
HAL Id: hal-01701827
https://hal.science/hal-01701827v1

Submitted on 6 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving the Flight Radius Problem
Assia Kamal Idrissi, Arnaud Malapert, Rémi Jolin

To cite this version:
Assia Kamal Idrissi, Arnaud Malapert, Rémi Jolin. Solving the Flight Radius Problem. 7th Interna-
tional Conference on Operations Research and Enterprise Systems (ICORES 2018), Jan 2018, Funchal,
Portugal. pp.304-311, �10.5220/0006654003040311�. �hal-01701827�

https://hal.science/hal-01701827v1
https://hal.archives-ouvertes.fr

Solving the Flight Radius Problem

Assia Kamal Idrissi1, Arnaud Malapert2 and Rémi Jolin1
1 Milanamos, 1047 route des Dolines, Sophia Antipolis, France

2 Université Côte d’Azur, CNRS, I3S, France
{assia.elafouani, remi.jolin}@milanamos.com, arnaud.malapert@unice.fr

Keywords:
Flight Radius Problem, Airline Schedule Design, Shortest Path Algorithms, Regret.

Abstract:
In this article, we present the flight radius problem on the condensed network. This problem
consists of locating in the network what routes represent business opportunities that are attractive
regarding time or cost criteria, and passing through a specific flight. We introduce a regret function
to model the regret compared to the optimal value of such criteria. We work with a startup
company specialized in air transportation. The company has developed a decision tool for airline
managers to analyze and simulate a new market. Our problem is derived from this application.
Thus, we start by formulating the problem as finding a maximal sub-graph such as for each node,
there exists a valid path by the regret function. Then, we propose two methods for solving the
problem. One using procedures of the graph database Neo4j where the condensed network is
stored. The second one is a new algorithm based on Dijkstra algorithm. Finally, we have been
able to report results on a set of real-world instances, based on different (OD) pairs and various
values of the regret, studying the impact of considering different combinaison of node’s type: Hub
& Spoke.

1 INTRODUCTION

The air transportation industry has evolved
rapidly over the last years. The growth of air pas-
senger demands has pushed airlines to enhance
their quality of service. The airlines should focus
on the route network development which is con-
sidered as the initial problem addressed by the
airlines. It aims to determine a set of routes to
be operated in an airline’s network. It takes pas-
sengers demand, airport, aircraft characteristics,
and then generate a set of origin-destination pairs
(OD) to serve, the schedule design problem aims
to define the frequency and departure time of each
flight.

Airlines have the choice to create a new route
to serve a new destination, this new route pro-
vides connecting traffic to other flights, or to in-
crease/decrease the frequency of existing routes.
The first requires the route network development
problem and the schedule design problem which
demand a lot of investment. While in the sec-
ond, the airline network already exists. The prob-
lem of allocating a new flight is related to these

problems. The problem consists of determining a
set of (OD) pairs to serve and then choose flight
schedules with respect to the quality of service
index (QSI) model. QSI is a market share model
used by most of airlines to estimate their part
of the market (Jacobs et al., 2012). We define
a flight by three attributes: Origin-Destination
(OD) pair (an OD pair is a couple of airports),
arrival/departure time and aircraft type. We dis-
tinguish between three different types of flights:
A non-stop flight is a single flight with no inter-
mediate stops. In the absence of such flights, pas-
sengers must take either a direct flight or a con-
necting flight. A direct flight is operated by the
same aircraft and includes at least one stop. A
connecting flight is a flight where passengers have
to change of the aircraft in a hub. A route is
a sequence of flights with unique flight numbers
that begins at the origin airport and ends at the
destination airport (Hall, 2012).

