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A Kalman Filter for Linear
Continuous-discrete Systems with

Asynchronous Measurements

Aı̈da Feddaoui∗, Nicolas Boizot†, Eric Busvelle‡and Vincent Hugel§¶‖∗∗††

February 7, 2019

Abstract

This paper investigates an adaptation of the Kalman filter for linear continuous-
discrete system with multi-rate sampled outputs. The contribution of this article
is twofold. First, we prove the exponential convergence of this observer through
the existence of bounds for the Riccati matrix. Second, we highlight a technical
point that allows us, under certain conditions on the sampling procedure, to prove
the stability of the Riccati equation, and show that observability is preserved under
multi-rate sampling. An example with two sensor outputs is given for illustra-
tion. This study can lead to applications in mobile robotics where sensors produce
outputs at different rates and asynchronously.

1 INTRODUCTION
This paper focuses on observers for linear sampled-data systems, i.e. control systems
having continuous state dynamics and a discrete measurement procedure —see e.g.
[12]. In particular, we address the case where only parts of the output vector is available
at a given sample time. This situation arises when the output vector is obtained through
several sensors that do not have the same (possibly non-uniform) sampling rate. Such
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systems, also known as multi-rate sampled-data systems, or asynchronous continuous-
discrete systems are often met in practice, for instance in global positioning problems,
as in [15], or in the field of drone control [7]. Likewise, one can be confronted with
such asynchronous systems in the field of submarine robotics, as can be seen from [2],
[14] and [3].

Since we are considering systems having a non-uniform, multi-rate measurement
procedure, and possibly a time-varying behaviour, the continuous-discrete framework
and the Kalman filter appear as an adequate tool. Indeed, the correction gain of the
Kalman filter is constantly updated, which appears preferable to observers having a
fixed, offline computed, correction gain. Using a Kalman filter to perform such a task
might not appear as a new idea, as it can be seen in e.g. [7, 10, 15]. However, the
present paper’s contribution lies in the fact that we propose a mathematical framework
that allows us to state the problem —and thus write the observer’s equations— and
actually prove its convergence in the deterministic setting.

The main difficulties are, on the one hand, dealing with several subdivisions of time
in order to represent the asynchronous outputs, and on the other hand, proving that
the observer’s Riccati equation is bounded over time. This latter issue is handled by
following the ideas developed in [4], where only the synchronous setting is considered.
Moreover, the present work is done with the purpose of expanding the results to the
nonlinear setting (see e.g. [9, 1]) and high-gain formalism (e.g. [11, 5, 6]).

Two recent articles are also worth mentioning, in which a similar task is performed,
in the linear framework for [16], and in the nonlinear, high-gain setting for [18]. There
are two main differences between the present approach and those two works. First,
they consider observers having a fixed, off-line computed, correction gain, or in other
word, Luenberger-like observers. Second, the two proposed observers are set in the
pure continuous setting, whereas we consider a continuous-discrete setting where the
correction step is performed only when measurements are available.

The remaining of the article is divided into four parts. Section 2 presents the control
system under consideration and the corresponding Kalman filter. Section 3 deals with
the proof of the exponential convergence of this observer. This demonstration heavily
relies on the existence of bounds for the Riccati matrix. The proof of this result is quite
technical and long, and is therefore not detailed in this article. It basically follows the
ideas developed in [4], with an increased complexity coming from the asynchronicity of
the measurements. However, this paper adresses the important issue of the preservation
of observability under multi-rate sampling, which is a necessary condition in order to
bound the Riccati matrix. An academic illustrative example is given in Section 4, and
Section 5 concludes the article.

2 DEFINITION OF THE MULTI-RATE KALMAN FIL-
TER

Throughout this article, we define a time subdivision {tk}k∈N as a strictly increasing
sequence of real numbers with t0 = 0 and tk → ∞ when k → ∞. We denote Id the
identity matrix with appropriate dimensions, |.| is the cardinal of a set, and Mn×m is



the set of (n×m) matrices.

