then, there exists a constant C > 0 which depends on p and q such that the following inequality holds

1 0 1 0 f (t)|X t -X s | -α g(s)dsdt ≤ C f L p ([0,T ]) g L q ([0,T ]) . (8) 
Proof. First, without loss of generality, we can assume that f and g are positive functions and, by a density argument, that they are continuous. For any n ≥ 1 and j, k such that 0 ≤ j, k ≤ b n , we consider two uniform discretizations of [0, 1] given by

t (n) j := j b n and s (n) k := k b n .
Furthermore, we consider the following approximations at the points t

(n) k 0≤k≤b n
1. f and g by the step functions f (n) and g (n) , 2. X by a linear interpolation X (n) .

We now introduce the following approximation of the integral on the left-hand-side of (8), that is

I (ε,n) = b n -1 j=0 b n -1 k=0 f t (n) j g s (n) k t (n) j+1 t (n) j s (n) k+1 s (n) k |X (n) t -X (n) s | + ε -α dsdt. (9) 
In order to obtain (8) from this integral, we need to prove that, up to a constant, it is bounded by the L p -norm of f (n) and the L q -norm of g (n) . Then, we use Fatou's Lemma to let n → ∞ and then the monotone convergence theorem to let ε → 0.

To deduce the desired bound on I (ε,n) , we need to estimate, for any

, k ∈ {0, • • • b n }, the integral ι (ε,n) k, := t (n) k+1 t (n) k t (n) +1 t (n) |X (n) t -X (n) s | + ε -α dsdt.
We directly obtain that ι

(ε,n) k, ≤ ι (0,n) k, := ι (n)
k, , and, moreover, we have the following result.

Lemma 1. Let n ∈ N * and k, ∈ {0, • • • b n }. We have ι (n) k, = 1 (1 -α)(2 -α) t (n) +1 -t (n) X t (n) +1 -X t (n) t (n) k+1 -t (n) k X t (n) k+1 -X t (n) k ∆ (n) ,k |X t -X s | 2-α , where ∆ (n) ,k |X t -X s | 2-α := |X t (n) k+1 -X t (n) | 2-α + |X t (n) k -X t (n) +1 | 2-α -|X t (n) k+1 -X t (n) +1 | 2-α -|X t (n) k -X t (n) | 2-α .
The proof of Lemma 1 is postponed in Section 3.3. Since X is a self-affine function and thanks to (4) and ( 5), we have that there exists Z (1) , Z (2) ∈ Y such that

|X t (n) k+1 -X t (n) k | = b -Hn |Z (1) 1 | ≥ b -Hn C -1 , (10) 
|X t (n) +1 -X t (n) | = b -Hn |Z (2) 1 | ≥ b -Hn C -1 , (11) 
and, moreover, it follows from (4) that there exists η ∈ N N with |η| = k -such that

X t (n) k -X t (n) = b -Hn N j=1 η j Y (j) 1 =: b -Hn δ k, X. Now, assume, for instance, that X t (n) k+1 ≥ X t (n) +1 ≥ X t (n) ≥ X t (n) k
(the other cases follow from similar computations), we obtain, thanks to Taylor-Lagrange's formula,

∆ (n) ,k |X t -X s | 2-α = (X t (n) k+1 -X t (n) +1 ) 2-α + (X t (n) k -X t (n) ) 2-α -(X t (n) k+1 -X t (n) ) 2-α -(X t (n) k -X t (n) +1 ) 2-α = b -Hn(2-α) δ k, X + Z (1) 1 -Z (2) 1 2-α + (δ k, X) 2-α -δ k, X + Z (1) 1 2-α -δ k, X -Z (2) 1 2-α b -Hn(2-α) |Z (1) 1 | b -Hn(2-α) . ( 12 
)
Hence, we deduce from Lemma 1, ( 10), ( 11) and ( 12) that

ι (n) k, b -Hn(2-α) t (n) +1 -t (n) |X t (n) +1 -X t (n) | t (n) k+1 -t (n) k |X t (n) k+1 -X t (n) k | C 2 b Hnα-2n .
We can now proceed to estimate I (ε,n) . Since Hα -2 = -1/p -1/q and thanks to Jensen's inequality, we have

I (ε,n) C 2 b n -1 j=0 b n -1 k=0 f t (n) j g s (n) k b -n(1/p+1/q) C 2   b n -1 j=0 f t (n) j p b -n   1/p b n -1 k=0 g s (n) k q b -n 1/q = C 2 f (n) L p ([0,1]) g (n) L q ([0,1]) ,
which concludes the proof.

