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. We prove also that this condition is sharp in the sense that, if it is not satisfied, I g 4π (Ω) may have no extremal.

Introduction

Let Ω be a smooth, bounded domain of R 2 and let H 1 0 = H 1 0 (Ω) be the standard Sobolev space, obtained as the completion of the set of smooth functions with compact support in Ω, with respect to the norm • H 1 0 given by u 2

H 1 0 = Ω |∇u(x)| 2 dx .
Throughout the paper, Ω is assumed to be connected. Let g be such that g ∈ C 1 (R) , lim s→+∞ g(s) = 0 , g(t) > -1 and g(t) = g(-t) for all t ,

(see also Remark 1.2). Then, we have that C g,α (Ω) := sup

u∈H 1 0 : u 2 H 1 0 ≤α Ω (1 + g(u)) exp(u 2 ) dx (I g α (Ω))
is finite for 0 < α ≤ 4π and equals +∞ for α > 4π. This result was first obtained by Moser [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] in the unperturbed case g ≡ 0. Still by [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF], we easily extend the g ≡ 0 case to the case of g as in (1.1). At last, [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] gives also the existence of an extremal for (I g α (Ω)) if 0 < α < 4π (see Lemma 3.1). If now α = 4π, getting the existence of an extremal is more challenging; however Carleson-Chang [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF], Struwe [START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF] and Flucher [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF] were also able to prove that (I 0 4π (Ω)) admits an extremal in the unperturbed case g ≡ 0. Yet, surprisingly, McLeod and Peletier [START_REF] Mcleod | Observations on Moser's inequality[END_REF] conjectured that there should exist a g as in (1.1) such that (I g 4π (Ω)) does not admit any extremal function. Through a nice but very implicit procedure, Pruss [START_REF] Pruss | Nonexistence of maxima for perturbations of some inequalities with critical growth[END_REF] was able prove that such a g does exist. Observe that, since g(u) → 0 as u → +∞ in (1.1), (1 + g(u)) exp(u 2 ) in (I g α (Ω)) sounds like a very mild perturbation of exp(u 2 ) as u → +∞ and then, this naturally raises the following question: Question 1. To what extent does the existence of an extremal for the critical Moser-Trudinger inequality (I 0 4π (Ω)) really depend on asymptotic properties of the function t → exp(t 2 ) as t → +∞ ?

To investigate this question, we may rephrase it as follows: for what g satisfying (1.1) does (I g 4π (Ω)) admit an extremal? This is Open problem 2 in Mancini and Martinazzi [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], stated in this paper for Ω = D 2 , the unit disk of R 2 . In order to state our main general result, we introduce now some notations. For a first reading, one can go directly to Corollary 1.1, which aims to give a less general but more readable statement. We let H : (0, +∞) → R be given by

H(t) = 1 + g(t) + g ′ (t) 2t , (1.2) 
so that we have [(1 + g(t)) exp(t 2 )] ′ = 2tH(t) exp(t 2 ) .

(1.3)

We set tH(t) = 0 for t = 0, so that t → tH(t) is continuous at 0 by (1.1). This function H comes into play, since the Euler-Lagrange associated to (I g α (Ω)) reads as ∆u = λuH(u) exp(u 2 ) in Ω , u = 0 in ∂Ω ,

where λ ∈ R is a Lagrange multiplier and ∆ = -∂ xx -∂ yy (see also Lemma 3.1 below). Now, we make some further assumptions on the behavior of g at +∞ and at 0. First, we assume that there exist δ 0 ∈ (0, 1) and a sequence of real numbers A = (A(γ)) γ such that (1.5)

In a) of (1.5) and of (1.6), γ is a parameter and the C 0 loc ([0, +∞)) convergence is in the t variable. We also assume that there exist δ ′ 0 ∈ (0, 1), κ ≥ 0, ε0 ∈ {-1, +1}, F given by F (t) := ε0 t κ , and a sequence B = (B(γ)) γ of positive real numbers such that a)

t γ H t γ = B(γ)F (t) + o(|B(γ)| + γ -1 ) in C 0 loc ((0, +∞) t ) , as γ → +∞ , b) ∃C > 0 , t γ H t γ ≤ C(|B(γ)| + γ -1 )exp(δ ′ 0 t)
for all γ ≫ 1 and all 0 ≤ t ≤ γ 2 .

(1.6)

Observe that we may have B(γ) = o(γ -1 ) as γ → +∞, in which case the precise formula for F is not really significant. Since t → (1 + g(t)) exp(t 2 ) is an even C 1 function, we have that lim γ→+∞ B(γ) = 0 , (1.7) in view of (1.3) and (1.6). Following rather standard notations, we may split the Green's function G of ∆, with zero Dirichlet boundary conditions in Ω, according to G x (y) = 1 4π log 1 |x -y| 2 + H x (y) (1.8) for all x = y in Ω, where H x is harmonic in Ω and coincides withlog 1 |x-•| 2 in ∂Ω. Then the Robin function x → H x (x) is smooth in Ω, and goes to -∞ as x → ∂Ω, so that we may set M = max 

where F is as in (1.6). For N ≥ 1, we let g N be given by

(1 + g N (t)) exp(t 2 ) = (1 + g(t))(1 + t 2 ) + (1 + g(t)) +∞ k=N +1 t 2k k! , (1.10) 
so that g N ≤ g, g N (0) = g(0) for all N ≥ 1, while g = g N for N = 1. We also set Λ g (Ω) := max

u∈H 1 0 : u 2 H 1 0 ≤4π Ω (1 + g(u))(1 + u 2 ) -(1 + g(0)) dx . (1.11) 
We are now in position to state our main result, giving a new, very general and basically sharp picture about the existence of an extremal for the perturbed Moser-Trudinger inequality (I g 4π (Ω)). Theorem 1.1 (Existence and non-existence of an extremal). Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1) and (1.5)- (1.6) hold true for H as in (1.2), and let A, B and F be thus given. Assume that l = lim γ→+∞ γ -4 + A(γ)/2 + 4γ -3 exp(-1 -M )B(γ)S γ -4 + |A(γ)| + γ -3 |B(γ)| (1.12)

exists, where M and S are given by (1.9). Then

(1) if l > 0 or Λ g (Ω) ≥ π exp(1 + M ) , (I g 4π (Ω)) admits an extremal, where Λ g (Ω) is as in (1.11);

(2) if l < 0 and Λ g (Ω) < π exp(1 + M ) , there exists N 0 ≥ 1 such that (I gN 4π (Ω)) admits no extremal for all N ≥ N 0 , where g N is given by (1.10).

Observe that, for all given N ≥ 1, g N satisfies (1.1) and (1.5)- (1.6), with the same A, B and F as the original g, in view of H(γ) → 1 as γ → +∞, see (3.3). Moreover it is clear that Λ gN (Ω) ≤ Λ g (Ω). Then, this second assertion in Theorem 1.1 proves that the assumptions on g in the first assertion are basically sharp to get the existence of an extremal for (I g 4π (Ω)). As a remark, Pruss concludes in [START_REF] Pruss | Nonexistence of maxima for perturbations of some inequalities with critical growth[END_REF] that the existence of an extremal for the critical Moser-Trudinger inequality is in some sense accidental and relies on non-asymptotic properties of exp(u 2 ). Theorem 1.1 clarifies this tricky situation: the existence or nonexistence of an extremal for (I g 4π (Ω)) may really depend on a balance of the asymptotic properties of g both at infinity (given by A(γ)) and at zero (given by B(γ)). Yet, it may also depend on the non-asymptotic quantity Λ g (Ω) (see Corollary 1.2). Observe that Λ 0 (Ω) = (4π)/λ 1 (Ω) in the unperturbed case g ≡ 0, where λ 1 (Ω) is the first Dirichlet eigenvalue of ∆ in Ω.

From now on, we illustrate Theorem 1.1 by two corollaries dealing with less general but more explicit situations. Let c, c ′ ∈ R, (a, b), (a ′ , b ′ ) ∈ E, where

E = (a, b) ∈ [0, +∞) × R b > 0 if a = 0 .
(1.13)

Let R ′ > 0 be a large positive constant. If one picks g such that

g(t) = g 0 (t) := g(0) + ct a+1 log 1 t -b in (0, 1/R ′ ] , g ∞ (t) := c ′ t -a ′ [log t] -b ′ in [R ′ , +∞) , (1.14) 
l in (1.12) of Theorem 1.1 can be made more explicit. Indeed, we can then set

B(γ) = 1 + g(0) γ + c(a + 1)
2γ a (log γ) b and F (t) = t min(a,1) if c = 0 , t otherwise ,

A(γ) = c ′ × a ′ γ -(a ′ +2) (log γ) -b ′ if a ′ > 0 , b ′ γ -2 (log γ) -(b ′ +1) if a ′ = 0 , (1.15) 
(see also Lemma 3.2). Theorem 1.1 is even more explicit in the particular case Ω = D 2 . Indeed, in this case we have that

K D 2 = {0} in (1.9) and G 0 (x) = 1 2π log 1 |x| . Still on the unit disk D 2 , it is known that Λ 0 (D 2 ) = 4π λ 1 (D 2 ) < πe , (1.16) 
(λ 1 (D 2 ) ≃ 5.78). Property (1.16) shows in particular that the second assertion Λ 0 (D 2 ) ≥ πe of Theorem 1.1, Part (1), is not satisfied. In some sense, this is an additional motivation for the nice approach of [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF], proving the existence of an extremal for (I 0 4π (D 2 )) via asymptotic analysis. As an illustration and a very particular case of Theorem 1.1, we get the following corollary.

Corollary 1.1 (Case Ω = D 2 ). Assume that Ω = D 2 . Let c ′ = 0 and (a ′ , b ′ ) ∈ E be given
, where E is as in (1.13). Let g ∞ be as in (1.14).

(1) If we assume a ′ > 2 or c ′ > 0 , then for all even function g ∈ C 1 (R) such that g > -1, such that

(g -g(0)) (i) (t) = o(t 2-i ) (1.17)
as t → 0 and such that

g (i) (t) = g (i) ∞ (t)(1 + o(1)) (1.18)
as t → +∞ for all i ∈ {0, 1}, (I g 4π (D 2 )) admits an extremal.

(2) If we assume a ′ < 2 and c ′ < 0 , there exists an even function g ∈ C 1 (R) such that g > -1, (1.17) and (1.18) hold true, while (I g 4π (D 2 )) admits no extremal.

Our main concern in Corollary 1.1 is to write a readable statement. In this result, the existence of an extremal in the unperturbed case g ≡ 0 is recovered for quickly decaying g's, namely if a ′ > 2 (see [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]). But a threshold phenomenon appears (only if c ′ < 0) and there are no more extremal for less decaying g's, namely for a ′ < 2. Note that Theorem 1.1 also allows to point out the existence of a threshold c ′ < 0 in the border case a ′ = 2, b ′ = 0 (See Remark 1.1). Indeed, proving Corollary 1.1 basically reduces to give an explicit formula for l in (1.12), which only depends on Ω and on the asymptotics of g at +∞ and at 0. On the contrary, we do not care about the precise asymptotics of g in the following corollary, thus illustrating the role of Λ g (Ω) in Theorem 1.1.

Corollary 1.2 (Extremal for Λ g (Ω) large). Let Ω be a smooth bounded domain of R 2 . Let λ 1 (Ω) > 0 be the first Dirichlet eigenvalue of ∆ in Ω and M be given as in (1.9). Let Ā be such that 4(1 + Ā) > λ 1 (Ω) exp(1 + M ) and let C > Ā be given. Then there exists R ≫ 1 such that (I g 4π (Ω)) admits an extremal for all g satisfying (1.1) and

g(0) = Ā, g ≥ g(0) in [1/R, R] and |g| ≤ C in R . (1.19)
We give now an overview of the proof of Theorem 1.1, since it is a bit intricate. First, we comment on Part [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF]. For all 0 < ε ≪ 1 small, we start by picking an extremal function u ε for (I g 4π(1-ε) (D 2 )). Making our assumptions of Part (1), we only need to rule out the case where (2.1) holds true, as described in the Proof of Theorem 1.1, Part (1) of Section 2. Then we assume by contradiction that (2.1) holds true. By Lemma 3.3 in (Case 2), we get expansions of the u ε 's, and then expansions both of the Moser-Trudinger functional (see (2.4)) and of the Dirichlet energy (see (2.5)). These results are gathered in Proposition 2.1 below, whose proof (see Section 4) amounts to show that not only M but also S in (1.9) may have to be attained at a blow-up point of our sequence of maximizers (u ε ) ε (see Lemma 4.1). Observe that this twofold maximization property is necessary to get a sharp picture in Theorem 1.1. Moreover, this is not seen when restricting to the case Ω = D 2 , where K Ω in (1.9) contains only the single point 0, so that expanding the Dirichlet energy of a blowing-up sequence of critical points (u ε ) ε is sufficient (see [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]). Theorem 1.1, Part (1), is eventually obtained by getting a contradiction with (2.1): either by comparing (2.4) with our assumption Λ g (Ω) ≥ π exp(1 + M ), or by comparing u ε (3.8) in Lemma 3.3) and (2.5) with our assumption l > 0. Now we comment on Part (2). Making our assumptions of Part (2) and assuming also by contradiction that there exists an extremal function u ε for (I gN ε 4π (Ω)) such that N ε → +∞ as ε → 0, we get from Lemma 3.3 in (Case 1) that our assumption Λ g (Ω) < π exp(1 + M ) automatically implies (2.1) (see Step 3.2), so that we may get expansions of the u ε 's and then (2.10). This gives a contradiction by comparing

2 H 1 0 = 4π(1 -ε) (see
u ε 2 H 1 0 = 4π
and (2.10) with our assumption l < 0, as developed in the Proof of Theorem 1.1, Part (2) of Section 2. These key ingredients are gathered in Proposition 2.2. In comparison with the expansions of Part (1), the key observation is that the delicate N ε -dependence generates additional terms which may only reduce the Dirichlet energy, as explained in the Proof of Proposition 2.2 of Section 4.