2.1 System Under Consideration
Let {

ẋ(τ) = A(τ)x(τ)+B(τ)u(τ), with x(0) = x0

y(τ) = C(τ)x(τ)
(Σc)

be a linear continuous system where τ ∈ R+, x(τ) ∈ Rn,y(τ) ∈ Rny,u(τ) ∈ Rnu and
A ∈Mn×n, B ∈Mn×nu,C ∈Mny×n . We assume that (Σc) is observable in a classic
sense (see e.g. [20]), that the elements of A(τ), B(τ) and C(τ) are in L∞(R+,R) and
are uniformly bounded by a constant B̃> 0. Moreover, we suppose that all the elements
of C(τ) are derivable at least once and have their derivative bounded over time1.

To this plant, we associate the following linear continuous-discrete system with
asynchronous measurements{

ẋ(τ) = A(τ)x(τ)+B(τ)u(τ), with x(0) = x0

yk = Cσk xk
(Σk

cda)

where,

• to each element of y(τ), denoted2 y(i)(τ) for i ∈ {1, ...,ny}, we associate a time
subdivision {s(i)k }k∈N;

• the subdivision of time {τk}k∈N is defined by

{τk}k∈N :=
ny⋃

i=1

{s(i)k }k∈N,

where elements belonging to several subdivisions {s(i)k }k∈N appear only once;

• σk is a set, and l(i)k is an index defined as follows

σk = {i ∈ {1, ...,ny}|∃ l(i)k ∈ N such that s(i)
l(i)k

= τk};

• xk = x(τk) and yk is defined with the help of the matrix Cσk =


...

C(i)
k
...


i∈σk

, where

C(i)
k is the ith row of C(τk), and therefore y(i)k := C(i)

k xk. In other words, Cσk is
made of the rows of C(τk) corresponding to the outputs measured at time τk, and
yk ∈ R|σk|.

1This condition may appear restrictive but is necessary in order to apply Lemma (5) to a time-varying
matrix C.

2This notation is not ambiguous since we only use order 1 derivatives.



2.2 Kalman Filter
The continuous-discrete asynchronous Kalman filter is defined in two parts for all k ∈
N:

1. two prediction equations defined for τ ∈ [τk−1,τk[, with initial values x̂k−1(+)
and Sk−1(+),

2. two correction equations at time τk.

We denote by

• x̂(t) the estimated state for all τ ∈ [τk−1,τk[,

• x̂k(−) the estimated state at the end of a prediction step and before a correction
step,

• x̂k(+) is the estimated state after a correction step. Note that x̂k(+) is also the
initial estimated state of a new prediction interval [τk,τk+1[.

Prediction equations{
˙̂x(τ) = A(τ)x̂(τ)+B(τ)u(τ)
Ṡ(τ) = −A(τ)′S(τ)−S(τ)A(τ)− (SQS)(τ)

(K1)

Correction equations

x̂k(+) = x̂k(−)

−Sk(+)−1
∑

i∈σk

C(i)
k

′
R(i)

k

−1(
C(i)

k x̂k(−)− y(i)k

)(
s(i)
l(i)k

− s(i)
l(i)k −1

)

Sk(+) = Sk(−)+ ∑
i∈σk

C(i)
k

′
R(i)

k

−1
C(i)

k

(
s(i)

l(i)k

− s(i)
l(i)k −1

) (K2)

In other words, the corrections are made with respect to each output y(i)k actually
available at time τk associated to a weighting factor equal to the time elapsed since the
last time this specific output was measured.

We assume that Q and R are symmetric positive definite matrices, in particular R is
a diagonal matrix3, and both are in compact subsets of the form:

q Id ≤ Q≤ q Id , with 0 < q < q

ri ≤ R(i)
k ≤ ri, with 0 < ri < ri

with R(i)
k being the ith diagonal component of R. Furthermore, we assume as well that

S(0) is a symmetric positive definite matrix chosen inside a compact subset.