Proof of Theorem 2

Thanks to the previous result and by following the T T * method [START_REF] Keel | Endpoint strichartz estimates[END_REF][START_REF] Cazenave | Semilinear schrödinger equations[END_REF], we can now prove Theorem 2. We easily deduce the following preliminary result thanks to the Fourier formulation of (P s,t ) 0≤s≤t≤1 given in (3).

Lemma 2. Let 0 ≤ s ≤ t ≤ 1. We have, ∀ϕ ∈ L 2 (R d ), P s,t ϕ L 2 (R d ) = ϕ L 2 (R d ) , (13) 
Moreover the adjoint of P , denoted P * , is such that, ∀ϕ ∈ L 2 (R d ),

P * s,t ϕ = F -1 e -i|ξ| 2 (Xt-Xs) φ(ξ) = P t,s ϕ,
and, P * 0,s P 0,t = P s,t . It follows from the formulation (3) of P , in the space variables, that, ∀ϕ ∈ L 1 (R d ),

P s,t ϕ L ∞ (R d ) 1 |X t -X s | d/2 ϕ L 1 (R d ) .
Hence, by Riesz-Thorin's theorem, we deduce that, ∀p ∈ [2, ∞], ∀ϕ ∈ L p (R d ),

P s,t ϕ L p (R d ) 1 |X t -X s | d(1/2-1/p) ϕ L p (R d ) . ( 14 
)
where p is the Hölder conjugate of p.

Let T ∈ (0, 1] and (q, p) H-admissible. We now consider the integral, ∀f,

g ∈ C([0, T ], C ∞ 0 (R d )), I(f, g) = T 0 T 0 P 0,t f (s), P 0,s g(t) L 2 dsdt = T 0 T 0 P s,t f (s), g(t) L 2 dsdt
Thanks to Hölder's inequality, [START_REF] Gess | Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws[END_REF] and Theorem 4, we obtain the following inequality, ∀p ∈ (1, ∞),

I(f, g) ≤ T 0 T 0 P s,t f (s) L p (R d ) g(t) L p (R d ) dsdt T 0 T 0 |X t -X s | d(1/2-1/p) f (t) L p (R d ) g(s) L p (R d ) dsdt f L q 1 ([0,T ],L p (R d )) g L q 2 ([0,T ],L p (R d )) ,
where

q 1 , q 2 ∈ (1, ∞) are such that 2 -dH 1 2 - 1 p = 1 q 1 + 1 q 2 .
By taking q 1 = q 2 = q , the previous inequality becomes

2 q = dH 1 2 - 1 p .
Thus, we obtain that

T 0 P * 0,s f (s)ds 2 L 2 (R d ) = I(f, f ) f 2 L q ([0,T ],L p (R d )) , (15) 
and, by a duality argument, we deduce

T 0 P s,• f (s)ds L q ([0,T ],L p (R d )) f L q ([0,T ],L p (R d )) . (16) 
By duality, we have that

P 0,t f L q ([0,T ];L p (R d )) = sup g L q ([0,T ];L p (R d )) =1 T 0 P 0,t f, g(t) L 2 dt ,
and, furthermore, thanks to [START_REF] Gubinelli | Regularization by noise and stochastic burgers equations[END_REF]

, ∀f ∈ L 2 (R d ) and ∀g ∈ L q ([0, T ]; L p (R d )), T 0 P 0,t f, g(t) L 2 dt = f, T 0 P * 0,t g(t) L 2 ≤ f L 2 (R d ) T 0 P * 0,t g(t)ds L 2 (R d ) f L 2 (R d ) g L q ([0,T ],L p (R d )) ,
which gives [START_REF] Chouk | Nonlinear pdes with modulated dispersion i: Nonlinear schrödinger equations[END_REF]. In order to obtain [START_REF] Da Prato | Strong uniqueness for stochastic evolution equations in hilbert spaces perturbed by a bounded measurable drift[END_REF], we remark that, by [START_REF] Gubinelli | Regularization by noise and stochastic burgers equations[END_REF],

T 0 P s,• f (s)ds L q ([0,T ];L p (R d )) ≤ T 0 P s,• f (s) L q ([0,T ];L p (R d )) ds ≤ T 0 f (s) L 2 (R d )) ds = f L 1 ([0,T ];L 2 (R d )) .
Inequality [START_REF] Da Prato | Strong uniqueness for stochastic evolution equations in hilbert spaces perturbed by a bounded measurable drift[END_REF] follows from an interpolation argument between the previous inequality and (16).