The problem of allocating a new flight evokes
design and visualization of the airline’s network.
However, the network is so large that it cannot
be visualized. Thus, we proposed the flight ra-

dius problem which is related to the route net-
work development problem. This problem con-
sists in showing only interesting airports with re-
spect to a specific flight regarding the QSI crite-
ria. Cost and time are the major QSI criteria of
this model. Besides, the regret criterion is com-
pared to the optimal time or optimal cost. The
main idea of the flight radius problem is to locate
in the network what routes, passing through a
specific flight, and represent business opportuni-
ties that are attractive to the passengers accord-
ing to different preferences. The choice depends
on the passengers since they have different prefer-
ences over the criteria, and type of flight is one of
these criteria. For this reason, these preferences
should be taken into consideration in this prob-
lem; it is modeled by the regret function. The
function aims to model the regret compared to
the optimal value of cost or time. The visual-
ization is a simple way to remove the irrelevant
routes. Since the airline network exists already,
our aim is to filter the network and keep only im-
portant routes passing through this flight. For
this reason, we omit the schedule design by work-
ing on the condensed network (see section 4). In
such network, we just consider the transfer time
without checking if the route is viable. Hence,
for an airline managers, what is the relevant sub-
network related to a given flight? What are the
passengers origins and destinations?

The flight radius problem is formulated as a
problem of finding a maximal subgraph in terms
of nodes. We constructed the condensed flight
network from the company flight database us-
ing the time-independent approach and stored it
in Neo4j the graph database since the current
database presents some limits (Neo4j, 2017). The
problem can be solved using the shortest path
algorithms to find the maximal subgraph of the
graph. The output subgraph contains paths that
are longer than the shortest path with a certain
regret, and passing through the specific arc. In
this paper, we propose an algorithm to solve the
problem of flight radius. This problem is derived
from the application developed by the company
that has developed a decision tool for airline man-
agers to analyze and simulate a new market us-
ing QSI models. We are interested to simulate a
new market. Given a specific flight, the process
starts by finding important airports whose routes
pass by the specific flight in terms of QSI criteria,
and then estimate market share for each route.
The solution proposed is to reduce the number of
routes before applying QSI models.

This paper is organized as follows. Sec-
tion 2 introduces some definitions of graph the-
ory. Then, introduction of flight timetables.
In Section 3, we review related work of the
air scheduling problems, transportation networks,
and shortest path algorithms. Section 4 describes
the condensed network. Section 5 gives our for-
mulation of the flight radius problem, and its
properties. Section 6 describes methods proposed
to solve the flight radius problem. Section 7 is
dedicated to experiments.

2 PRELIMINARIES

Graph Theory. A graph G is a tuple G =
(V,E) consisting of a finite set V of nodes or
vertices and a set E ⊆ V ×V of arcs which are
ordered pairs (u,v) if the graph is directed. The
node u is called the tail of the edge, and v is called
the head. Each arc (u,v) ∈ E has an associated
non-negative weight w(u,v). The reversed graph
#»G = (V,

#»E) is the graph obtained from G by sub-
stituting each edge (u,v)∈E by (v,u). We define
|V | = n, the order of the graph as the number
of nodes meanwhile |E| = m its size. In a di-
rected graph, the arcs point from one node to an-
other. For instance, airline networks are weighted
directed graphs where the weights represent the
prices or the duration of the flight. A direct flight
from one city to another does not necessarily im-
ply that there is also a direct return flight. A
sub-graph G′ = (V ′,E′) of a graph G where V ′ is
a subset of V and E′ is a subset of E. A path
is a sequence of nodes {v1,v2, ...,vk} such that
for each 1 ≤ i < k condition (vi,vi+1) ∈ E holds.
If additionally v1 = vk, then the path is a cycle.
The length of a path is the sum of its edge weights
along the path and is denoted by:

l(P) :=
k−1∑
i=1

w(vi,vi+1).

By extension, we define l?(s, t) for a given pair of
vertices, the length of the shortest path starting
at s and ending at t. A path in G is called ele-
mentary if no vertex occurs more than once. A
graph G is connected if there exists a path join-
ing any two vertices. A transportation network
should be a connected graph.