Remark 1 Let us note that this formulation is based on the classic continuous-discrete
framework (see e.g. [8, 17, 13]). It is also particularly adapted to the problem here
addressed.

3In fact, this hypothesis can be relaxed when several outputs come from the same sensor. This topic is
raised in the conclusion.



3 PROOFS
The proof of convergence of this observer is quite immediate after proving Lemma 2
below, which gives positive lower and upper bounds for the matrix S(τ). It is actually
close to the Kalman filter’s convergence proof for continuous-discrete systems with
synchronous outputs, which can be found in [5].

For the present case, the main difficulties are, on the one hand, to properly de-
fine the system under consideration and to deal with two types of time subdivisions :
{s(i)k }k∈N for each output y(i), i ∈ {1, ...,ny} and {τk}k∈N. On the other hand, we have
to demonstrate the following lemma:

Lemma 2 Consider the prediction-correction equations (K1) and (K2) with the set of
assumptions on Q, R, S(0), A(τ) and C(τ) given above. Then, there exist constants
µi > 0, i ∈ {1, ...,ny}, and two scalars 0 < α < β , such that, for all subdivisions with(

s(i)k − s(i)k−1

)
≤ µi, k ∈ N,

αId ≤ S(τ)≤ β Id

for all τ ∈ R+, before or after a correction step.
Here, α and β are independent from the chosen subdivisions. Also, the constants µi
are independent from the initial conditions. �

3.1 Convergence of the Kalman Filter
We will prove here that the estimated state x̂(τ) calculated by the Kalman filter (K1)-
(K2) converges to x(τ), the state of (Σk

cda). To this end, let the error signal be defined
as ε(τ) = (x̂− x)(τ), and consider the Lyapunov function V (ε) = (ε ′Sε)(τ).
We calculate:

ε̇(τk) = ( ˙̂x− ẋ)(τ) = A(τ)ε(τ) (1)

εk(+) = x̂k(+)− x(τk)

= x̂k(−)− x(τk)

−Sk(+)−1
∑

i∈σk

C(i)
k

′
R(i)

k

−1(
C(i)

k x̂k(−)− y(i)k

)(
s(i)

l(i)k

− s(i)
l(i)k −1

)
= εk(−)

−Sk(+)−1
∑

i∈σk

C(i)
k

′
R(i)

k

−1
C(i)

k εk(−)
(

s(i)
l(i)k

− s(i)
l(i)k −1

)
This last equation can be rewritten in a more compact form with the help of the fol-

lowing notations. First, let Iσk be the following diagonal matrix —with mk = |σk|:

Iσk :=


s(i1)

l
(i1)
k

− s(i1)
l
(i1)
k −1

0

. . .

0 s
(imk )

l
(imk )
k

− s
(imk )

l
(imk )
k −1





Second, the matrix Rσk is defined the same way as Cσk , and we denote R̄−1
σk

:= R−1
σk

Iσk .
This latter matrix is well defined since Iσk is clearly invertible from the definition of a
time subdivision. The above equation thus can be rewritten:

εk(+) = εk(−)−Sk(+)−1C′σk
R̄−1

σk
Cσk εk(−). (2)

Now, we need to compute the derivative of V (ε) over time, and also the expression of
V (ε) after a correction step.
For τ ∈ [τk−1,τk[ :

d
dτ

V (ε) =
dε ′Sε

dτ

= ε̇
′Sε + ε

′(Ṡε +Sε̇)

= ε
′A′Sε + ε

′(−A′S−SA−SQS)+ ε
′SAε

= −ε
′SQSε.

At time τk, we follow the ideas of [13]:

(ε ′Sε)k(+) = ε
′
k(−)

[
Sk(+)−2C′σk

R̄−1
σk

Cσk

+ C′σk
R̄−1

σk
Cσk Sk(+)−1C′σk

R̄−1
σk

Cσk

]
εk(−) (3)

= ε
′
k(−)

[
Sk(−)−1Sk(+)Sk(−)−1

]−1
εk(−) (4)

where the transition between (3) and (4) is due to (K2) rewritten as:

Sk(+)−Sk(−) =C′σk
R̄−1

σk
Cσk .