Overall, the proof of Lemma 3.3 in (Case 1) is the most delicate part: we need to use first that the u ε are maximizers to check that we are in a Moser-Trudinger critical regime (see Step 3.2 and Remark 3.2) and that the pointwise and global gradient estimate (3.52) is true. In both cases (Case 1) and (Case 2), resuming the approach of [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF], this last point is the key ingredient to be in position to use the radial model B ε studied in Appendix A. To conclude, the case of a general domain Ω addressed by Theorem 1.1 requires sharp estimates, not only at small scales close to a blow-up point x ε , as performed in the radial case by [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], but also in the whole Ω (see (3.99) or (4.1)). This allows in particular to get a useful accurate expansion of the Lagrange multiplier λ ε in (4.12), when proving Proposition 2.1. As a remark, in the process of the proof below (see Remark 2.1), we answer the very interesting Open problem 6 of [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF].

Remark 1.1 (Links between Theorem 1.1 and [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF][START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF][START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF]). For Ω = D 2 , Part (1) of Theorem 1.1 implies in general [17, Corollary 3], which gives back itself the existence of an extremal function for (I 0 4π (Ω)) pioneered by [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF] in the original case g ≡ 0. Even if both [17, Corollary 3] and Theorem 1.1 are much more general, we restrict there for simplicity to g's satisfying (1.17) and coinciding with g ∞ for all t ≫ 1 (see (1.14)). Then [17, Corollary 3] covers the fast decaying case a ′ > 2 (or c ′ = 0) on the disk. By (1.15), thanks to the explicit formulas above (1.16) for Ω = D 2 and since D 2 (log |x|) 2 dx = π 2 , it is easy to check that we have in this latter case that l > 0 in (1.12), since we have

γ -4 + A(γ)/2 + 4γ -3 exp(-1 -M )B(γ)S = γ -4 1 + 2 e (1 + g(0)) + o(γ -4 ) ,
as γ → +∞. Pushing further their asymptotic analysis, Mancini-Martinazzi [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] cover also the case a ′ = 2 and then suspect (see [17, Theorem 4-Open problem 2]) that there could be no extremal function for (I g 4π (D 2 )), if, in addition, c ′ is a sufficiently large negative constant. Corollary 1.2 claims that there can actually be an extremal for such a g, whatever c ′ is, and even independently from the precise behavior of g close to 0 or +∞. However, Part (2) of Theorem 1.1 gives with (1.15) the following picture in this threshold case a ′ = 2:

if c ′ > -1 + 2 e (1 + g(0)) or Λ g (D 2 ) ≥ πe , there is an extremal for (I g 4π (D 2 )) , if      c ′ < -1 + 2 e (1 + g(0)) , Λ g (D 2 ) < πe , and N ≫ 1 ,
there is no extremal for (I gN 4π (D 2 )) .

Observe that there are many ways of building such g's satifying Λ g (D 2 ) < πe: one is given in the "Proof of Corollary (1.1)" of Section 2 (see also (1.16)). As observed just below Theorem 1.1, this gives a basically sharp picture about how far we can get the existence of an extremal function for (I g 4π (Ω)), relying only on the asymptotic properties of g (see Question 1). Theorem 1.1 gives a similar picture on any domain Ω, and then gives back (for c ′ = 0) the results of [START_REF] Flucher | Extremal functions for the Trudinger-Moser inequality in 2 dimensions[END_REF][START_REF] Struwe | Critical points of embeddings of H 1,n 0 into Orlicz spaces[END_REF]. Stronger perturbations, for instance a ′ < 2 or even a ′ = 0 and b ′ > 0, are also covered by Theorem 1.1.

We conclude this introductory section by the following remark about the relevance of the assumption (1.1) on g introduced by [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]. We also mention the nice and early result by de Figuereido-Ruf [START_REF] De Figueiredo | Existence and non-existence of radial solutions for elliptic equations with critical exponent in R 2[END_REF].

Remark 1.2 (About assumption (1.1)). Indeed, assume that g is a C 1 , even function such that 1 + g > 0 in R. Assume also that ḡ = lim t→+∞ g(t) ∈ [-1, +∞] exists. Firstly, if ḡ = +∞, it is easy to check with the test functions of Step 3.1 that C g,4π (Ω) = +∞. Secondly, if ḡ = -1, it follows from standard integration theory (see for instance [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]Lemma 7]) and from Moser's result [START_REF] Moser | A sharp form of an inequality by N. Trudinger[END_REF] that there exists an extremal function for (I g 4π (Ω)). Thus, up to replacing 1 + g by (1 + g)/(1 + ḡ), we have that (1.1) holds true in the remaining more sensitive case ḡ ∈ (-1, +∞). To end this remark, we mention that [START_REF] De Figueiredo | Existence and non-existence of radial solutions for elliptic equations with critical exponent in R 2[END_REF] already studied (1.4) in D 2 , permitting to recover the existence of an extremal in some subcases where ḡ = -1. First, assuming that H given by (1.3) is positive in (0, +∞), it is clear that a nonnegative extremal for (I g 4π (Ω)) turns out to be a positive solution of (1.4) (for some λ > 0). Now following [START_REF] De Figueiredo | Existence and non-existence of radial solutions for elliptic equations with critical exponent in R 2[END_REF], assume also that Ω = D 2 , that t → tH(t) is C 2 and that, given a > 0, there exist K, C, σ > 0 such that tH(t) = Kt -a for all t ≫ 1 and such that H(t) ≤ CKt σ for all t > 0 close to 0. Then, [6, Theorem 1.1] allows to claim that there exists no positive solution of (1.4) for all 0 < λ ≪ 1 small enough if a ≥ 1, while there exists a family of positive solutions of (1.4) blowing-up as λ → 0 if a < 1. From by now standard arguments, this first property directly gives back the existence of an extremal in the subcase a ≥ 1. However, observe that ḡ = -1 for all a > 0, since 1 + g(t) ∼ 2Ke -t 2 t 1 s -a e s 2 ds = O(t a+1 ) → 0 as t → +∞, so that an extremal also exists in the subcase a ∈ (0, 1). Actually we assert that a more precise analysis in the spirit of [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF] allows to exclude that the aforementioned blow-up solutions of (1.4) were maximizers and to recover the existence of an extremal also in the subcase a ∈ (0, 1) through this approach using the Euler-Lagrange equation.

Proof of the main results

We begin by proving Corollary 1.1, assuming that Theorem 1.1 holds true.

Proof of Corollary 1.1. The first part of Corollary 1.1 is a direct consequence of the first part of Theorem 1.1: plugging the formulas of (1.15) in (1.12), we get that l > 0 for g as in Case (1) of Corollary 1.1. In order to prove the second part of Corollary 1.1, we apply the second part of Theorem 1.1. Let χ be a smooth nonnegative function in R such that χ(t) = 0 for all t ≤ 1/2 and χ(t) = 1 for all t ≥ 1. By the Sobolev inequality and standard integration theory, we can check that g R := g ∞ × χ(•/R) satisfies Λ gR (D 2 ) → Λ 0 (D 2 ) as R → +∞. Then, by (1.15), (1.16), assuming a ′ < 2, c ′ < 0, the second part of Theorem 1.1 applies, starting from g = g R , for R ≫ 1 fixed sufficiently large. Observe that, for all given N ≫ 1, (g R ) N (given by (1.10) for g = g R ) satisfies (1.17)- (1.18). Corollary 1.1 is proved.

Proof of Corollary 1.2. Let Ω, Ā, λ 1 (Ω), C be as in the statement of the corollary. By Theorem 1.2, it is sufficient to prove that there exists R ≫ 1 such that for all g satisfying (1.1) and (1.19), we have that Λ g (Ω) ≥ π exp(1 + M ), where Λ g (Ω) is as in (1.11). Let v > 0 in Ω be the first eigenvalue of ∆ normalized according to v 2 H 1 0 = 4π. For all g satisfying (1.19), we have that

Λ g (Ω) ≥ Ω (1 + g(0))v 2 + (g(v) -g(0))(1 + v 2 ) dx , ≥ (1 + Ā) 4π λ 1 (Ω) + {v ∈[1/R,R]} (g(v) -g(0))(1 + v 2 )dx ,
and, since we have

{v ∈[1/R,R]} (g(v) -g(0))(1 + v 2 )dx ≤ (| Ā| + C)(1 + v 2 L ∞ ) |{v ∈ [1/R, R]}| → 0
as R → +∞, we get the result using that 4

(1 + Ā) > λ 1 (Ω) exp(1 + M ).
The following proposition is the core of the argument to get the existence of an extremal in Theorem 1.1, Part (1). Its proof is postponed in Section 4. It uses the tools developed in Druet-Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF] that allow us to push the asymptotic analysis of a concentrating sequence of extremals (u ε ) ε further than in previous works. In the process of the proof of Proposition 2.1 (see Lemma 4.1), we show first that a concentration point x of such u ε 's realizes M in (1.9). But in the case where |B(γ)| matters in (1.12) or, in other words, where γ 3 |A(γ)| + γ -1 |B(γ)| as γ → +∞, we also show that S in (1.9) has to be attained at x. Proposition 2.1. Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1) and (1.5)-(1.6) hold true, for H as in (1.2), and let A, B and F be thus given. Let (u ε ) ε be a sequence of nonnegative functions such that u ε is a maximizer for (I g 4π(1-ε) (Ω)), for all 0 < ε ≪ 1. Assume that

u ε ⇀ 0 in H 1 0 (2.1) as ε → 0. Then, u ε 2 H 1 0 = 4π(1 -ε), there exists a sequence (λ ε ) ε of real numbers such that u ε solves in H 1 0 ∆u ε = λ ε u ε H(u ε ) exp(u 2 ε ), u ε > 0 in Ω , u ε = 0 on ∂Ω , (2.2) 
u ε ∈ C 1,θ ( Ω) (0 < θ < 1)
and we have that

γ ε := max y∈Ω u ε → +∞ . (2.3)
Moreover, we have that

lim ε→0 Ω (1 + g(u ε )) exp(u 2 ε )dx = |Ω|(1 + g(0)) + π exp(1 + M ) (2.4)
and that

u ε 2 H 1 0 = 4π 1 + I(γ ε ) + o γ -4 ε + |A(γ ε )| + γ -3 ε |B(γ ε )| (2.5)
as ε → 0, where

I(γ ε ) := γ -4 ε + A(γ ε )/2 + 4γ -3 ε exp(-1 -M )B(γ ε )S , (2.6) 
where |Ω| stands for the volume of the domain Ω and where M and S are as in (1.9). , for all given a ′ ∈ (0, 2]. This can be seen by picking an appropriate g such that I g 4π (Ω) has no extremal, as in Corollary 1.1, and by using Proposition 2.1. Observe that, for such a g, assumption (2.1) is indeed automatically true. This gives an answer to Open Problem 6 in [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF].

Proof of Theorem 1.1, Part (1): existence of an extremal for (I g 4π (Ω)). We first prove the existence of an extremal stated in Part (1) of Theorem 1.1. Let g be such that (1.1) and (1.5)-(1.6) hold true, for H as in (1.2), and let A, B and F be thus given. Assume either that l > 0 in (1.12) or that Λ g (Ω) ≥ π exp(1 + M ). Using Lemma 3.1, let (u ε ) ε be a sequence of nonnegative functions such that u ε is a maximizer for (I g 4π(1-ε) (Ω)), for all 0 < ε ≪ 1. Then, up to a subsequence, (u ε ) ε converges a.e. and weakly in H 1 0 to some u 0 . Independently, we check that lim

ε→0 C g,4π(1-ε) (Ω) = C g,4π (Ω) , (2.7) 
where C g,α (Ω) is as in (I g α (Ω)). Indeed, if one assumes by contradiction that the C g,4π(1-ε) (Ω)'s increase to some l < C g,4π (Ω) as ε → 0, then we may choose some nonnegative u such that u 2

H 1 0 ≤ 4π and Ω (1 + g(u)) exp(u 2 )dx > l. But, picking v ε = u √ 1 -ε, we have v ε 2 H 1 0 ≤ 4π(1 -ε) and lim ε→0 Ω (1 + g(v ε )) exp(v 2 ε )dx = Ω (1 + g(u)) exp(u 2 )dx ,
by the dominated convergence theorem, using (1.1), v 2 ε ≤ u 2 and exp(u 2 ) ∈ L 1 (Ω). But this contradicts the definition of l and concludes the proof of (2.7). Now, by (2.7) and since u 0 2 H 1 0 ≤ 4π, in order to get that u 0 is the extremal for (I g 4π (Ω)) we look for, it is sufficient to prove that

lim ε→0 Ω (1 + g(u ε )) exp(u 2 ε ) dx = Ω (1 + g(u 0 )) exp(u 2 0 ) dx . (2.8) 
If u 0 = 0, then Proposition 2.1 gives a contradiction: either by (2.4) and (2.