Flight Timetables. In this study we restrict to
flight networks that rely on timetables. A flight
timetable is defined by a tuple (C,A,F ,T) where

A is a set of airports, F is a set of flights, T is
the periodicity of the timetable, and C is a set
of elementary connections. An elementary con-
nection c ∈ C is a tuple c = (f,o,d, ts, te) which
represents flight f ∈F departing from the airport
o ∈A at ts < T and arriving at the airport d ∈A
in time te < T . Concretely, an elementary con-
nection corresponds to an event in the timetable.
A passenger trip (c1, c2, . . . , cn−1, cn) is a sequence
of elementary connections, with the origin of an
elementary connection the same as the destina-
tion of its predecessor in the sequence, and the
elapsed time between two successive connections
at least as great as the minimum connecting time:

o(ci+1) = d(ci)∧ te(ci) +MCT (d)≤ ts(ci+1)
∀1≤ i≤ n−1

Where MCT is the minimum connecting time at
the destination airport d(ci).

The condensed network is generated from the
flight timetable where nodes represent airports
meanwhile the presence of an arc indicates that
there exists at least one elementary connection
between two airports. Each arc is constructed by
aggregating all elementary connections between
each pair of airports (see section 4).

3 RELATED WORK

Air Scheduling Problems. The air schedul-
ing development problem has been broken, in
practice, into several subproblems (Barnhart and
Cohn, 2004). This is due to its very large-scale
nature. Thereby, the route network development,
schedule design, fleet assignment, aircraft rout-
ing, and crew scheduling are the five facets of the
air scheduling development optimization prob-
lems (Rebetanety, 2006).
Route network development : deciding

which set of origin-destination pairs to serve.
Schedule design : defining the frequency of

each flight.
Fleet assignment : specifying the type and the

size of aircraft serving each flight in a given
schedule.

Aircraft routing : determining feasible air-
craft routes under maintenance and time con-
straints.

Crew scheduling : assigning crews to flights.

Shortest Path Algorithms. There are two
categories of shortest path algorithms: Setting
algorithms and correcting algorithms. Shortest

path algorithms are based on labeling method for
solving the shortest path problem. For each node
v, the method maintains a distance label d(v)
which is an upper bound on the shortest path
length to the node v, parents P (v), and status
S(v). we have three status : unreached, labeled,
and scanned. Initially for each node v, d(v) = inf ,
P (v) = nil, and S(v) = unreached. Then, the
algorithm starts by scanning labeled nodes until
there does not exist such node. The two types
of algorithms differ in the strategy of selecting
labeled nodes to be scanned (Cherkassky et al.,
1996). DIJKSTRA’s algorithm is the most know
setting algorithm and works with positive weight
arcs. In DIJKSTRA’s algorithm, the principle
is to select a node with the minimum weight at
each iteration, and then each node is scanned at
most once. That leads to a complexity of O(n2)
as time bound in the worst case (Ahuja et al.,
1993) where n is the number of nodes. There are
many versions of DIJKSTRA’S algorithm with
the aim of improving this time bound by trying
different data structures and several implementa-
tions of the algorithm (Ahuja et al., 1993). In
some applications of the shortest path problem,
we want uniquely to determine the shortest path
between two nodes. BIDIRECTIONAL DIJKSTRA’s
algorithm solves the problem of finding the
shortest path between two nodes faster since it
eliminates some unnecessary computations. Be-
sides, BELLMAN-FORD-MOORE which is known as a
correcting shortest path algorithm. It achieves
the best currently know bound of time with nega-
tive weight arcs O(nm) where m is the number of
edges. The algorithm maintains the set of labeled
nodes in a FIFO queue and allows detecting neg-
ative cycle in a weighted directed graph. Unlike
DIJKSTRA’S algorithms where we need to find
minimum value of all vertices, in Bellman-Ford,
arcs are considered one by one. The next node
to be scanned is removed from the head of the
queue; a node that becomes labeled is added to
the tail of the queue. The algorithm performs at
most n− 1 passes through arcs. Since each pass
requires O(1) computations for each arc, this con-
clusion implies O(nm) time bound for the algo-
rithm.