Still using (K2)

Sk(−)−1Sk(+)Sk(−)−1 = Sk(−)−1 +Sk(−)−1C′σk
R̄−1

σk
Cσk Sk(−)−1.

The matrix inversion lemma leads to[
Sk(−)−1Sk(+)Sk(−)−1

]−1

=
[
Sk(−)−1 +Sk(−)−1C′σk

R̄−1
σk

Cσk Sk(−)−1]−1

= Sk(−)−C′σk

(
R̄σk +Cσk Sk(−)−1C′σk

)−1 Cσk

Thus 
(ε ′Sε)k(+) = (ε ′Sε)k (−)

−ε ′k(−)C
′
σk

(
R̄σk +Cσk Sk(−)−1C′σk

)−1 Cσk εk(−)
dε ′Sε

dτ
(τ) =−(ε ′SQSε)(τ)

At time τk, the second term of the right hand side expression of (5) is semi-positive
definite, since S(τ) is positive definite for all τ ∈ R+ by Lemma 2. Then

(ε ′Sε)k(+)≤ (ε ′Sε)k(−).



Since
dV
dτ

< 0 is decreasing over [τk−1,τk[ for all k ∈ N, and also after a discrete step,

we conclude that
dV
dτ

< 0 for all τ ∈ R+. As a consequence, ε = (x̂− x)(τ) = 0 is an
asymptotically stable point.

Moreover, this convergence is exponential. Indeed, with the help of Lemma 2:

dε ′Sε

dτ
(τ) = −(ε ′SQSε)(τ)

≤ −α q̄(ε ′Sε)(τ)

ε
′Sε(τ) ≤ (ε ′Sε)(0)e−α q̄τ

‖ε(τ)‖2 ≤ β

α
‖ε(0)‖2e−α q̄τ .

3.2 Stability of the Riccati Equation
The present section is dedicated to the proof of Lemma 2. It follows the ideas exposed
in [4] for synchronous continuous-discrete systems, and expands them to the multi-rate
setting. For the sake of brevity, this quite long proof is not reproduced here. We only
sketch the main ideas, and discuss the main technical differences between the classic
continuous-discrete case and the multi-rate one.

As it is done in [4] —but also in [11] for continuous systems— the existence of
bounds for the Riccati equation is demonstrated in two parts:

1. the proof of the existence of an upper bound;

2. the proof of the existence of a lower bound.

Each part, consists of first exhibiting a bound in small-time, and second, finding a
long-time bound.

The small-time bounds are easily obtained with the help of Gronwall’s lemma.
However, they become useless as time increases, since they come from an exponential
term that increases with time.

The argument used to prove the existence of a long-time bound varies depending
on wether the upper bound or lower bound is considered.

In the first case, the key point is the regularity of the Riccati equation. It requires
a limiting condition on the maximum step size of time subdivisions. However, at this
stage, this condition only applies to the subdivision {τk}k∈N.

In the second case, the long-time lower bound depends on whether or not observ-
ability is preserved under multi-rate sampling. For this purpose, we prove that the
Gramm matrix of (Σk

cda) is always positive definite, provided that each subdivision

{s(i)k }k∈N, i ∈ {1, ...,ny}, has a small enough maximum step size.
In the remaining part of this section, we discuss the following key point mentioned

in the previous paragraph:

Let Gcda(T ) denote the Gramm matrix of the system (Σk
cda), associated to the fixed

time T > 0.



If all the subdivisions {s(i)k }k∈N, i ∈ {1, ...,ny}, have a small enough maximum step
size, then there exists a > 0 such that aId < Gcda(T ).