Proof of Lemma 1

We remark that we have

X (n) t = X t (n) k + (t -t (n) k )(X t (n) k+1 -X t (n) k )(t (n) k+1 -t (n) k ) -1 ,
and, for any s ∈ [t (n) , t

+1 ],

X (n) s = X t (n) + (s -t (n) )(X t (n) +1 -X t (n) )(t (n) +1 -t (n) ) -1 .
We also remark that, thanks to assumption (5), we have

X t (n) m+1 -X t (n) m = 0,
for any m in {0, • • • , b n }. We now decompose our proof in 3 steps which depend on the following assumptions 1 there exists a (unique)

t * ∈]t (n) , t (n) +1 [ such that X (n) t -X (n) t * = 0. ( 17 
)
2 we have ∀s ∈ [t (n) , t * ], X (n) t -X (n) s ≥ 0. ( 18 
)
Step 1: Assumptions 1 and 2 are verified We have, ∀t ∈ [t

(n) k , t (n) k+1 ], t (n) +1 t (n) |X (n) t -X (n) s | -α ds = t * t (n) |X (n) t -X (n) s | -α ds + t (n) +1 t * |X (n) t -X (n) s | -α ds = t * t (n) (X (n) t -X (n) s ) -α ds + t (n) +1 t * (X (n) s -X (n) t ) -α ds = 1 (1 -α) t (n) +1 -t (n) X t (n) +1 -X t (n) (X (n) t -X t (n) ) 1-α + (X t (n) +1 -X (n) t ) 1-α .
Hence, by denoting, for any

m in {0, • • • , b n }, ζ n,m := t (n) m+1 -t (n) m X t (n) m+1 -X t (n) m , we obtain ι (n) k, = ζ n, 1 -α t (n) k+1 t (n) k (X (n) t -X t (n) ) 1-α + (X t (n) +1 -X (n) t ) 1-α dt = ζ n, 1 -α ζ n,k 2 -α (X t (n) k+1 -X t (n) ) 2-α -(X t (n) k -X t (n) ) 2-α + ζ n, 1 -α ζ n,k 2 -α -(X t (n) +1 -X t (n) k+1 ) 2-α + (X t (n) +1 -X t (n) k ) 2-α . ( 19 
)
Step 2: Assumption 1 is verified and 2 is not If we assume the opposite inequality in [START_REF] Kamae | A characterization of self-affine functions[END_REF], we obtain that

t (n) +1 t (n) |X (n) t -X (n) s | -α ds = 1 (1 -α) t (n) +1 -t (n) X t (n) +1 -X t (n) -(X t (n) -X (n) t ) 1-α -(X (n) t -X t (n) +1 ) 1-α , which leads to ι (n) k, = - ζ n, 1 -α t (n) k+1 t (n) k (X t (n) -X (n) t ) 1-α + (X (n) t -X t (n) +1 ) 1-α dt = ζ n, 1 -α ζ n,k 2 -α (X t (n) -X t (n) k+1 ) 2-α -(X t (n) k -X t (n) ) 2-α + ζ n, 1 -α ζ n,k 2 -α -(X t (n) k+1 -X t (n) +1 ) 2-α + (X t (n) k -X t (n) +1 ) 2-α . ( 20 
)
Step 3: Assumption 1 is not verified Finally, if we assume that there does not exists a t * ∈]t (n) , t

+1 [ such that (17) holds, we compute directly, if

X (n) s ≥ X (n) t for all (t, s) ∈ [t (n) k , t (n) k+1 ] × [t (n) , t (n) +1 ], ι (n) k, = ζ n, 1 -α ζ n,k 2 -α -(X t (n) +1 -X t (n) k+1 ) 2-α + (X t (n) +1 -X t (n) k ) 2-α + ζ n, 1 -α ζ n,k 2 -α (X t (n) -X t (n) k+1 ) 2-α -(X t (n) -X t (n) k ) 2-α . (21) 
and, if

X (n) s ≤ X (n) t for all (t, s) ∈ [t (n) k , t (n) k+1 ] × [t (n) , t (n) +1 ], ι (n) k, = ζ n, 1 -α ζ n,k 2 -α -(X t (n) k+1 -X t (n) +1 ) 2-α + (X t (n) k -X t (n) +1 ) 2-α + ζ n, 1 -α ζ n,k 2 -α (X t (n) k+1 -X t (n) ) 2-α -(X t (n) k -X t (n) ) 2-α . (22) 
Thus, the desired result follows from ( 19), ( 20), ( 21) and ( 22).