4 CONDENSED NETWORK

The condensed network is generated from a
NoSQL database and stored it in Neo4j the graph
database using a time-independent approach. It

is one of the most popular graph databases where
queries can easily be expressed through Cypher
query language. Neo4j is used in many use cases,
typically recommendation systems and complex
networks like transportation network. In Neo4j,
data are represented in nodes, relationships, and
properties. Both nodes and relationships contain
properties (Robinson et al., 2015). A relationship
connects a pair of nodes, it has a direction, type,
a start node, and an end node. In the company’s
database, data are collected and queried monthly
then it makes sense to create a relationship per
period which is a month of the year. the rela-
tionship represents flight information. We dis-
pose of historical data about the last fifteen years.
The current database used is a MongoDB database
that stored data in a disconnected way. This
database does not use a graph structure. There-
fore, we opt for the graph database Neo4j as an-
other alternative database to overcome the limits
of the existing database (Neo4j, 2017). Neo4j
uses a graph structure that regroups data and
allows visualizing what happens in the network
when creating a new route or deleting an ex-
isting route. Furthermore, this graph database
performed well on the graph traversal since our
study is based on such algorithms (Holzschuher
and Peinl, 2014). The graph database Neo4j of-
fers the possibility to implement algorithms as
user defined procedures to call in Cypher query.
That is can be easy to use it by the final user.
Indeed, Neo4j proposed APOC (Awesome Pro-
cedures on Cypher) as stored procedures that re-
group a list of procedures. Graph algorithms are
part of these procedures namely some shortest
path algorithms. Once the database is chosen,
we proceed to model the graph. The model takes
into account the transfer time. It is represented
by a relationship in the graph. This technique is
often used to model the information about trans-
fer since it is important in computing shortest
paths. The figure below illustrates the condensed
graph in Neo4j. The graph contains four airports
and four flight arcs. Nodes in thin style repre-
sent departures (origin nodes), dashed nodes for
arrival nodes (destination nodes). Double edge
is transferring time meanwhile bold edges model
flight time. Besides, dotted edges for arrivals and
dashed edges for departures.

NCE

d1

o1

BKK

o2

d2

PEK

o3

d3

BOM

o4

d4

year month

year month

co
n
n
ec
t
toali

gh
t a

t

board at

bo
ar
d a

t

alight at

ali
gh
t a

t

board at

ye
ar

mo
nt
h

con
n
ect

to

year month

bo
ar
d a

t

alight at

co
n
n
ec
t
to

Figure 1: Model of condensed flight network in Neo4j.

Thus, the condensed graph was generated for 1
year and has 33,901 nodes and 562,294 relation-
ships.

5 PROBLEM FORMULATION

The flight radius problem consists in retriev-
ing only relevant routes passing through a spe-
cific flight, and satisfying the regret function. The
flight considered is represented by an arc (o,d) in
the graph where o,d∈A. Then, we are interested
in retrieving paths passing by the arc (o,d) that
could be relevant regarding the regret defined for
the time and cost criteria. In other words, travel-
ing from o1 ∈A to d1 ∈A by passing through the
arc (o,d) may be interesting if and only if the path
{o1, ..,o,d, ..,d1} between o1 and d1 is accepted
by the regret function. This function depends on
the shortest path between o1 and d1. Let R be
a Boolean regret function defined on paths of the
graph G. Therefore, the problem consists in find-
ing a maximal sub-graph, in terms of nodes, such
that each node supports a path accepted by the
regret function R.

Hence, the problem is formulated as follows:
Input a graph G = (V,E), the arc (o,d), and the

regret function R
Output a maximal subset E′ ⊆ E such that

G′= (V ′,E′) is a sub-graph of G and that each
node supports a path passing through the arc
(o,d) accepted by the regret function.