1. First of all, the Gramm matrix at time T , Gcda(T ) is defined as

Gcda(T ) =
ny

∑
i=1

λ
(i)
k

∑
j=1

ϕ
′
a(s

(i)
j ,T )C(i)

j

′

C(i)
j ϕa(s

(i)
j ,T )(s(i)j − s(i)j−1)

=
ny

∑
i=1

G(i)
cda(T )

where

• the index λ
(i)
k is such that:

λ
(i)
k = max

{
l ∈ N such that s(i)l ≤ T

}
;

• ϕa(t,s) is the resolvent of (Σc), with ϕa(s,s) = Id.

2. Second, let us state the following lemma about continuous systems.

Lemma 3 ([11], Ch. 6) Let Gc(T ) be the continuous Grammian of (Σc) at time
T :

Gc(T ) =
∫ T

0
ϕ
′
a(v,T )C

′
(v)C(v)ϕa(v,T )dv.

If the elements of A(τ) and C(τ) are uniformly bounded in L∞(R+,R) by some
constant B > 0, then there exist two positive scalars 0 < ᾱ < β̄ , that depend on
B and T only, such that

ᾱId ≤ Gc(T )≤ β̄ Id. �

Remark 4 Notice that by the definition of the matrix product,

Gc(T ) =
ny

∑
i=1

G(i)
c (T )

=
ny

∑
j=1

∫ T

0
ϕ
′
a(v,T )C

(i)
′
(v)C(i)(v)ϕa(v,T )dv

In order to use this lemma, let us write:

Gc(T ) = Gc(T )−Gcda(T )+Gcda(T ). (5)

Now, we want to combine Lemma 3 with the fact that Gc(T )−Gcda(T ) can be
made small enough. This is done with the help of the following lemma, which
can be proved using similar arguments as the proof of Lemma 3.11 in [4].



Lemma 5 Let m(t), t ∈ [0,T ], be a (n× n) symmetric matrix, at least differen-
tiable once.

Let µ be a positive constant, and {tk}k∈{0,1,...,k} an arbitrary finite subdivision
of [0,T ], such that t j− t j−1 ≤ µ for all j ∈ N, with t0 = 0 and tk, the maximal
element of this subdivision, is such that T − tk ≤ µ .

We suppose that all the coefficients of m have their derivative bounded over time.
Then ∫ T

0
m(v)dv−

k

∑
j=1

m(t j)
(
t j− t j−1

)
≤ µ (KT +L) Id,

where L = sup
t
‖m(t)‖2, with ‖.‖2 the matrix norm induced by the euclidean norm

and K =
n
2

max
k,l,t

(∣∣∣m′k,l(t)∣∣∣), with m
′
k,l(t) the element of the kth row and lth column

of the matrix m
′
(t). �

3. By lemma 5, there are constants L > 0 and Ki > 0 such that for all i ∈ {1, ...,ny}
, we have at time T :

G(i)
c (T )−G(i)

cda(T )

=
∫ T

0
ϕ
′
a(v,T )C

(i)
′
(v)C(i)(v)ϕa(v,T )dv

−
λ
(i)
k

∑
j=1

ϕ
′
a(s

(i)
j ,T )C(i)

j

′

C(i)
j ϕa(s

(i)
j ,T )(s(i)j − s(i)j−1)

≤ µi(KiT +L)Id (6)

Let us apply Lemma 3 on Gc(T ), using the expression (5) and the inequality (6)
:

αId ≤ Gc(T )

=
ny

∑
i=1

G(i)
c (T )−

ny

∑
i=1

G(i)
cda(T )+

ny

∑
i=1

G(i)
cda(T )

≤
ny

∑
i=1

G(i)
cda(T )+

ny

∑
i=1

µi(KiT +L)Id

It allows us to conclude that:[
ᾱ−

ny

∑
i=1

µi(KiT +L)

]
Id ≤ Gcda(T ).

Finally, by choosing each µi, i∈{1, ...,ny} sufficiently small to make
(
ᾱ−∑

ny
i=1 µi(KiT +L)

)
positive, then, the linear continuous-discrete system with multi-rate outputs (Σk

cda) as-
sociated to (Σc) is observable as soon as it is the case for (Σc).