7) if Λ g (Ω) ≥ π exp(1 + M ), since it is clear that C g,4π (Ω) > Λ g (Ω) + (1 + g(0))|Ω| , or by (2.5)-(2.6) if l > 0, since u ε H 1 0 ≤ 4π. Thus, we necessarily have that u 0 = 0. Then, noting that u ε -u 0 2 H 1 0 ≤ 4π -u 0 2 H 1 0 +o(1)
, the standard Moser-Trudinger inequality (I 0 4π (Ω)) and Vitali's theorem give that (2.8) still holds true, and Part (1) of Theorem 1.1 is proved in any case.

The following proposition is the core of the argument to get the non-existence of an extremal in Theorem 1.1, Part (2). Its proof is postponed in Section 4.

Proposition 2.2. Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1) and (1.5)-(1.6) hold true, for H as in (1.2), and let A, B and F be thus given.

Assume that Λ g (Ω) < π exp(1+M ), where M is as in (1.9) and Λ g (Ω) as in (1.11). Assume that there exists a sequence of positive integers (N ε ) ε such that

lim ε→0 N ε = +∞ (2.9)
and such that (I gN ε 4π (Ω)) admits a nonnegative extremal u ε for all ε > 0, where g Nε is as in (1.10). Then we have (2.1) and that u ε

2 H 1 0 = 4π for all 0 < ε ≪ 1. Moreover, we have u ε ∈ C 1,θ ( Ω) (0 < θ < 1), (2.3) and that u ε 2 H 1 0 ≤ 4π 1 + I(γ ε ) + o γ -4 ε + |A(γ ε )| + γ -3 ε |B(γ ε )| (2.10)
as ε → 0, where I(γ ε ) is given by (2.6).

Proof of Theorem 1.1, Part (2): non-existence of an extremal for (I gN 4π (Ω)), N ≥ N 0 . Let g be such that (1.1) and (1.5)-(1.6) hold true, for H as in (1.2), and let A, B and F be thus given. Assume l < 0 and Λ g (Ω) < π exp(1 + M ), where l is as in (1.12), Λ g as in (1.11) and M as in (1.9). In order to prove Part (2) of Theorem 1.1, we assume by contradiction that there exists a sequence (N ε ) ε of positive integers satisfying (2.9) and such that (I gN ε 4π (Ω)) admits an extremal, for g Nε as in (1.10). We let (u ε ) ε be a sequence of nonnegative functions such that u ε is a maximizer for (I

gN ε 4π (Ω)), for all ε > 0. But this is not possible by Proposition 2.2, since u ε 2 H 1 0 = 4π contradicts (2.10
), since we also assume now l < 0. This concludes the proof of Part (2) of Theorem 1.1.

Blow-up analysis in the strongly perturbed Moser-Trudinger regime

In this section, we aim to prove the main blow-up analysis results that we need to get both Propositions 2.1 and 2.2. The following preliminary lemma deals with the existence of an extremal for the perturbed Moser-Trudinger inequality (I g α (Ω)) in the subcritical case 0 < α < 4π. Its proof relies on integration theory combined with (I 0 4π (Ω)), and on standard variational techniques. It is omitted here and the interested reader may find more details in the proof of Proposition 6 of [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]. Lemma 3.1. Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1) holds true. Then, (I g α (Ω)) admits a nonnegative extremal u α for all 0 < α < 4π. Moreover, we have the following alternative

(1) either u α 2 H 1 0 < α and u α H(u α ) = 0 a.e. , (2) or u α 2 H 1 0 = α and there exists λ ∈ R such that u α solves in H 1 0 the Euler- Lagrange equation (1.4).
Remark 3.1. The first alternative in Lemma 3.1 may occur in general, but does not if t → (1 + g(t)) exp(t 2 ) increases in (0, +∞).

The following lemma investigates more precisely the behavior of g and H, when we assume (1.1) together with (1.5)-(1.6).

Lemma 3.2.

Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1), (1.5) and (1.6) hold true, for H as in (1.2), and let A, B and δ 0 , δ ′ 0 , F, κ be thus

given. Then we have that

a) 1 + g t γ exp t 2 γ 2 = (1 + g(0)) + 2B(γ)F (t)t γ(κ + 1) + o |B(γ)| γ + 1 γ 2 in C 0 loc ((0, +∞) t ) , as γ → +∞ , b) ∃C > 0 , 1 + g t γ exp t 2 γ 2 -(1 + g(0)) ≤ C |B(γ)| γ + 1 γ 2 t exp(δ ′ 0 t) for all γ ≫ 1 and all 0 ≤ t ≤ 2γ , c) g L ∞ (R) < +∞ , (3.1 
)

and that a) 1 + g γ - t γ = H(γ) 1 + A(γ) t + 1 2 + o(|A(γ)| + γ -4 ) in C 0 loc (R t ) , as γ → +∞ , b) ∃C > 0 , 1 + g γ - t γ -H(γ) ≤ C|H(γ)|(|A(γ)| + γ -4 ) exp(δ 0 t) for all γ ≫ 1 and all 0 ≤ t ≤ 2γ . (3.2) 
In particular, we have that

H(γ) → 1 as γ → +∞ . (3.3)
Proof of Lemma 3.2. We first prove (3.3). Using (1.3), we write

(1 + g(r)) exp(r 2 ) -(1 + g(0)) = 2 r 0 sH(s) exp(s 2 ) ds (3.4)
for all r ≥ 0. Then, as γ → +∞, setting r = γ, we can write

1 + g(γ) = exp(-γ 2 ) (1 + g(0)) + 2 γ 2 0 1 - u γ 2 H γ - u γ exp -2u + u 2 γ 2 du , = O exp(-γ 2 ) + 2H(γ) γ 2 0 1 - u γ 2 exp -2u + u 2 γ 2 du , + O |H(γ)|(|A(γ)| + γ -4 ) γ 2 0 exp(-(1 -δ 0 )u) exp -u 1 - u γ 2 du , = O exp(-γ 2 ) + H(γ) 1 -exp(-γ 2 ) + o(H(γ)) ,
using (1.5). This proves (3.3) since g satisfies (1.1). Observe that parts a) and b) of (3.1) follow from (1.6) and (3.4) with r = t/γ, while part c) of (3.1) is a straightforward consequence of (1.1). We prove now part b) of (3.2). As γ → +∞, we write for all 0 ≤ t ≤ γ

1 + g γ - t γ exp γ - t γ 2 -(1 + g(γ -1)) exp((γ -1) 2 ) = 2 γ-t γ γ-1 rH(r) exp(r 2 ) dr , = 2 γ t 1 - u γ 2 H γ - u γ exp γ 2 -2u + u 2 γ 2 du , = H(γ) exp γ - t γ 2 -exp((γ -1) 2 ) + O |H(γ)|(|A(γ)| + γ -4 ) γ t exp γ 2 -(2 -δ 0 )u du , using b) in (1.5).
Multiplying the above identity by exp(-(γ -(t/γ)) 2 ), using t ≤ γ, (1.1) and (3.3), part b) of (3.2) easily follows. Using now a) of (1.5) in the above before last inequality, we also get part a) of (3.2).

In the sequel, for all integer N ≥ 1, we let ϕ N be given by (see also (3.36) below)

ϕ N (t) = +∞ k=N +1 t k k! . (3.5) 
The main results of this section are stated in the following lemma. for all 0 < ε ≪ 1, where g Nε is as in (1.10). Assume in addition that we are in one of the following two cases:

(Case 1) lim ε→0 N ε = +∞ , α ε = 4π for all ε , and 
Λ g (Ω) < π exp(1 + M ) , (3.7) 
where Λ g (Ω) is as in (1.11) and M as in (1.9), or (Case 2) N ε = 1 for all ε and (2.1) holds true .

Then, up to a subsequence,

u ε 2 H 1 0 = α ε , (3.8) 
u ε ∈ C 1,θ ( Ω) (0 < θ < 1) solves ∆u ε = λ ε u ε H Nε (u ε ) exp(u 2 ε ), u ε > 0 in Ω , u ε = 0 on ∂Ω , (3.9) 
where

H N (t) = 1 + g N (t) + g ′ N (t)
2t . Moreover, we have (2.4), that

λ ε = 4 + o(1) γ 2 ε exp(1 + M ) , (3.10) that A(γ ε ) -2ξ ε = o ζε , (3.11) 
and that

x ε → x (x ∈ K Ω ) (3.12)
as ε → 0, where x ε , γ ε satisfy

u ε (x ε ) = max Ω u ε = γ ε → +∞ (3.13)
as ε → 0, where ξ ε is given by

ξ ε = γ 2(Nε-1) ε ϕ Nε-1 (γ 2 ε )(N ε -1)! , (3.14) 
and where ζε is given by Observe that N ε = 1 in (Case 2) reduces to say that g Nε = g. From (3.30) obtained in the process of the proof below, we get that

ζε = max 1 γ 2 ε , |A(γ ε )|, ξ ε . ( 3 
ξ ε = o(1/γ 2 ε ) in (Case 2), so that (3.11) is then equivalent to A(γ ε ) = o 1 γ 2 ε , (3.16) 
as discussed in Remark 2.1.

Proof of Lemma 3.3. We start by several basic steps. First, a test function computation gives the following result.

Step 3.1. For all g such that (1.1) holds true, we have that

C g,4π (Ω) ≥ |Ω|(1 + g(0)) + π exp(1 + M ) , where C g,4π (Ω) is as in (I g α (Ω)) (α = 4π
) and where M is as in (1.9). Proof of Step 3.1. In order to get Step 3.1, it is sufficient to prove that there exist functions

f ε ∈ H 1 0 such that f ε 2 H 1 0 = 4π and such that Ω (1 + g(f ε )) exp f 2 ε dy ≥ |Ω|(1 + g(0)) + π exp(1 + M ) + o(1) (3.17) 
as ε → 0. In order to reuse these computations later, we fix any sequence (z ε ) ε of points in Ω such that

ε 2 d(z ε , ∂Ω) 2 = o log 1 ε -1 . (3.18)
For 0 < ε < 1, we let v ε be given by v ε (y) = log

1 ε 2 +|y-zε| 2 + H zε,ε
, where H zε,ε is harmonic in Ω and such that v ε is zero on ∂Ω. Then, by the maximum principle and (1.8), we have that

H zε,ε (y) = H zε (y) + O ε 2 d(z ε , ∂Ω) 2 for all y ∈ Ω , (3.19) 
where H zε is as in (1.8). Then, integrating by parts, we compute

v ε 2 H 1 0 = Ω v ε ∆v ε dy , = Ω 4 ε 2 1 + |zε-y| 2 ε 2 2 log 1 ε 2 + log 1 1 + |y-zε| 2 ε 2 + H zε,ε (y) dy , = 4π log 1 ε 2 + o(1) -4π (1 + o (1)) + 4π (H zε (z ε ) + o(1)) , = 4π log 1 ε 2 -1 + H zε (z ε ) + o(1) , (3.20) 
where the change of variable z = (yz ε )/ε, (3.18), (3.19) and

H zε (z ε + εz) = H zε (z ε ) + O ε|z| d(z ε , ∂Ω) , (3.21) 
(see for instance Appendix B in [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF]) are used. From now lim inf ε→0 d(z ε , ∂Ω) > 0 is assumed. Let f ε be given by 4πv

2 ε = f 2 ε v ε 2 H 1 0
. We can write

f ε (y) 2 = log 1 |zε-y| 2 +ε 2 2 + 2H zε,ε (y) log 1 |zε-y| 2 +ε 2 + H zε,ε (y) 2 log 1 ε 2 1 + Hz ε (zε)-1 log 1 ε 2 + o 1 log 1 ε , using (3.

20). Then, writing log

1 |zε-y| 2 +ε 2 = log 1 ε 2 + log 1 1+ |zε-y| 2 ε 2 , we get Bz ε (řε)∩Ω (1 + g(f ε )) exp(f 2 ε ) dy = Bz ε (řε)∩Ω (1 + o(1)) exp -2 ťε (y) + 2H zε,ε (y) -H zε (z ε ) + 1 ε 2 × exp ť2 ε log 1 ε 2 + O 1 + ťε log 1 ε 2 + 1 + ť2 ε log 1 ε 2 2 dy , = π exp(H zε (z ε ) + 1)(1 + o(1)) , (3.22) 
as ε → 0, using (1.1), (3.19) and (3.21), where ťε (y

) = log 1 + |zε-y| 2 ε 2
and where řε is given by log 1 +

ř2 ε ε 2 = 1 2 log 1 ε 2 . Now, we can check that f ε (y) 2 ≤ log 1 ε 2 + O(1) -1 log 1 |z ε -y| 2 + O(1) 2 , ≤ log 1 |z ε -y| 2 + O(1) × 1 2
+ o(1) for all y ∈ Ω\B zε (ř ε ) , using (1.8), (3.19) and our definition of řε , so that we also get

Ω\Bz ε (řε) (1 + g(f ε )) exp(f 2 ε ) dy → (1 + g(0))|Ω| (3.23)
as ε → 0, by the dominated convergence theorem, using (1.1). Property (3.17 From now on, we make the assumptions of Lemma 3.3. In particular, we assume that either (Case 1), or (Case 2) holds true. Given an integer N ≥ 1, observe that Step 3.1 applies to g N , since g N satisfies (1.1), if g does. Then, using α ε = 4π in (Case 1), or (2.7) and g Nε = g in (Case 2), we get that

|Ω|(1 + g(0)) + π exp(1 + M ) ≤ C gN ε ,4π in (Case 1) , C g,αε + o(1) in (Case 2) , (3.24) 
as ε → 0 + , where C g,α (Ω) is as in formula (I g α (Ω)) and where M is as in (1.9). Let us rewrite now (3.9) in a more convenient way. Let Ψ N be given by

Ψ N (t) = (1 + g N (t)) exp(t 2 ) . (3.25)
Observe in particular that

(1 + g(t))(1 + t 2 ) ≤ Ψ N (t) ≤ (1 + g(t)) exp(t 2 ) ,
for all t and all N , by (1.1). Using (1.2), (1.3) and (1.10), we may rewrite (3.9) as

∆u ε = λε 2 Ψ ′ Nε (u ε ), u ε > 0 in Ω , u ε = 0 on ∂Ω , (3.26) with Ψ ′ N (t) = 2tH(t) 1 + t 2 + ϕ N (t 2 ) + 2t(1 + g(t)) t 2N N ! -t 2 , = 2tH(t)ϕ N (t 2 ) + 2t 1 + t 2N N ! (1 + g(t)) + g ′ (t)(1 + t 2 ) . (3.27) 
Indeed, in (3.9), it turns out that

H N (t) = Ψ ′ N (t) exp(-t 2 ) 2t . (3.28)
Observe that by (1.1) and (3.3), using the first line of (3.27), we clearly have that there exists C > 0 such that

|Ψ ′ Nε (t)| ≤ Ct exp(t 2 ) (3.29)
for all t ≥ 0 and all ε. In (Case 2), (2.1) is assumed to be true. We prove now that (2.1) also holds true in (Case 1).