In this paper, we use the regret function R to
identify what paths are supported. Let’s define
what the regret function R is. Let w(i, j) be the
weight of the arc (i, j) and let l?(i, j) be the length
of the shortest path from i to j. Let l(i, j) the
length of a path passing through the arc (o,d),
and let consider the following regret function de-
fined for each criterion:

R+
od(i, j) = l(i, j)≤ l?(i, j) +K

Where K ≥ 0. Each node must support at least
a valid path by the regret function. Then, we are
looking for retrieving paths that satisfied at least
one criterion.

The flight radius problem consists in finding
valid paths by the regret function R. These paths
depend on finding shortest path. Most traditional
path finding are based on shortest path finding:

l(i, j)≥ l?(i,o) +w(o,d) + l?(d,j) (1)
In other words, following the shortest path

from i to o, passing by the arc (o,d), and then
following the shortest path from d to j is always
a valid path if it exists. The subpath from o to j
of a valid path is also valid.

l?(i,o) +w(o,d) + l?(d,j)≤ l?(i, j) +K

≤ l?(i,o) + l?(o,j) +K

w(o,d) + l?(d,j)≤ l?(o,j) +K

Reciprocally, the subpath from i to d is valid.

l?(i,o) +w(o,d) + l?(d,j)≤ l?(i, j) +K

≤ l?(i,d) + l?(d,j) +K

l?(i,o) +w(o,d)≤ l?(i,d) +K

Finally, the search can be restricted to shortest
valid paths starting from o or ending at d.
Lemma 5.1. Let p be a valid path, all the nodes
belong to G′. For any shortest path p from o to j
in G. If it passes through by d then it is a valid
path and consequently j is going in the subgraph
G′.

The subpath of the shortest path is also a
shortest path (Ahuja et al., 1993). Consequently,
nodes j represent set of nodes that support paths
accepted by the regret function.

In the following, we focus on solving the part
of finding the subpath from o to each vertex j.

6 SOLVING METHODS

6.1 A Query-Based Solution

In the earlier section, we proved that the
search of valid paths can be restricted to find-
ing valid shortest paths. The problem was
solved in Cypher query using the algorithm
BIDIRECTIONAL DIJKSTRA implemented in Neo4j
as a procedure in APOC (Larsson, 2008). In

Neo4j, we use a parametrized query. The pa-
rameters are: o code and d code to specify o and
d, rel to identify type of relationship to traverse,
criterion for time or cost, and K determines
the regret.

The query described in 1 contains three ma-
jor blocks. The first block of the query includes
the first three lines. The MATCH clause is used to
match the graph pattern which is the arc (o,d)
using the supplied parameters. The second block
contains the call of the algorithm. Then, the pro-
cedure DIJKSTRA is called from the origin o to all
other airports A in the graph in order to find the
shortest path in terms of time, and finally gets
the shortest paths from the destination d. The
second WITH clause is to aggregate outputs of the
first procedure. . Thus, calling the second proce-
dure DIJKSTRA in the second block would execute
the procedure for every row. The final block be-
gins by the UNWIND clause to disaggregate previ-
ous aggregate outputs. Meanwhile, the last WITH
clause filters the set of paths according to the re-
gret function.

6.2 An Algorithmic Solution

As the problem deals with two criteria, the algo-
rithm starts by considering one criterion and then
moves to the second one using at each step infor-
mation from the previous step. The flight radius
algorithm starts by computing the shortest path
tree from o and checks if the arc (o,d) exists in the
shortest path tree of o (lemma 5.1). After finding
the shortest path tree (line 2 of Algorithm 1), we
check valid shortest paths passed via d (line 3 of
Algorithm 1). This step corresponds to the step
(1) in Figure 2. The next step (2) is to compute
the shortest path from d. In this step, we get two
information: length of the shortest path for one
criterion l?1(d,j) and an upper bound for the sec-
ond criterion l2(d,j). Once we retrieve supported
paths for the first criterion. We move to the sec-
ond criterion and repeat the same process. The
third step (step (3) in Figure 2) is more similar
to the first. The another case where paths do not
pass through d, we can use the upper bound com-
puted in the previous step. We check if the regret
function is satisfied for all nodes i∈ Vs, set of non
supported nodes (line 16 of Algorithm 1). We ap-
plied the same process for the remaining non sup-
ported nodes to get the shortest path tree from
d. To do this, we use a second algorithm, called
RevisitedDijkstra. The algorithm represents
the Dijkstra’s algorithm (Ahuja et al., 1993)