Figure 1: For proper display purposes, the other graphs are shown on smaller time
windows.

Remark 6 One may think that the definition of the Kalman filter (K1)-(K2) proposed
in this article could be written in more simple terms, especially the sum depending on
the subdivisions {s(i)k }k∈N, i ∈ {1, ...,ny} in (K2). It is unfortunately not the case. Actu-

ally, considering the subdivision {τk}k∈N instead of {s(i)k }k∈N leads, when computing
iteratively Sk(+), either to overlapping intervals of time or disjointed intervals of time.

4 ILLUSTRATIVE EXAMPLE
The behaviour of the Kalman filter defined in (K1)-(K2) is illustrated with the following
autonomous time-varying system, where x(τ) ∈ R4:

ẋ(τ) =


−1 1 0 0
0 cos(t) 0 sin(t)
0 0 −1 1
0 −sin(t) 0 cos(t)

x(τ) (7)

= A(τ)x(τ).

This system is an academic, time-varying, constantly oscillating system, as it is illus-
trated in Figure 1. For simplicity, we do not consider control inputs since, as it is well
known from linear systems control theory, they do not play a critical role.

The output vector y(τ) ∈ R2 is given by:

y(τ) =

(
1 0 0 0
0 0 1 0

)
x(τ) (8)

= Cx(τ).

According to [20, 19] it is immediate to check that the continuous system made of (7)-
(8) is observable4. However, observability is lost as soon as C(τ) is restricted to only
one of its two lines.

4In particular, following the notations of [19], it’s observability index equals 2.



Figure 2: A dot represents a measured output. For the run here displayed, the maximum
step sizes are, 0.48 for {s(1)k }, 0.37 for {s(2)k } and 0.37 for {τk}.

Figure 3: Measured outputs (continuous outputs are shown for information).

In this example, the two outputs y(1)(τ) =C(1)x(τ) and y(2)(τ) =C(2)x(τ) are mea-
sured using non-uniform subdivisions of time. Each one of those two subdivisions are
obtained by randomly modifying a uniform one —starting with an initial period of 0.3
time units for y(1)(t), and 0.25 time units for y(2)(t). This is illustrated in Figure 2
where the three subdivisions {s(1)k }, {s

(2)
k } and {τk} together with the sets σk clearly

appear. The output trajectories are displayed in Figure 3.
We performed a simulation of the proposed observer following the procedure be-

low.
The initial state of the system is x(0) = (1,−1,1,−1). The initial state of the

observer is set to x̂(0) = (−3,4,−5,6). The matrices Q and R, are simply equal to
identity.

In order to select a good initial value for the Riccati matrix, we first run the ob-
server with S(0) = Id, while forcing the error term to 0 in the correction equations.
This procedure provides a stabilised Riccati matrix, which is used as S(0) to run our
experiment.

Finally the results of this simple simulation are displayed in Figure 4.



Figure 4: Convergence of the estimated state toward the real state.

5 CONCLUSIONS AND FUTURE WORKS
In this paper, an adaptation of the Kalman filter to continuous-discrete systems with
multi-rate sampled outputs has been proposed. To this end, each correction step in-
volves a weighted sum of the output errors calculated on the basis of the measurements
available at this sample time. Moreover, we showed the observability of (Σk

cda) pro-
vided that (Σc), the associated continuous system, is observable.

Some improvements are left for the future. To begin with, we plan to consider
ns the number of sensors instead of ny the number of outputs. Two different outputs
correspond to the same sensor if their associated subdivisions of time are the same.
By doing so, larger R(i) sub-matrices can be considered and cross-correlations between
outputs delivered by a same sensor can be taken into account.

Furthermore, the presence of redundant sensors can lead to an improved version of
Lemma 2. Indeed, the maximum step size condition on the time subdivision of a given
sensor could be relaxed provided there is an active redundant sensor.
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