Step 3.2. Assume that we are in (Case 1). Then (2.1) holds true. Moreover, if γ ε := ess sup u ε < +∞ for all ε, we have that

lim inf ε→0 ϕ Nε γ 2 ε exp (γ 2 ε ) :=δε∈(0,1) > 0 , (3.30)
and, in other words, that

lim inf ε→0 γ 2 ε -N ε √ N ε > -∞ , (3.31) 
where ϕ N is as in (3.5).

Proof of Step 3.2. By (3.6) and (3.24), we get that

Ω Ψ Nε (u ε )dy ≥ (1 + g(0))|Ω| + π exp(1 + M ) . (3.32) Writing now Ψ N (t) = (1 + g(0)) + (1 + g(t))(1 + t 2 ) -(1 + g(0)) + (1 + g(t))ϕ N (t 2 )
and using (1.1), we also get

Ω Ψ Nε (u ε )dy ≤ (1 + g(0))|Ω| + Λ g (Ω) + Ω (1 + g(u ε ))ϕ Nε (u 2 ε )dy , (3.33)
where Λ g is as in (1.11). Then by (1.1) and (3.7), we get from (3.32) and (3.33) that lim inf

ε→0 Ω ϕ Nε (u 2 ε )dy > 0 . (3.34) Up to a subsequence, u ε ⇀ u 0 in H 1 0 , for some u 0 ∈ H 1 0 such that u 0 2 H 1 0 ≤ 4π. Let 0 < β ≪ 1 be given. First we have that u 2 ε ≤ (1 + β)(u ε -u 0 ) 2 + 1 + 1 β u 2 0 .
Independently, by Moser-Trudinger's inequality, we have that

u ∈ H 1 0 =⇒ ∀p ∈ [1, +∞), exp(u 2 ) ∈ L p . (3.35) Therefore, if u 0 ≡ 0, lim ε→0 u ε -u 0 2 H 1 0 < 4π, there exists p 0 > 1 such that (exp(u 2 ε )) ε is bounded in L p0
, by Moser's and Hlder's inequalities. Then, by Vitali's theorem, since ϕ Nε ≤ exp in [0, +∞) and since N ε → +∞ in (Case 1), we get

u 0 ≡ 0 =⇒ Ω ϕ Nε (u 2 ε )dy = o(1)
as ε → 0, which proves (2.1), in view of (3.34). Noting that the function t → ϕ N (t) exp(-t) increases in [0, +∞), we can write

Ω ϕ Nε (u 2 ε )dy ≤ ϕ Nε (γ 2 ε ) exp(γ 2 ε ) Ω exp(u 2 ε )dy
and conclude that (3.30) holds true by (3.34) and Moser's inequality. Observe that

ϕ N (Γ) = exp(Γ) Γ 0 exp(-s) s N N ! ds . (3.36) Setting Γ = γ 2 ε , N = N ε and s = N ε + u √ N ε
, we get (3.31) from (3.30), using Stirling formula and

1 + u √ N N e -u √ N ≤ e -u 2 2 for - √ N < u < 0.
The next steps applies in both (Case 1) and (Case 2).

Step 3.3. We have that (3.8), (3.9) hold true, and that u ε is in C < α ε for all ε ≪ 1, up to a subsequence, then it follows from the fact that u ε is an (unconstrained) critical point of our functional that Ψ ′ ε (u ε ) = 0 a.e. in Ω. The key property is now that the Lebesgue measure of {t 0 < u ε ≤ t 1 } is positive, for all 0 ≤ t 0 < t 1 ≤ γ ε , as it follows by Ω |∇T u ε | 2 > 0 where T u ε ∈ H 1 0 is the truncation of u εt 0 as 0 when u ε ≤ t 0 and as t 1t 0 when u ε > t 1 ; this shows that Ψ ′ Nε = 0 in (0, γ ε ) and then

(1 + g(t)) = 1 + g(0) 1 + t 2 + ϕ Nε (t 2 ) (3.37)
for all t ∈ [0, γ ε ). If γ ε = +∞ a contradiction arises; then γ ε < +∞ and one can use Step 3.2 to show that γ ε → +∞, still reaching a contradiction. Then (3.8) is proved, so that (3.9) holds true in H 1 0 . Thus for all given ε, u ε is uniformly bounded and then in C 1,θ by (3.9) and elliptic theory. We also use there that g appearing in the formula (3.27) of Ψ ′ N is assumed to be C 1 in (1.1). The previous steps give in particular that (3.13) makes sense and holds true.

Step 3.4. There holds that λ ε > 0 for all 0 < ε ≪ 1. Moreover

λ ε → 0 (3.38)
as ε → 0, where λ ε is as in (3.9). 3) and some standard integration argument, to get that lim inf

Proof of

ε→0 Ω Ψ ′ Nε (u ε ) + 2(1 + g(u ε ))u 3 ε u ε dx = +∞ . (3.39)
Then, multiplying (3.26) by u ε and integrating by parts, we get that λ ε > 0 and

4π + o(1) = Ω |∇u ε | 2 dx ≫ λ ε , which proves (3.38).
Then, using (3.3), we may let µ ε > 0 be given by

λ ε H(γ ε )µ 2 ε γ 2 ε ϕ Nε-1 (γ 2 ε ) = 4 , (3.40) 
where ϕ N is as in (3.5). Before starting the core of the proof, we would like to make a parenthetical remark.

Remark 3.2. Note that (Case 1) is particularly delicate to handle, since the nonlinearities (Ψ ′ Nε ) ε are not of uniform critical growth, even in the very general framework of [9, Definition 1]. A more intuitive way to see this is the following: if (γ ε ) ε is a sequence of positive real numbers such that γε → +∞, but not too fast, in the sense that γ2 ε ≪ N ε , then it can be checked with (1.1) and

(3.3) that λ ε 2 Ψ ′ Nε (γ ε ) = λε (1 + o(1))γ 2Nε+1 ε as ε → 0, where λε = λ ε /(N ε !).
Then, in the regime 0 ≤ u ε ≤ γε , at least formally, (3.26) looks at first order like the Lane-Emden problem, namely

     ∆u ε = λε u 2Nε+1 ε , u ε > 0 in Ω , u ε = 0 on ∂Ω , N ε → +∞ , (Lane-Emden problem)
for which very interesting, but very different concentration phenomena were pointed out (see for instance [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF][START_REF] De Marchis | Asymptotic analysis for the Lane-Emden problem in dimension two[END_REF][START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF][START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF][START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF][START_REF]Single-point condensation and least-energy solutions[END_REF]). A real difficulty to conclude the subsequent proofs is to extend the analysis developed in [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF][START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF] for the Moser-Trudinger "purely critical" regime, in order to deal also with such other intermediate regimes. As a last remark, a much simpler version of the techniques developed here permits also to answer some open questions about the Lane-Emden problem, as performed in [START_REF] Thizy | Sharp quantization for Lane-Emden problems in dimension two[END_REF].

We let t ε be given by

t ε (x) = log 1 + |x -x ε | 2 µ 2 ε . (3.41)
Here and in the sequel, for a radially symmetric function f around of x ε (resp. around 0), we will often write f (r) instead of f (x) for |xx ε | = r (resp. |x| = r).

Step 3.5. We have that

γ ε (γ ε -u ε (x ε + µ ε •)) → T 0 := log 1 + | • | 2 in C 1,θ loc (R 2 ) , (3.42) 
where γ ε , x ε are as in (3.13) and µ ε is as in (3.40). Moreover, we have that Proof of Step 3.5. We first sketch the proof of (3.42). In (Case 2), (3.42) follows closely Step 1 of the proof of [9, Proposition 1]. Thus, we focus now on the the proof of (3.42) in (Case 1). Observe that 

lim inf ε→0 λ ε γ 2 ε > 0 . ( 3 
sup t∈R t 2N N ! exp(-t 2 ) = N N N ! exp(-N ) = N →+∞ 1 + o(1) √ 2πN , ( 3 
Ψ ′ Nε (u ε ) 2 = u ε H(u ε )ϕ Nε (u 2 ε ) + u ε (1 + g(u ε )) u 2Nε ε N ε ! + O γ 3 ε , ≤ (1 + o(1))γ ε ϕ Nε-1 (γ 2 ε ) . (3.46)
Observe that, by (3.13) and elliptic theory, we must have sup

Ω λ ε Ψ ′ Nε (u ε ) → +∞ as ε → 0. Then, (3.46) implies that λ ε γ ε ϕ Nε-1 (γ 2
ε ) → +∞ and then that µ ε → 0 as ε → 0, by (3.40). Let τ ε be given in (Ωx ε )/µ ε by 

u ε (x ε + µ ε •) = γ ε - τ ε γ ε . Then, since ∆τ ε = -µ 2 ε γ ε (∆u ε )(x ε + µ ε •),
τ ε → τ 0 in C 1,θ loc (R 2 ) , (3.47 
) as ε → 0. Note that for all Γ, T > 0 and all N , we have that

ϕ N (T ) = ϕ N (Γ) exp (-(Γ -T )) -exp(T ) Γ T exp(-s) s N N ! ds . (3.48)
Writing the previous identity for 

N = N ε -1, Γ = γ 2 ε and T = u 2 ε = γ 2 ε -2τ ε + τ 2 ε γ 2 ε , noting from (3.45) and (3.47) that γ 2 ε u 2 ε exp(-s) s Nε-1 (N ε -1)! ds = O 1 √ N ε in R
u ε Ψ ′ Nε (u ε ) -≤ C R |u ε | + 4u 4 ε , (3.49) by (1.1), (3.3 
) and (3.27), where t -=min(t, 0). Then, we have that exp(-2τ 0 )dy ≤ lim inf

λ ε 2 Ω u ε Ψ ′ Nε (u ε ) + dy = 4π + o(
ε→0 λ ε 2 Ω u ε Ψ ′ Nε (u ε )
+ dy , by (3.47) and, since A is arbitrary, we get then that R 2 exp(-2τ 0 )dy < +∞. Thus, by the classification result Chen-Li [START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF], since τ 0 ≥ 0 and τ 0 (0) = 0, we get that τ 0 (y) = log(1 + |y| 2 ). Thus (3.42) is proved by (3.47). Similarly, we may also choose some A ε 's, such that A ε → +∞ and such that

λ ε 2 Bx ε (Aεµε) Ψ Nε (u ε )dy = 2π + o(1) γ 2 ε .
We use for this (3.45) to write that

ϕ Nε (γ 2 ε ) ϕ Nε-1 (γ 2 ε ) = 1 - γ 2Nε ε N ε ! ϕ Nε-1 (γ 2 ε ) = 1 + o(1)
as ε → 0. Thus, since 0 < Ψ Nε (t) ≤ (1 + g(t)) exp(t 2 ) for all t ≥ 0, and since C g,4π (Ω) < +∞, we get (3.43) from (1.1). This concludes the proof of Step 3.5.

By

Step 3.5 and estimates in its proof, since we assume u ε

2 H 1 0 ≤ 4π, we get that lim R→+∞ lim ε→0 Ω\Bx ε (Rµε) (∆u ε (y)) + u ε dy = 0 . (3.50)
We let Ω ε be given by

Ω ε = y ∈ Ω s.t. ϕ Nε-1 (u ε (y) 2 ) ≥ u ε (y) 2 + 1 in (Case 1) , Ω in (Case 2) .
Now, despite the difficulty pointed out in Remark 3.2, we are able to get the following weak, but global pointwise estimates.

Step 3.6. There exists C > 0 such that

| • -x ε | 2 |∆u ε |u ε ≤ C in Ω ε (3.51)
and such that

| • -x ε ||∇u ε |u ε ≤ C in Ω ε (3.52)
for all ε.