1 MATCH p=(Td:Destination)-[:ALIGHT_AT]->(o:Airport{code:{o_code}})-[:‘BOARD_AT‘]->(To:Origin)-[r
]->(d:Destination{code:{d_code}}),(A:Destination)

2 WHERE NOT A IN [d,Td] AND type(r) = {rel}
3 WITH r.duration_min-{K} AS LB,To,d,A
4 CALL apoc.algo.dijkstra(To,A,{rel}+’>|CONNECT_TO>’,{criterion}) YIELD path AS p1,weight AS w1
5 WITH DISTINCT A,collect(w1) AS W1,LB,d
6 CALL apoc.algo.dijkstra(d,A,{rel}+’>|CONNECT_TO>’,{criterion}) YIELD path AS p2, weight AS w2
7 UNWIND W1 AS w1
8 WITH w1-w2 AS diff,LB,A WHERE diff>=LB
9 RETURN DISTINCT A

Listing 1: CYPHER query

including the regret function. The algorithm at
each iteration scans the node with the minimum
label and then relax its neighbors. So, we check
before if it satisfies the regret function otherwise
we move to the next. Since all arc weights are
nonnegative then Dijkstra’s algorithm finds
the shortest path in order of increasing distance.
For this reason, we use this manner to quickly
remove non supported nodes. Figure 2 describes
the steps of the flight radius algorithm.

(1)
Criterion 1

V

o

d

I1
l?1(o, j)

(2)
Criterion 1
I1, l?1(o, j)

d

o

I2
l?1(d, j)

l2(d, j)

(3)
Criterion 2
V, l2(d, j)

o

d

I3
l?2(d, j)

I3 = I3 \ I′2

(4)
Criterion 2
I3, l?2(o, j)

d

o

I4 V ′

branching
jump

Figure 2: Flight radius algorithm steps.

7 EXPERIMENTS

In this section, we describe experiments on the
flight radius problem. We start by evaluating the
performance for solving the flight radius problem
using a query. After that, we compare the result
with those obtained using the algorithm in the
case of one criterion. We measure information of
the order of the output subgraph and the percent-
age of nodes filtered with various value of the pa-
rameter K. Those values are chosen randomly ac-
cording to different statistic metrics. Specifically,
we address the following questions: How sensi-
tive is flight radius algorithm’s performance on
the real graph to the choice of parameter K? How
does an algorithm’s performance when adding a
second criterion? How does the choice of one pa-

rameter K influence the order of the subgraph?
All the experiments were led on a computer

running on Ubuntu 16.04.2 with 32 GB of RAM
and one Intel Core i7-3930K 3.20GHz processors
(6 cores). The implementation is based on Neo4j
and APOC version 3.2.0.1.

Test Instances. Tests on real-world data were
realized on the database of the company. To test
the method based on a query, we use 6 instances
for the problem, each one of them represents a
flight with a different type of airport: hub &
Spoke and using different value of the parameter
K of one criterion. This parameter is chosen ac-
cording to the minimum connection time MCT ,
and the median of each criterion. We compute
the value of the parameter K according to the
median, the first quartile, and the third quartile.
In this way, we can measure the spread to describe
the variability in each criterion with conjunction
with the median as a measure of central tendency.
In the case of criterion cost, K2 is chosen indepen-
dently to the minimum connection time MCT .
Setting K to zero, for example, means that the
subgraph contains all the shortest paths passing
through the arc studied (o,d). On the contrary,
setting K to a high value implies that the sub-
graph contains all nodes of the condensed graph.
Note that the MCT is set to 120 minutes. Be-
sides, we generate 100 instances that include for
each pair of (OD) generated randomly, 10 tests
with different classes of two criteria.