The Cauchy problem

With the dispersive estimates from Theorem 2 at hand, we are in position to solve the Cauchy problem of Equation [START_REF] Belaouar | Numerical analysis of the nonlinear schrödinger equation with white noise dispersion[END_REF]. The arguments that we use are standard and are based on a fixed-point strategy (see [START_REF] Kato | On nonlinear schrödinger equations[END_REF][START_REF] Tsutsumi | L2-solutions for nonlinear schrödinger equations and nonlinear groups[END_REF][START_REF] Cazenave | Semilinear schrödinger equations[END_REF]). Let ψ 0 ∈ L 2 (R d ), σ < 2/dH, X ∈ A, r ∈ R such that (r, 2σ + 2) is H-admissible and T > 0. We consider the mapping Γ given by

Γ(ψ)(t, x) = P 0,t ψ 0 (x) -iλ t 0 P s,t |ψ| 2σ ψ(s, x)ds, ∀(t, x) ∈ [0, T ] × R d .
Our goal is to prove that the mapping Γ is a contraction in a closed subspace of L r ([0, T ]; L 2σ+2 (R d )) in order to apply Banach's fixed-point theorem. The existence and uniqueness of a fixed point in L r ([0, T ]; L 2σ+2 (R d )) will then solve the Cauchy problem of Equation [START_REF] Belaouar | Numerical analysis of the nonlinear schrödinger equation with white noise dispersion[END_REF]. The next proposition provides the necessary results to apply Banach's fixed-point theorem. where γ 1 , γ 2 ∈ R + are such that

1 γ 1 + 2σ γ 2 = 1 - 2σ + 2 r .
Since (r, 2σ + 2) is H-admissible and σ < 2/dH, we deduce that

2σ + 2 r = dH 2 σ < 1,
and, hence, 1 -(2σ + 2)/r > 0. Thus, by setting T > 0 small enough to ensure that

2C 2 |λ|T 1-(2σ+2)/r R 2σ < 1, (23) 
this leads to the fact that Γ is a contractive mapping.

Second point: We obtain, thanks to Theorem 2 and Hölder's inequality, ∀ψ ∈ B,

Γ(ψ) L r ([0,T ];L 2σ+2 (R d )) ≤ C 1 ψ 0 L 2 (R d ) + C 2 |λ| |ψ| 2σ+1 L r ([0,T ];L 2σ+2 2σ+1 (R d )) ≤ C 1 ψ 0 L 2 (R d ) + C 2 |λ| ψ 2σ+1 L r (2σ+1) ([0,T ];L 2σ+2 (R d )) ≤ C 1 ψ 0 L 2 (R d ) + C 2 |λ| 1 2σ+1 L γ 3 ([0,T ]) ψ 2σ+1 L r ([0,T ];L 2σ+2 (R d )) ≤ C 1 ψ 0 L 2 (R d ) + C 2 |λ|T 1-2σ+2 r R 2σ+1 ,
where γ 3 ∈ R + is such that 2σ + 1

γ 3 = 1 - 2σ + 2 r .
Inequality [START_REF] Okamoto | A remark on continuous, nowhere differentiable functions[END_REF] then leads to

Γ(ψ) L r ([0,T ];L 2σ+2 (R d )) ≤ C 1 ψ 0 L 2 (R d ) + 1 2 R,
and, thus, by choosing

R = 2C 1 ψ 0 L 2 (R d ) ,
we obtain that B is stable by Γ.

  (a) a = 15, b = 3 and H 0.4. (b) a = 7, b = 5 and H 0.8.

Figure 1 :

 1 Figure 1: Two constructions of a self-affine function following the procedure in [3].
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 1 Denote B R,T the closed ball of radius R > 0 in L r ([0, T ]; L 2σ+2 (R d )). There exists T > 0 and R > 0 such that 1. Γ is a contraction on B R,T , 2. Γ(B R,T ) ⊂ B R,T .Proof. First point: We have, by using Theorem 2 and Hölder's inequality, ∀ψ 1 , ψ 2 ∈ B,Γ(ψ 1 ) -Γ(ψ 2 ) L r ([0,T ];L 2σ+2 (R d )) ≤ C 2 |λ| |ψ 1 | 2σ ψ 1 -|ψ 2 | 2σ ψ 2 L r ([0,T ];L 2σ+2 2σ+1 (R d )) ≤ C 2 |λ|( ψ 1 2σ L r 2σ ([0,T ];L 2σ+2 (R d )) + ψ 2 2σ L r 2σ ([0,T ];L 2σ+2 (R d )) ) × ψ 1 -ψ 2 L r ([0,T ];L 2σ+2 (R d )) ≤ 2C 2 |λ| 1 L γ 1 ([0,T ]) 1 2σ L γ 2 ([0,T ]) R 2σ ψ 1 -ψ 2 L r ([0,T ];L 2σ+2 (R d )) ≤ 2C 2 |λ|T 1-(2σ+2)/r R 2σ ψ 1 -ψ 2 L r ([0,T ];L 2σ+2 (R d )) ,
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