In (Case 2), it is not so difficult to adapt the arguments of [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF][START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF][START_REF] Xiong | Classification of solutions of some nonlinear elliptic equations[END_REF] to get Step 3.6. Thus, in the proof of Step 3.6 just below, we assume that we are in (Case 1). Then observe that Ω ε = ∅ by Step 3.2. Given η 0 ∈ (0, 1), writing

ϕ Nε-1 (tN ε ) = t Nε N Nε ε N ε ! +∞ k=0 t k + o(1) = (et) Nε √ 2πN ε 1 1 -t + o(1)
, by Stirling's formula, where o(1) → 0 as ε → 0 uniformly in |t| ≤ η 0 , the unique positive solution Γ ε of ϕ Nε-1

(Γ ε ) = Γ ε + 1 satisfies Γ ε = (1 + o(1)
) Nε e . Then, since ϕ Nε-1 /(1 + •) increases in (0, +∞), we clearly get that

(1 + o(1)) N ε e ≤ min Ωε u 2 ε . (3.53) 
Observe also that (3.53) almost characterizes Ω ε in the following sense: given δ > 0, for all ε ≪ 1 so that (1+δ) Nε e ≥ Γ ε , one has that u ε (y) 2 ≥ (1+δ) Nε e implies y ∈ Ω ε . Proof of Step 3.6, Formula (3.51). As aforementioned, we still assume that we are in (Case 1). Thus, in particular, we assume that N ε → +∞ as ε → 0. Assume now by contradiction that

max y∈Ωε |y -x ε | 2 |∆u ε (y)|u ε (y) = |y ε -x ε | 2 |∆u ε (y ε )|u ε (y ε ) → +∞ (3.54)
as ε → 0, for some y ε 's such that y ε ∈ Ω ε . First for all sequence (ž ε ) ε such that žε ∈ Ω ε , we have that ∆u

ε (ž ε ) > 0, that g ′ (u ε (ž ε )) = o(u ε (ž ε )) and that Ψ ′ Nε (u ε (ž ε )) = (1 + o(1)) 2 u ε (ž ε ) ϕ Nε-1 (u ε (ž ε ) 2 ) (3.55)
as ε → 0, using (1.1), (3.3), (3.27) and (3.53). Besides, we have that

u ε (y ε ) → +∞ (3.56)
as ε → 0. Let ν ε > 0 be given by

ν 2 ε |∆u ε (y ε )|u ε (y ε ) = 1 .
Then, using also (3.54), we have that For R > 0, we set Ω R,ε = B yε (Rν ε ) ∩ Ω and ΩR,ε = (Ω R,εy ε )/ν ε . Up to harmless rotations and since Ω is smooth, we may assume that there exists B ∈ [0, +∞] such that ΩR,0 → (-∞, B) × R as R → +∞, where ΩR,ε → ΩR,0 as ε → 0. In this proof, for z ∈ ΩR,ε , we write z ε = y ε + ν ε z ∈ Ω R,ε . Let ũε be given by ũε

lim ε→0 |y ε -x ε | ν ε = +∞ , ( 3 
(z) = u ε (y ε ) (u ε (z ε ) -u ε (y ε )) , (3.59) 
so that we get

(∆ũ ε ) (z) = (∆u ε )(z ε ) (∆u ε )(y ε ) = Ψ ′ Nε (u ε (z ε )) Ψ ′ Nε (u ε (y ε )) . (3.60)
First, we prove that for all R > 0, there exists C R > 0 such that

|∆ũ ε | ≤ C R in ΩR,ε , (3.61) 
for all 0 < ε ≪ 1. Otherwise, by (3.60), assume by contradiction that there exists

z ε ∈ Ω R,ε such that |Ψ ′ Nε (u ε (z ε ))| ≫ Ψ ′ Nε (u ε (y ε )) (3.62) as ε → 0. If, still by contradiction, z ε ∈ Ω ε , we have that u ε (z ε ) < u ε (y ε ), that ϕ Nε-1 (u ε (z ε ) 2 ) < ϕ Nε-1 (u ε (y ε ) 2 ) ,
by definition of Ω ε and since ϕ N /(1 + •) increases in [0, +∞), and then that

|Ψ ′ Nε (u ε (z ε ))| u ε (z ε ) 1 + u ε (z ε ) 2 + ϕ Nε-1 (u ε (z ε ) 2 ) Ψ ′
Nε (u ε (y ε )) , using (1.1), (3.3), (3.27), (3.55) and y ε ∈ Ω ε again. This contradicts (3.62) and then it must be the case that z ε ∈ Ω ε . Thus, since y ε is a maximizer on Ω ε in (3.54), we get from (3.57) and (3.62) that u ε (z ε ) ≪ u ε (y ε ). But this is not possible by (3.55) and (3.62), which proves (3.61). Now we prove that, for all R > 0, lim sup

ε→0 sup z∈ ΩR,ε ũε (z) ≤ 0 . (3.63)
Until the end of this proof, we set γε := u ε (y ε ). If (3.63) does not hold true, since ũε (0) = 0 and by continuity, we may assume that there exist z ε ∈ Ω R,ε such that 

β ε := [γ ε (u ε (z ε ) -γε )] → β 0 ∈ (0, +∞) (3.64) as ε → 0. Since u ε (z ε ) > u ε (y ε ) for 0 < ε ≪
(u ε (z ε ) 2 ) ≤ (1 + o(1)) ϕ Nε-1 (γ 2 ε ) . Independently, since ϕ N is convex, we get that ϕ Nε-1 (u ε (z ε ) 2 ) ≥ ϕ Nε-1 (γ 2 ε ) + ϕ ′ Nε-1 (γ 2 ε ) u ε (z ε ) 2 -γ2 ε , ≥ (1 + 2β 0 (1 + o(1))) ϕ Nε-1 (γ 2 ε ) , (3.65 
Ψ ′ Nε (u ε ) = 2γ ε ϕ Nε-1 (u 2 ε )(1 + o(1)) + o(γ 3 ε ) , uniformly in Ω R,ε .
Then, coming back to (3.60), using (3.55) and y ε ∈ Ω ε , we get that

(∆ũ ε )(z) = (1 + o(1)) ϕ Nε-1 (u ε (z ε ) 2 ) ϕ Nε-1 (γ 2 ε ) + o(1) ,
uniformly in z ∈ ΩR,ε . Now, we write (3.48) with Γ = γ2 ε and T = u 2 ε , where u ε stands for u ε (z ε ) here and below. Then, in order to conclude the proof of (3.68), using also (3.36), it is sufficient to check that there exists η R < 1 such that

I ε := exp(u 2 ε ) ϕ Ñε (γ 2 ε ) exp (-(γ 2 ε -u 2 ε )) γ2 ε u 2 ε exp(-s) s Ñε Ñε ! ds = γ2 ε u 2 ε exp(-s) s Ñε Ñε! ds γ2 ε 0 exp(-s) s Ñε Ñε! ds , ≤ η R , (3.69) 
for all 0 < ε ≪ 1, uniformly in Ω R,ε , where Ñε = N ε -1. If u ε ≥ γε , the last inequality in (3.69) is obvious. If now u ε < γε , we write 

I ε = 0 u 2 ε -γ 2 ε exp(-t) 1 + t γ2 ε Ñε dt 0 -γ 2 ε exp(-t) 1 + t γ2 ε Ñε dt ≤ 0 u 2 ε -γ 2 ε exp t Ñε γ2 ε -1 + O Ñεt 2 γ4 ε dt 0 2(u 2 ε -γ 2 ε ) exp t Ñε γ2 ε -1 + O Ñεt 2 γ4 ε dt ≤ η R using (3.
∆u ε (y)u ε (y) dy = lim inf ε→0 B0 (1) 
∆ũ ε (z)(1 + o(1)) dz > 0 , by (3.68). Since this last term is independent of R > 0, this contradicts (3.50), which concludes the proof of (3.51).

Proof of Step 3.6, Formula (3.52). Remember that we assume that (Case 1) holds true. Assume then by contradiction that there exists (y ε ) ε such that y ε ∈ Ω ε and max

y∈Ωε |y -x ε ||∇u ε (y)|u ε (y) = |y ε -x ε ||∇u ε (y ε )|u ε (y ε ) := C ε → +∞ (3.70)
as ε → 0. Then, by (3.53), (3.56) holds true. Let ν ε > 0 be given by

ν ε = min (|x ε -y ε |, d(y ε , ∂Ω)) . (3.71)
For all R > 1 and all ε, we let Ω R,ε and ΩR,ε be given by the formulas above (3.59). Let w ε be given by

w ε (z) = u ε (y ε + ν ε z). Since u ε 2 H 1 0
≤ 4π, we get from Moser's inequality that Ω exp(u 2 ε )dy = O(1) and then that, for all given p ≥ 1,

ν 2/p ε w ε L p ( ΩR,ε) = O(1) (3.72)
for all ε. Set xε = xε-yε νε . Now, for any given R > 1 and all sequence (z ε ) 

ε such that z ε ∈ Ω R,ε \{x ε } (i.e. zε := (z ε -y ε )/ν ε ∈ ΩR,ε \{x ε }), we get that |∆w ε (z ε )| = ν 2 ε |∆u ε (z ε )| 1 uε(zε)|zε-xε| 2 if z ε ∈ Ω ε , λ ε ν 2 ε |Ψ ′ Nε (u ε (z ε ))| = O λ ε ν 2 ε (1 + u ε (z ε ) 3 ) if z ε ∈ Ω ε ,
w ε u ε (y ε ) → 1 in C 1 loc (R 2 \{x}) , (3.77) 
using also (3.75). By (3.72) and (3.77), we get that for all p ≥ 1

ν 2/p ε u ε (y ε ) = O(1) (3.78)
as ε → 0. Let now wε be given by wε = wε-wε(0) νε|∇uε(yε)| , so that |∇ wε (0)| = 1. For any given R > 1 and all sequence (z ε ) ε such that zε : 

= (z ε -y ε )/ν ε ∈ ΩR,ε \B x(1/R), we get that |∆ wε (z ε )| = u ε (y ε ) C ε |∆w ε (z ε )| 1 Cε|zε-xε| 2 if z ε ∈ Ω ε , λε Cε ν 2 ε u ε (y ε ) 4 if z ε ∈ Ω ε ,
|∇ wε (z ε )| = |∇u ε (z ε )| |∇u ε (y ε )| ≤ u ε (y ε ) u ε (z ε ) 1 |x ε -zε | ≤ 1 + o(1) |x ε -zε | (3.80)
for all 0 < ε ≪ 1. Then, by (3.79), (3.80) and since wε (0) = 0, there exists a harmonic function H in R 2 \{x} such that lim ε→0 wε = H in C 1 loc (R 2 \{x}) . Now, for all given β > 0, integrating by parts, we get that 1) , using (3.70) and (3.77), as ε → 0. Since C ε → +∞, this implies that ∂Bx(β) ∂ ν Hdσ = 0. Then, also by (3.80), β being arbitrary, H is bounded around x and then the singularity at x is removable. By the Liouville theorem, H is constant in R 2 , which is not possible since |∇ wε (0)| = |∇H(0)| = 1. This concludes the proof of (3.52).

∂Bx ε (βνε) u ε ∂ ν u ε dσ = C ε ∂Bx(β) ∂ ν Hdσ + o(1) , ≤ Ω |∇u ε | 2 dy + Ω u ε (∆u ε ) + dy = O(

Remark 3.3. Note that we do not assume that the continuous function Ψ ′

Nε is positive and increasing in [0, +∞). Then, standard moving plane techniques [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF][START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF][START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF][START_REF] Han | Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent[END_REF] do not apply. We use in the proof below the variational characterization (3.6) of the u ε 's to get that x ∈ K Ω , K Ω as in (1.9), and that, in particular, x ∈ ∂Ω in (3.12). Let B ε be the radial solution around x ε of

∆B ε = λε 2 Ψ ′ Nε (B ε ) , B ε (x ε ) = γ ε , (3.81)
where γ ε is still given by (3.13). Let ūε be given by ūε

(z) = 1 2π|x ε -z| ∂Bx ε (|xε-z|) u ε dσ , (3.82) for all z = x ε and ūε (x ε ) = u ε (x ε ) = γ ε . Let ε 0 ∈ ( 1/e, 1) be given. Let ρ ε > 0 be given by t ε (ρ ε ) = (1 -ε 0 )γ 2 ε . (3.83)
By (3.44), we have that

ρ 2 ε = exp(-(ε 0 + o(1))γ 2 ε ) . (3.84)
Let r ε be given by

r ε = sup r ∈ (0, ρ ε ] s.t. |ū ε -B ε | ≤ 1 γ ε in B xε (r) . (3.85)
Observe that r ε ≫ µ ε by Step 3.5 and Appendix A. Then, we state the following key result.

Step 3.7. We have that

ūε (r ε ) = B ε (r ε ) + o 1 γ ε (3.86)
and then that r ε = ρ ε for all 0 < ε ≪ 1. Moreover, there exists C > 0 such that

|∇(B ε -u ε )| ≤ C ρ ε γ ε in B xε (ρ ε ) (3.87)
for all 0 < ε ≪ 1, where (x ε ) ε is as in (3.13), B ε as in (3.81), ūε as in (3.82), ρ ε as in (3.83) and r ε as in (3.85).

Since

B ε (x ε ) = u ε (x ε ) = γ ε , (3.87) obviously implies that |B ε -u ε | ≤ C | • -x ε | ρ ε γ ε in B xε (ρ ε ) (3.88)
for all 0 < ε ≪ 1. Then, combined with Appendix A, Step 3.7 provides pointwise estimates of the u ε 's in B xε (ρ ε ).