Problem with one criterion. Tests have been
run on existing flights between various airports in
terms of degree. We apply the query for only one
criterion since it takes a lot of time to solve the
whole problem. We run tests on the time cri-
terion. Table 1 gives the results of testing both
methods. # nodes : the order of output sub-
graph. Dur: flight duration of the arc studied,
the parameter K1 fixed for each test, and the

Algorithm 1: Flight radius algorithm (FRA)
procedure : FRA (set of nodes V , node o,node d, parameter K)
input : A digraph G = (V,A,W), arc (o,d), parameter K1, parameter K2
output : Subgraph G′ = (V ′,E′)
1 Vs← V ;
2 T1← Dijkstra(o,V,W1);// Apply Dijkstra algorithm for the first criterion (step (1))
3 Vs← V \dChecking(d,T1);// Check paths passing through d
4 if Vs == ∅ then
5 break
6 else
7 {Vs,T2}← RevisitedDijkstra(d,Vs,W1,W2,T1,K1);
8 if Vs == ∅ then
9 break

10 else
11 T2← Dijkstra(o,Vs,W2);
12 Vs← V \dChecking(d,T2);
13 if Vs == ∅ then
14 break
15 else
16 Vs← V \ UBChecking {Vs,T2,T2}; // Check with upper bound
17 if Vs == ∅ then
18 break
19 else
20 {Vs,T1}← RevisitedDijkstra(d,Vs,W1,W2,T2,K2);
21 end
22 end
23 end
24 end
25 forall v,w ∈ V \Vs with e = (v,w) ∈ E do
26 E′← E′

⋃
e;

27 end
28 G′ = (V ′ = V \Vs,E′);

percentage of nodes filtered. ExecT1 presents
the running time of the first method whereas Ex-
ect2 is for the second method. The running time
of method based on a query is very important.
Neo4j Implements bidirectional Dijkstra’s algo-
rithm. So, the algorithm is repeated for each pair
of nodes individually to find the shortest path
from a node to all other nodes. Thus, many com-
putations are repeated. However, our problem
used the single-source shortest path algorithm.
So, we are seeking to return the shortest path
tree; that is, the shortest path from source to all
nodes. But the result returned is a list of paths.
That means, in terms of spatial complexity, the
sum of the length of the n paths selected is bound
by n2 in the case of multiple runs of single-source
shortest path algorithms rather than n paths in
the case of three returned with n the number
of nodes in the graph. The time complexity is
O(n× (m + n logn)) as it runs multiple times as
the order of the graph. In the worst case. The
query runs in 57 minutes whereas, the algorithm
takes only 2321 ms. Therefore, the algorithm out-
performs the query.

Problem with two criteria. Table 2 gives the
result of running the flight radius algorithm with
two criteria. The percentage of supported nodes
increases as we add a second criterion. Even with
zero regret, the percentage is at least twice than
the percentage in one criterion case. For the in-
stance 1 and 6, the subgraph contains all short-
est paths passing by these flights: (NCE, DXB)
and (AMS,IST) for both criteria time and cost.
In the instance 2, 3, and 4, the regret is chosen
respectively to quartiles: Q1, Q2, and Q3.

Table 3 gives the average running time as a
function of classes of parameter K1 and K2. The
average running time increases slightly when both
value increase. The algorithm runs in the best
case when the parameter K1 is set to a value
greater than the third quartile which represents
75 % of flight duration whereas K2 is setting to
zero. In the worst case, the algorithm runs twice
than in the best case. It is achieved when we
swap both values. It comes back to the choice
of the parameter K1 since it is computed in re-
lation with the minimum connection time MCT .
Then, the algorithm is influenced by the second
parameter.