Proof of Step 3.7. The proof of Step 3.7 follows the lines of [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF]Section 3]. We only recall here the argument in the more delicate (Case 1). Let v ε be given by

u ε = B ε + v ε . ( 3 

.89)

By Appendix A, we have that B ε is well defined, radially decreasing in B xε (ρ ε ), and that

B ε = γ ε - t ε γ ε + o t ε γ ε (3.90)
uniformly in B xε (ρ ε ) as ε → 0, where t ε is given by (3.41). Then, we get first from (3.83) and (3.90) the following lower bound:

min Bx ε (rε) B ε ≥ γ ε (ε 0 + o(1)) .
Let us introduce now an intermediate radius rε given by rε = sup r ∈ (0, r ε ] s.t.

ε 0 γ ε 2 |x ε -•||∇u ε | ≤ C in B xε (r) ,
for C as in (3.52). We prove now that rε = r ε for all ε ≪ 1. Indeed, by Wirtinger's inequality on ∂B 0 (r), 0 < r ≤ rε , we have that

|ū ε -u ε | ≤ 2C ε 0 γ ε π ,
so that, by (3.85),

|v ε | = |B ε -u ε | ≤ 2πC ε 0 + 1 γ -1 ε in B xε (r ε ).
Then, we get a lower bound on u ε as well, namely min 

Bx ε (rε) u ε ≥ γ ε (ε 0 + o(1)) , ( 3 
|x ε -•||∇u ε | L ∞ (Bx ε (rε)) = O 1 γ ε , and 
v ε L ∞ (Bx ε (rε)) = O 1 γ ε . (3.92)
We also have that 

B ε ≤ γ ε (3.93) in B xε (r ε
|∆v ε | = |∆(u ε -B ε )| ≤ C ′ λ ε γ 2 ε ϕ Nε-2 (B 2 ε ) |v ε | + o 1 γ ε in B xε (r ε )
all ε, using (3.48), (3.91)-(3.93) and some computations. Then, (3.90) gives Conclusion of the proof of Lemma 3.3. Let ε ′ 0 ∈ (ε 0 , 1) be fixed and let ρ ′ ε > 0 be given by

|∆v ε | ≤ C ′′ exp -2t ε (1 + o(1)) + t 2 ε γ 2 ε µ 2 ε × |v ε | + o 1 γ ε in B xε (r ε ) (3.94) using (3 
t ε (ρ ′ ε ) = (1 -ε ′ 0 )γ 2 ε , (3.95 
) so that, by (3.44)

, (ρ ′ ε ) 2 = exp(-ε ′ 0 (1 + o(1))γ 2 ε ) .
(3.96) In order to conclude the proof of Lemma 3.3, by Steps 3.1-3.7, it remains to prove (2.4), (3.10)-(3.12), that

u ε (y) - 4πG xε (y) γ ε = o G xε (y) γ ε (3.97) uniformly in B xε (ρ ′ ε ) c , that u ε = γ ε - t ε γ ε + S 0,ε γ 3 ε + S 1,ε γ 5 ε + (A(γ ε ) -2ξ ε ) S 2,ε γ ε + o tε ζ ε γ ε (3.98) uniformly in B xε (ρ ′ ε )
, where the S i,ε 's are as in (A.5), and that

u ε (y) = G xε (y) 4π γ ε + 1 i=0 A i γ 3+2i ε + A 2 (A(γ ε ) -2ξ ε ) γ ε + 4B(γ ε ) γ 2 ε exp(1 + H xε (x ε )) Ω G y (x)F (4πG xε (x)) dx + o ζ ε γ ε G xε (y) + |B(γ ε )| γ 2 ε , (3.99) 
uniformly in B xε (ρ ′ ε ) c , as ε → 0, where F and B(γ ε ) are given in (1.6), where the A i 's are as in (A.3), and where ζ ε is given in (A.8).

• (1) In this first point, we aim to get pointwise estimates of the u ε 's out of B xε (ρ ′ ε ). Let G be the Green's function in (1.8). It is known that (see for instance [10, Appendix B]) there exists C > 0 such that

|∇ y G x (y)| ≤ C |x -y| and 0 < G x (y) ≤ 1 2π log C |x -y| (3.100) 
for all x, y ∈ Ω, x = y. By (3.87) and since u ε

2 H 1 0 ≤ 4π, it is possible to prove (see for instance the proof of [10, Claim 4.6]) that, given p < 1/ε ′ 0 , exp(u 2 ε ) L p (Bx ε (ρ ′ ε /2) c ) = O(1) (3.101) 
for all ε, where

B xε (ρ ′ ε /2) c = Ω\B xε (ρ ′ ε /2). In the sequel, p ′ > 1 is choosen such that 1 p + 1 p ′ < 1 . Let now (z ε ) ε be any sequence of points in B xε (ρ ′ ε ) c
. By the Green's representation formula and (3.26), we can write that

u ε (z ε ) = λ ε 2 Ω G zε (y)Ψ ′ Nε (u ε (y)) dy .
By (3.100), we have that there exists C > 0 such that

|G zε (x ε ) -G zε | ≤ C |x ε -•| ρ ′ ε (3.102) in B xε (ρ ′ ε /2
) for all ε. Set tε = 1 + t ε . By (3.44) and (3.84), we have that

| • -x ε | γ ε ρ ε = o tε γ 5 ε in Ωε := {y s.t. t ε (y) ≤ γ ε }
as ε → 0, and then, by (3.88), (A.9) holds true for v ε as in (3.89). Independently, using (3.29), (3.40), (3.88) and (A.3) with (A.7), we clearly get that there exists C > 0 such that

λ ε |Ψ ′ Nε (u ε )| ≤ C exp -2t ε + t 2 ε γ 2 ε µ 2 ε γ ε in B xε (ρ ′ ε /2) (3.103) 
for all ε. Then, we get that

u ε (z ε ) = G zε (x ε ) Bx ε (ρ ′ ε /2) λ ε Ψ ′ Nε (u ε ) 2 dy + O   Bx ε (ρ ′ ε /2) exp -2t ε + t 2 ε γ 2 ε | • -x ε | µ 2 ε γ ε ρ ′ ε dy   + O (λ ε u ε L p ′ ) , = G zε (x ε ) 4π γ ε 1 + 1 γ 2 ε + A(γ ε ) -2ξ ε 2 + o( ζε ) + o 1 γ ε + o ( u ε L p ′ ) , (3.104) 
where ζε is given by (3.15). We start by focusing on the first equality of (3. 

u ε L p ′ = o 1 γ ε + u ε L p ′ + O 1 γ ε .
This implies with (3.104) that

u ε (z ε ) = 4πG zε (x ε ) γ ε 1 + 1 γ 2 ε + A(γ ε ) -2ξ ε 2 + o( ζε ) + o 1 γ ε . (3.105) 
• (2) In this second point, we prove that

λ ε ≤ 4 + o(1) γ 2 ε exp(1 + M ) (3.106)
as ε → 0, for M as in (1.9). Observe that (3.105) implies that (3.107) Independently, (A.7) and (3.88) give that

u ε = (1 + o(1)) 4πG xε + o(1) γ ε in Ω\B xε (ρ ε ). By (1.
u ε = γ ε - (1 + o(1))t ε γ ε (3.108) in B xε (ρ ε ), since µ ε ≪ ρ ε .
Then, using (3.30), (3.45), ε 2 0 > 1/e and resuming the arguments to get (3.55), we have that [START_REF] Carleson | On the existence of an extremal function for an inequality of J. Moser[END_REF] In this point, we conclude the proof of (3.10), and prove (2.4) and (3.12). For R > 1, let χ ε,R be given in Ω ε,R := Ω\B xε (Rµ ε ) by

Ψ Nε (u ε ) = (1 + o(1))ϕ Nε-1 (u 2 ε ) and Ψ ′ Nε (u ε ) = 2(1 + o(1)) u ε ϕ Nε-1 (u 2 ε ) (3.109) in B xε (ρ ε ). Independently, observe that, for all Γ, δ > 0, ϕ N (Γ) = δ exp(Γ) =⇒ ∀T ∈ [0, Γ] , ϕ N (T ) ≤ δ exp(T ) , (3.110 
) since ϕ ′ N ≥ ϕ N in [0, +∞]. Then we get that Bx ε (ρε) Ψ Nε (u ε )dy = 4π(1 + o(1)) γ 2 ε λ ε (3.
χ ε,R = 4πΛ ε,R G xε ,
for Λ ε,R > 0 to be chosen later such that

χ ε,R ≤ u ε on ∂B xε (Rµ ε ) . (3.112) 
Integrating by parts, we can write that

Ωε,R |∇u ε | 2 dy = Ωε,R |∇χ ε,R | 2 dy -2 ∂Bx ε (Rµε) (∂ ν χ ε,R )(u ε -χ ε,R )dσ + Ωε,R |∇(u ε -χ ε,R )| 2 dy , ≥ Ωε,R |∇χ ε,R | 2 dy , (3.113) 
where ν is the unit outward normal to the boundary of B xε (Rµ ε ), using (3.112). Indeed, by [10, Appendix B] for instance, since d(x ε , ∂Ω) ≫ µ ε by Step 3.5, we have that 

∂ ν G xε = - 1 2πRµ ε + O 1 d(x ε , ∂Ω) on ∂B xε (Rµ ε ) . ( 3 
Λ ε,R = 1 γ ε 1 - log(1 + R 2 ) + o(1) γ 2 ε × 1 + log δελεγ 2 ε 4R 2 + H xε (x ε ) + o (1) γ 2 ε -1 , (3.115) 
with δ ε ∈ (0, 1] as in (3.30). In (3.115), we use

|H xε -H xε (x ε )| = O µ ε d(x ε , ∂Ω) = o(1)
uniformly in ∂B xε (Rµ ε ), using Step 3.5 and computing as in (3.21). Now, by (1.8), (3.44), (3.84), and (3.114), we compute and get first that

Ωε,R |∇χ ε,R | 2 dy ≥ - ∂Bx ε (Rµε) (∂ ν χ ε,R )χ ε,R dσ , ≥ 4π 1 - 2 log(1 + R 2 ) + o(1) γ 2 ε 1 + log δελεγ 2 ε 4R 2 + H xε (x ε ) + o(1) γ 2 ε -1
, using also (3.115). Independently, we compute and get also that 

Bx ε (Rµε) |∇u ε | 2 dy = 4π γ 2 ε log(1 + R 2 ) - R 2 1 + R 2 + o(
log δ ε λ ε + H xε (x ε ) γ 2 ε ≥ o(1) .
Moreover, using also the definition (1.9) of M , (3.106), δ ε ≤ 1 and that R > 0 may be arbitrarily large, we get together that

δ ε → 1 , (3.116) 
and that (3.10) and (3.12) hold true. As a remark, in (Case 2) where N ε = 1, (3.116) is a direct consequence of the definition (3.30) of δ ε . Then, (2.4) follows from (3.10), (3.107) and (3.111).

• (4) Now we prove (3.11). Since ε ′ 0 > ε 0 , we get from (3.84), (3.88), (3.96) and (A.7) that • (5) Here, we conclude the proof of Lemma 3.3. As an immediate consequence of (3.105), we get that (3.97) holds true. Pushing now one step further the above computations with very similar arguments, we get that (3.98) holds true as well. At last, using in particular (3.10) with (1.6) to improve the estimates in Point [START_REF] Adimurthi | Blow-up analysis in dimension 2 and a sharp form of Trudinger-Moser inequality[END_REF] of this proof, we get (3.99). Lemma 3.3 is proved.

u ε = γ ε - t ε γ ε - t ε γ 3 ε -(A(γ ε ) -2ξ ε ) t ε 2γ ε + o t ε ζε γ ε (3.

Proof of Proposition 2.1

Proof of Proposition 2.1. We make the assumptions of Lemma 3.3 in (Case 2) with α ε = 4π(1ε). In particular, we assume that u ε is a maximizer for (I g 4π(1-ε) (Ω)), for all 0 < ε ≪ 1, and that (2.1) holds true. Then, Lemma 3.3 in (Case 2) will be currently applied in the sequel. In particular, we may let λ ε , γ ε , x ε , µ ε be thus given and it only remains to prove (2.5)-(2.6) to get Proposition 2.1.

Let z ∈ Ω be given. In view of (3.99), for γ, µ > 0, we let now U µ,γ,z be given by

U µ,γ,z (x) = 1 γ -log 1 + |x -z| 2 µ 2 + log 1 µ 2 + H -1,µ,z (x) + 1 i=0 1 γ 3+2i S i x -z µ + A i 4π log 1 µ 2 + H i,µ,z (x) -B i + A(γ) γ S 2 x -z µ + A 2 4π log 1 µ 2 + H 2,µ,z (x) -B 2 + 4B(γ) γ 2 exp(1 + H z (z)) Ω G x (y)F (4πG z (y)) dy , (4.1) 
where the S i are given by (A.2), where the A i , B i are as in (A.3), where H is as in (1.8), where the H j,µ,z are harmonic in Ω and given by

H -1,µ,z = -log 1 µ 2 + |z -•| 2 or by H j,µ,z = - 4π A j S j • -z µ -B j + log µ 2
on ∂Ω, for j ∈ {0, 1, 2}. By the maximum principle and (A.3), we have that H j,µ,z (x) → H z (x) and |∂ µ H j,µ,z (x)| ≤ Cµ uniformly in x ∈ Ω as µ → 0, for all j.

Then, setting f γ (µ) = γ -1 U µ,γ,z (z) -1, using that S i (0) = 0 and (4.1), it may be easily checked that

f γ (µ) = -γ -2 log µ 2 (1 + o(1)) -1, C 1 -uniformly in µ ∈ (0, µ(γ))
as γ → +∞, where µ(γ) is given bylog µ(γ) 2 = γ 2 /2. In particular, there exists γ ≫ 1 such that lim µ→0 f γ (µ) = +∞, f γ (µ(γ)) < 0 and f ′ γ < 0 in (0, µ(γ)), so that there exists a unique μ(γ, z) ∈ (0, µ(γ)) such that f γ (μ(γ, z)) = 0 for all γ ≥ γ. Fixing K a compact of Ω, it is clear that γ can be chosen independent of z ∈ K; in particular, we may let με := μ(γ ε , z) be the unique µ ∈ (0, µ(γ ε )) given by

U µ,γε,z (z) = γ ε (4.2)
for all ε small. We denote from now on Hj,ε,z := H j,με,z and U ε,z := U με,γε,z . The following result concludes the proof of Proposition 2.1.

Lemma 4.1. We have that

S = Ω G x(y)F (4πG x(y)) dy , if γ -3 ε B(γ ε ) γ -4 ε + |A(γ ε )| → 0 (4.3)
as ε → 0, where S is as in (1.9) and x as in (3.12). Moreover, (2.5) holds true in any case.

Proof of Lemma 4.1. Let K be a compact subset of Ω and (z ε ) ε be a given sequence of points of K. For simplicity, we let in the proof below ζε be given by

ζε = max 1 γ 4 ε , |A(γ ε )|, |B(γ ε )| γ 3 ε . (4.4) 
• (1) We first derive the following more explicit expression of the με from (4.2):

4 μ2 ε exp(γ 2 ε )γ 2 ε = 4 γ 2 ε exp(1 + H zε (z ε )) 1 + O ζε + γ 4 ε |A(γ ε )| 2 × 1 - γ 2 ε A(γ ε ) 2 - 4B(γ ε ) γ ε exp(1 + H zε (z ε )) Ω G zε (y)F (4πG zε (y)) dy (4.5)
as ε → 0. By the maximum principle and (A.3), we get that there exists C K > 0 such that | Hj,ε,zε | ≤ C K in Ω, so that, by elliptic theory, the Hj,ε,zε 's are also bounded in C 1 loc (Ω) for all ε and j. We get from (4.2) that log

1 μ2 ε -γ 2 ε ≤ C ′ K , and then that Hj,ε,zε -H zε ≤ C ′′ K γ 8 ǫ exp -γ 2 ε in Ω , (4.6) 
for all 0 < ε ≪ 1 and j ∈ {-1, ..., 2}, by the maximum principle, (1.8) and (A.3).

Rewriting then (4.2) as

γ 2 ε = log 1 μ2 ε 1 + A 0 4πγ 2 ε + A 1 4πγ 4 ε + A(γ ε )A 2 4π + H zε (z ε ) 1 + A 0 4πγ 2 ε - B 0 γ 2 ε + 4B(γ ε ) γ ε exp(1 + H zε (z ε )) Ω G zε (y)F (4πG zε (y)) dy + O γ -4 ε + |A(γ ε )| ,
we easily get (4.5), using (3.16) and (A.3) with A1 4π -

A 2 0 16π 2 -B 0 = 0. • (2) We prove now that Ω |∇U ε,zε | 2 dx = 4π 1 + I zε (γ ε ) + o ζε (4.7)
as ε → 0, where I zε (γ ε ) is given by

I zε (γ ε ) = γ -4 ε + A(γ ε ) 2 + 4B(γ ε ) γ 3 ε exp(1 + H zε (z ε )) Ω G zε (y)F (4πG zε (y)) dy (4.8)
and where U ε,zε is given by (4.1)-(4.2). By (1.6) and elliptic theory,

x → Ω G x (y)F (4πG zε (y)) dy ε is a bounded sequence in C 1 ( Ω) . (4.9) 
By construction of the Hj,ε,zε , we can write that 

γ ε + ∆ S0,ε γ 3 ε + ∆ S1,ε γ 5 ε + A(γ ε )∆ S2,ε γ ε × γ ε - tε γ ε + S0,ε γ 3 ε + O |A(γ ε )| γ ε + 1 γ 5 ε (1 + tε ) + |y -z ε | γ ε dy + o(γ -4 ε ) + {y: tε(y)≥γε(γε-1)} O μ2 ε γ 4 ε + 4B(γ ε ) γ 2 ε exp(1 + H zε (z ε )) F (4πG zε (y)) × 4πG zε (y) γ ε + O G zε (y) γ 3 ε + |B(γ ε )| γ 2 ε dy , (4.10) 
where tε (y) = log 1 + |yz ε | 2 /μ 2 ε and Si,ε = S i (|yz ε |/μ ε ). We use also here (1.8) with (3.16), and the estimates of Point (1) of this proof, including (4.5)-(4.6). The integral on { tε ∈ (γ ε , γ ε (γ ε -1))} gives a o(γ -4 ε ) term. Estimate (4.7) follows from (4.10), Appendix A and some computations that we do not develop here again (see also [START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF], 5).

• (3) We prove now that

Ω |∇u ε | 2 dx = 4π 1 + I xε (γ ε ) + o ζε (4.11)
as ε → 0, where I xε (γ ε ) is given by (4.8), for (x ε ) ε as in (3.13). Now, we can push one step further the argument involving (3.118), writing now that both formulas (3.98) and (3.99) must also coincide on ∂B xε (ρ ′ ε ), where ρ ′ ε > 0 is as in (3.95). We compute and then get for µ ε in (3.40) the analogue of (4.5) for με 

λ ε H(γ ε ) = 4 µ 2 ε exp(γ 2 ε )γ 2 ε 1 + o 1 γ 4 ε = 4 γ 2 ε exp(1 + H xε (x ε )) 1 + o γ 2 ε ζε × 1 - γ 2 ε A(γ ε ) 2 - 4B(γ ε ) γ ε exp(1 + H xε (x ε )) Ω G xε (
Ω |∇u ε | 2 dx = Ω u ε λ ε H(u ε )u ε exp(u 2 ε ) dx , = Ω U ε,xε ∆U ε,xε dx + o ζε . (4.13) 
In order to get the second equality and to apply the dominated convergence theorem, it may be useful to split Ω according

Ω = {y s.t. t ε (y) ≤ γ ε } ∪ y s.t. t ε (y) > γ ε and log 1 |x ε -y| 2 ≥ 1 -δ ′ 0 2 γ 2 ε ∪ y s.t. log 1 |x ε -y| 2 < 1 -δ ′ 0 2 γ 2 ε ,
where δ ′ 0 is as in (1.6), and to use the first line of (4.12) with (1.5) (resp. with (3.29)) in the first region (resp. in the second region), or (1.6)-(1.7) in the last region. Observe that the argument here is to show that U ε,xε (resp. ∆U ε,xε ) is in some sense the main part of the expansion of u ε (resp. ∆u ε ). Thus we get (4.11) from (4.7) and (4.13).

• (4) We prove now that, for any fixed sequence (η ε ) ε of real numbers such that η ε = o(γ -2 ε ), we have that

Ω (1 + g(V ε,zε )) exp V 2 ε,zε dy = |Ω|(1 + g(0)) + π exp(1 + H zε (z ε ))(1 -η ε γ 2 ε )× H(γ ε ) 1 + γ 2 ε I zε (γ ε ) + 1 γ 2 ε + o γ 2 ε ζε + |η ε | × 1 + 8B(γ ε ) γ ε (κ + 1) exp(1 + H zε (z ε )) Ω G zε (y)F (4πG zε (y)) dy , (4.14) 
where κ is as in (1.6) and where V ε,zε ≥ 0 is given by

V 2 ε,zε = (1 -η ε )U 2 ε,zε , (4.15) 
where U ε,zε is given in (4.1). Computations in the spirit of the proof of (4.13) give that 

Ω (1 + g(U ε,xε )) exp U 2 ε,xε dy = Ω (1 + g(u ε )) exp u 2 ε dy + o γ
(1 + g(u ε )) exp u 2 ε dy = |Ω|(1 + g(0)) + π exp(1 + H xε (x ε ))H(γ ε )× 1 + γ 2 ε I xε (γ ε ) + 1 γ 2 ε + o γ 2 ε ζε × 1 + 8B(γ ε ) γ ε (κ + 1) exp(1 + H xε (x ε )) Ω G xε (y)F (4πG xε (y)) dy .
(4.17)

It remains to prove (4.14). We compute and get that

U ε,zε (y) 2 = γ 2 ε -2 tε + t2 ε γ 2 ε + 2 S0,ε γ 2 ε +O (|A(γ ε )| + γ -4 ε )(1 + tε (y) 2 ) + |y -z ε | (4.18)
for all y such that tε (y) ≤ γ ε , using (1.7), (4.1)-(4.2), (4.5), (4.9) and (A.3). Then we get 

{ tε≤γε} (1 + g(V ε,zε )) exp(V 2 ε,zε )dy = { tε≤γε} H(γ ε )(1 + O(|A(γ ε )| exp(δ 0 tε ))) exp(γ 2 ε ) exp(-2 tε ) exp(-η ε γ 2 ε )× exp t2 ε + 2 S0,ε γ 2 ε exp O |η ε | + |A(γ ε )| + γ -4 ε (1 + t2 ε ) + |y -z ε | dy , using (3 
{ tε≤γε} (1 + g(V ε,zε )) exp(V 2 ε,zε )dy = (1 -η ε γ 2 ε )H(γ ε ) exp(H zε (z ε ) + 1) 4 1 + o γ 2 ε (|A(γ ε )| + |η ε |) + γ -2 ε × 1 + γ 2 ε A(γ ε ) 2 + 4B(γ ε ) γ ε exp(H zε (z ε ) + 1) × Ω G zε (x)F (4πG zε (x))dx + o B(γ ε ) γ ε × 4π 1 + 2 γ 2 ε . (4.19) 
Independently, we get from (1.6), (3.1) (parts a) and b) in {y , 4πG zε (y) ≤ γ ε /2}, or part c) otherwise), (4.1), (4.5) and the dominated convergence theorem that [START_REF] De Figueiredo | A priori estimates and existence of positive solutions of semilinear elliptic equations[END_REF] We are now in position to conclude the proof of Lemma 4.1. Let x0 be a point in the compact K Ω ⊂⊂ Ω where S is attained in the third equation of (1.9). Let η ε be given by

{ tε≥γε} (1 + g(V ε,zε )) exp(V 2 ε,zε )dy = |Ω| (1 + g(0)) + 8πB(γ ε ) γ ε (κ + 1) Ω G zε (y)F (4πG zε (y)) dy + o |B(γ ε )| γ ε + 1 γ 2 ε . ( 4 
(1 -η ε ) = 4π(1 -ε) U ε,x0 2 
H 1 0 . (4.21) 
First, we can check that 2), and let A, B and F be thus given. Assume that Λ g (Ω) < π exp(1 + M ), where M is as in (1.9) and Λ g (Ω) as in (1.11). Assume that there exists a sequence of positive integers (N ε ) ε such that (2.9) holds true and such that (I gN ε 4π (Ω)) admits a nonnegative extremal u ε for all ε > 0, where g Nε is as in (1.10). Then, by Lemma 3.3 in (Case 1), we have (2.1) and that (3.8) holds true for α ε = 4π, for all 0 < ε ≪ 1. Moreover, we have u ε ∈ C 1,θ ( Ω) (0 < θ < 1) and (2.3) by (3.13). In order to conclude the proof of Proposition 2.2, it remains to prove (2.10). Still by Lemma 3.3 in (Case 1), (3.97)-(3.99) and (A.9) (v ε as in (3.89)) hold true. Concerning (3.97)-(3.99) and (A.9), observe that, contrary to (Case 2), the term ξ ε cannot be neglected in (Case 1) we are facing here. Indeed, using also now (3.30), (3.40), (3.110) and (A.9), we can resume computations of (4.10), (4.13) and Appendix A (now with (3.11)

η ε = I x0 (γ ε ) -I xε (γ ε ) + o( ζε ) , ( 4 
(1 + g(u ε )) exp(u 2 ε ) dy ≥ Ω (1 + g(V ε,x0 )) exp(V
) to get that u ε 2 H 1 0 = 4π 1 + Ǐ(γ ε ) + o γ -4 ε + |A(γ ε )| + γ -3 ε |B(γ ε )| + ξ ε as ε → 0, where Ǐ(γ ε ) := γ -4 ε + (A(γ ε ) -2ξ ε )/2 + 4γ -3 ε exp(-1 -M )B(γ ε )S
, so that (2.10) holds true, which concludes.