Table 1: Comparaison between two methods.

Instance Flight Dur (min) K1(min) # nodes Percentage of V ExecT1 (min) ExecT2 (ms)
1 NCE → DXB 360 0 287 2.5 % 53 2321
2 JFK → NCE 490 198 156 1.3 % 51 1127
3 CDG → SCL 870 245 56 0.49 % 55 696
4 LHR → ATL 565 330 771 6.82 % 51 786
5 FRA → PEK 550 198 416 3.68 % 53 736
6 AMS → IST 195 0 65 0.57 % 57 693

Table 2: Time needed to solve the flight radius problem with two criteria.

Instance Dur (min) K1(min) K2(usd) # nodes Percentage of V ExecT (ms)
1 360 0 0 1200 10.62 % 3604
2 490 198 17.0 590 5.22 % 1657
3 870 245 42.98 479 4.23 % 1597
4 565 330 96.14 1424 12.60 % 1906
5 550 198 17.0 933 8.25 % 1742
6 195 0 0 477 4.22 % 1554

Table 3: Average running time in function of regret
classes.

Class cost
Class time 0 1 2 3

0 1573.6 1590.4 1657.2 2354.8
1 1783.2 1677.0 1759.4 2246.0
2 1877.8 2007.3 1928.1 2248.0
3 1367.0 2271.5 1484.1 1491.5

8 CONCLUSION

This work presents the flight radius problem.
We formulated the problem as finding a maxi-
mal subgraph, in terms of nodes, such that each
node supports a valid path by the regret func-
tion. To represent the regret function, we focused
in the additive case. In the multiplicative case,
the problem seems to be hard to simplify since
the regret parameter K depends on the shortest
path. Then, we presented two methods to solve
the problem. Method using procedures of Neo4j
the graph database where the condensed graph
is stored and, the method based on a new algo-
rithm that relies on Dijkstra algorithm. Studied
instances in this article were realized on the real-
world network. The algorithm outperforms the
query method and the choice of the parameter
K influences the running time of the algorithm.
Latter, we aim to test the algorithm on bench-
marks graphs to test the performance when the
topology changes. Also, we aim to test another
shortest path algorithms which is Bellman-Ford
since it takes O(nm) in the worst case and paths
in flight network are characterized by small length
in terms of number of arcs. Thus, we would like
to compare its performance on the flight radius

problem compared to Dijkstra algorithm.

REFERENCES

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B.
(1993). Network flows: theory, algorithms, and
applications. Prentice hall.

Barnhart, C. and Cohn, A. (2004). Airline sched-
ule planning: Accomplishments and opportuni-
ties. Manufacturing & service operations man-
agement, 6(1):3–22.

Cherkassky, B. V., Goldberg, A. V., and Radzik, T.
(1996). Shortest paths algorithms: Theory and
experimental evaluation. Mathematical program-
ming, 73(2):129–174.

Hall, R. (2012). Handbook of transportation science,
volume 23. Springer Science & Business Media.

Holzschuher, F. and Peinl, R. (2014). Performance
optimization for querying social network data.
In EDBT/ICDT Workshops, pages 232–239.

Jacobs, T. L., Garrow, L. A., Lohatepanont, M., Kop-
pelman, F. S., Coldren, G. M., and Purnomo, H.
(2012). Airline planning and schedule develop-
ment. In Quantitative Problem Solving Methods
in the Airline Industry, pages 35–99. Springer.

Larsson, P. (2008). Analyzing and adapting graph
algorithms for large persistent graphs. Master’s
thesis.

Neo4j (2017). https://www.neo4j.com.
Rebetanety, A. (2006). Airline schedule planning in-

tegrated flight schedule design and product line
design. University Karlsruhe (TH). PhD thesis.

Robinson, I., Webber, J., and Eifrem, E. (2015).
Graph databases: new opportunities for con-
nected data. ” O’Reilly Media, Inc.”.