Appendix A. Radial analysis

Let (x ε ) ε be a sequence of points in R 2 and (γ ε ) ε be a sequence of positive real numbers such that γ ε → +∞ as ε → 0. Let g be such that (1.1) and (1.5) holds true for H as in (1.2), and let A be thus given. Let (N ε ) ε be a sequence of integers. We assume that we are in one of the following two cases: Let S i , i = 0, 1, 2, be the radially symmetric solutions around 0 in

R 2 of ∆S 0 -8 exp(-2T 0 )S 0 = 4 exp(-2T 0 ) T 2 0 -T 0 , ∆S 1 -8 exp(-2T 0 )S 1 = 4 exp(-2T 0 ) S 0 + 2S 2 0 -4T 0 S 0 + 2S 0 T 2 0 -T 3 0 + T 4 0 2 , ∆S 2 -8 exp(-2T 0 )S 2 = 4 exp(-2T 0 )T 0 , (A.2)
such that S i (0) = 0. In the sequel, we will use the following C 1 expansions of the S i 's given by

S 0 (r) = A 0 4π log 1 r 2 + B 0 + O log(r) 2 r -2 where A 0 = 4π, B 0 = π 2 6 + 2 , S 1 (r) = A 1 4π log 1 r 2 + B 1 + O log(r) 4 r -2 where A 1 = 4π 3 + π 2 6 , B 1 ∈ R , S 2 (r) = A 2 4π log 1 r 2 + B 2 + O log(r)r -2 where A 2 = 2π, B 2 ∈ R , (A.3) 
as r = |x| → +∞. Note that in particular

A i = R 2 ∆S i dx . (A.4)
The explicit formula for S 0

S 0 (r) = -T 0 (r) + 2r 2 1 + r 2 - 1 2 T 0 (r) 2 + 1 -r 2 1 + r 2 1+r 2 1 log t 1 -t dt ,
and the expansions in (A.3) are derived in [START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF][START_REF] Mancini | The Moser-Trudinger inequality and its extremals on a disk via energy estimates[END_REF]. Let ε 0 ∈ ( 1/e, 1) be given. Let µ ε be given by (3.40) and t ε by (3.41). Let ρ ε > 0 be given by (3.83) and satisfying (3.84). Let S i,ε be then given by

S i,ε (x) = S i |x -x ε | µ ε , (A.5)
for i = 0, 1, 2. Let ξ ε > 0 be given by (3.14). In (Case 1) where

N ε → +∞ as ε → 0, we get that ξ ε = O(N -1/2 ε
) by (3.30) and (3.45). Then, in any case, we clearly have that ξ ε → 0 (A.6) as ε → 0. Then we are in position to state the main result of this section.

Proposition A.1. We have that

B ε = γ ε - t ε γ ε + S 0,ε γ 3 ε + S 1,ε γ 5 ε +(A(γ ε )-2ξ ε ) S 2,ε γ ε +o t ε 1 γ 5 ε + |A(γ ε )| + ξ ε γ ε (A.7)
uniformly in [0, ρ ε ] as ε → 0.

In particular, using also (1.1) and (3.3), it can be checked that B ε is positive and radially decreasing in [0, ρ ε ]. Observe also that ξ ε ≪ γ -4 ε can be seen as a remainder term in (Case 2). Let ζ ε > 0 be given by 

λ ε Ψ ′ ε (B ε + v ε ) 2 = 4 exp(-2t ε ) µ 2 ε γ ε 1 + (∆S 0 ) •-xε µε γ 2 ε + (∆S 1 ) •-xε µε γ 4 ε + (A(γ ε ) -2ξ ε ) (∆S 2 ) • -x ε µ ε + o ζ ε exp( δ0 t ε ) (A.9)
uniformly in {y s.t. t ε (y) ≤ γ ε }, for some given δ0 ∈ (δ 0 , 1), for δ 0 as in (1.5).

Proof of Proposition A.1. Since both arguments are very similar to prove (Case 1) and (Case 2), for the sake of readability, we only write the proof of Claim A.1 in the more delicate (Case 1). Then, assume that we are in (Case 1). We let τ ε be given by

B ε = γ ε - τ ε γ ε . (A.10)
Let wε be given by Now, since δ > 0 may be arbitrarily small, in order to get Claim A.1, it is sufficient to prove that rε = ρ ε , for all 0 < ε ≪ 1. Using (A.12), we perform computations in [0, rε ] and the subsequent o(1) are uniformly small in this set as ε → 0. First, by (1.5), (A.3), (A.6) and (A.12), we have that as ε → 0. Thus, by Stirling's formula, we get that

B ε = γ ε - t ε γ ε + S 0,ε γ 3 ε + S 1 
τ ε = t ε (1 + o( 1 
B 2Nε ε /(N ε !) ≥ exp N ε log γ 2 ε N ε + log ε 2 0 + 1 + o(1)
and then, for all given integer k ≥ 0, that

B k ε = o(1) × B 2Nε ε N ε ! (A.18)
in [0, rε ] as ε → 0, using ε 

λ ε Ψ ′ Nε (B ε ) 2 = 4 µ 2 ε γ ε 1 - τ ε γ 2 ε O(exp(-γ 2 ε )) + ϕ Ñε (B 2 ε ) ϕ Ñε (γ 2 ε ) × 1 + L H ε + O B 2Nε ε N ε ! ϕ Ñε (B 2 ε ) L g ε (A.20)
in [0, rε ], as ε → 0. Indeed, by (A.17 

ϕ Ñε (B 2 ε ) ϕ Ñε (γ 2 ε ) = exp(B 2 ε -γ 2 ε ) -F ε ,
where F ε satisfies in [0, rε ] for all y ∈ R and all integer N ≥ 0. Then we draw from (A.23) that (A.27) concludes the proof of (A.30). Now, we prove that, in (Case A) of (A.27), we have that Observe that f and β → f (β) + (1 -2β)/2 are negative in [0, 1) and [0, 1/2] respectively. Moreover, because of (Case A) and by (3.31), we can check that

F ε = B 2 Ñε ε Ñε !ϕ Ñε (γ 2 ε ) γ 2 ε -B 2 ε 0 exp (-u) 1 + u B 2 ε Ñε du , = exp(B 2 ε ) ϕ Ñε (γ 2 ε ) γ 2 ε B 2 ε exp(-s) s Ñε Ñε ! ds , = ξ ε exp(B 2 ε -γ 2 ε ) 0 B 2 ε -γ 2
1 - τ ε γ 2 ε exp(B 2 ε -γ 2 ε ) = exp(-2t ε ) 1 + 1 γ 2 ε 2S 0,ε + t 2 ε -t ε + 1 γ 4 ε 2S 1,ε + 2S 2 0,ε + t 4 ε 2 + 2S 0,ε t 2 ε -4S 0,ε t ε -t 3 ε + S 0,ε
β ε = Ñε γ 2 ε ≤ 1 1 + 1 √ Ñε ≤ 1 - 1 + o(1) Ñε ≤ 1 - 1 + o(1) γ ε ,
since γ 2 ε ≥ Ñε + Ñε , and then that 0 < -f (β ε ) 1/γ ε . (A.39) Thus, we get (A.36) from the first estimate of (A.37) with (A.39), from the second estimate of (A.37) with 1ε 0 < 1 -1/e < 1/2 and from (A.38). Computing as in (A.37), we get also that

ξ ε = o 1 γ 4 ε (A.40)

a) H γ - t γ = H(γ) 1 +

 1 A(γ)t + o(|A(γ)| + γ -4 ) in C 0 loc (R t ) , as γ → +∞ , b) ∃C > 0 , H γ -t γ -H(γ) ≤ C|H(γ)|(|A(γ)| + γ -4 )exp(δ 0 t)for all γ ≫ 1 and all 0 ≤ t ≤ γ 2 , c) lim γ→+∞ A(γ) = 0 .

  x∈Ω H x (x) , K Ω = {y ∈ Ω s.t. H y (y) = M } and S = max z∈KΩ Ω G z (y)F (4πG z (y))dy ,

Lemma 3 . 3 .

 33 Let Ω be a smooth bounded domain of R 2 . Let g be such that (1.1) and (1.5)-(1.6) hold true, for H as in (1.2), and let A, B and F be thus given. Let (α ε ) ε be a sequence of numbers in (0, 4π]. Let (N ε ) ε be a sequence of positive integers. Assume that lim ε→0 α ε = 4π and that u ε ≥ 0 is an extremal for (I gN ε αε (Ω)) ,(3.6) 

. 15 )

 15 At last, (3.97)-(3.99) below hold true, for µ ε as in (3.40) and t ε as in (3.41).

  ) and then Step 3.1 follow from (3.22) and (3.23), choosing z ε ∈ K Ω as in (1.9).

Step 3 . 4 .Ψ

 34 By (2.1), we have that u ε → 0 a.e. and in L p , for all p < +∞. Since uε≤M0 Ψ Nε (u ε )dx → (1 + g(0))|Ω|, by (3.24) one has that lim inf ε→0 uε>M0 Nε (u ε )dx ≥ π exp(1 + M ) for all given M 0 > 0; one can now use (3.27) with (1.1), (3.

µ 2 ε = γ 2 ε

 22 .43) At this stage, by taking the log of (3.40), by estimating λ ε with (3.38) and (3.43) we get from (3.3) and (3.30) that log 1 (1 + o(1)) (3.44) as ε → 0. Observe in particular that (3.44) holds true in (Case 1).

  .45) by Stirling's formula. Then, by (1.1), (3.3), (3.13), (3.27) and (3.30), we have that

  we get from (3.26), (3.40) and (3.46), that there exists C > 0 such that |∆τ ε | ≤ C, while τ ε ≥ 0, τ ε (0) = 0. As in [9, p.231], we have that µ ε = o(d(x ε , ∂Ω)). Then, by standard elliptic theory, there exists τ 0 such that

) using ( 3 .

 3 64) and ϕ ′ N (t) ≥ ϕ N (t) for t ≥ 0. But (3.64)-(3.65) cannot hold true simultaneously, which proves (3.63). As in [9, p.231], ũε (0) = 0, u ε = 0 on ∂Ω, standard elliptic theory, ũε (0) = 0, (3.61), (3.63) and (3.66) give that ũε → u 0 in C 1 loc (R 2 ) (3.67) as ε → 0, for some u 0 ∈ C 1 (R 2 ). Given R > 0, we prove now that lim inf ε→0 inf z∈ ΩR,ε (∆ũ ε )(z) > 0 . (3.68) Using (3.27), (3.56) and (3.67), we have that

  for all ε, using (3.51), (3.70) and (3.77). Then, since λ ε = o(1), we get from (3.70), (3.75) and (3.78) (with p ≥ 4) that ∆ wε → 0 in L ∞ loc (R 2 \{x}) (3.79) as ε → 0. By (3.70), (3.76) and (3.77), given R > 1 and zε ∈ ΩR,ε \B x(1/R), we get that

  ). By combining (3.26) and (3.81), (3.92) allows to linearize (3.81) to control v ε . More precisely, (1.5) and Lemma 3.2 permit to compute the variations of Ψ ′ Nε in (3.27), even if g is only C 1 in (1.1), so that Ψ ′ Nε is only continuous. Namely, we get from a) and c) in (1.5) and from Lemma 3.2 (for γ = B ε ) that

  .30), (3.40) and (3.45). Starting now from (3.92)-(3.94), we can compute and argue as in [10, Section 3] in order to get (3.86)-(3.87).

  104): (3.102) and (3.103) are used to get the first two terms; the last term is obtained from (3.29), (3.100), (3.101) and Hlder's inequality. We focus now on the second equality of (3.104), resuming the previous one term by term: the first term is easily computed by integrating (A.9) in Ωε and by plugging the values of the A i 's from (A.2)-(A.4) on the one hand, and by estimating roughly in B xε (ρ ′ ε )\ Ωε with (3.103) on the other hand; the last term obviously follows from λ ε = o(1); as to the o(1/γ ε ), we get first O(µ ε /(ρ ′ ε γ ε )) using ε 0 > 1/2, which clearly concludes by (3.95). Using first that u ε ≤ γ ε and (3.84) in B xε (ρ ε ), and then (3.104) with (3.100) in Ω\B xε (ρ ε ), we get that

  1) and (3.100), our definition of ρ ε and the dominated convergence theorem, this implies that lim ε→0 Ω\Bx ε (ρε) Ψ Nε (u ε )dy = |Ω|(1 + g(0)) .

  111) as ε → 0, by (3.30), (3.40), (3.108), (3.109), with (3.48) for |yx ε | µ ε , or with (3.110) and the dominated convergence theorem for |yx ε | ≫ µ ε . Then, because of (3.6), we get that (3.106) holds true, by combining (3.107), (3.111) with (3.24). •

≤

  4π and by(3.6) and (3.113), we eventually get

Ω

  |∇U ε,zε (y)| 2 dy = Ω ∆U ε,zε (y) U ε,zε (y) dy , = {y: tε(y)≤γε} ∆(-tε )

. 2 )

 2 and (4.15) with(4.18). Then combining η ε = o(γ -2 ε ), (3.16), (4.5), computing explicitly R 2 exp(-2T 0 )S 0 dy = 0 and R 2 exp(-2T 0 )T 2 0 dy = 2π for T 0 as in (3.42), we get that

N

  ε → +∞ as ε → 0, and (3.30)-(3.31) hold true, (Case 1) N ε = 1 for all ε . (Case 2) Let B ε be the radial solution around x ε in R 2 of (3.81), for Ψ N as in (3.25), where (λ ε ) ε is any given sequence of positive real numbers. Let T 0 be given in R 2 by T 0 (x) = log 1 + |x| 2 . (A.1)

ζ ε = max 1 γ 4 ε,

 4 |A(γ ε )|, ξ ε . (A.8) Set tε = 1 + t ε . Resuming the computations below, we get as a by product of Proposition A.1 that, v ε = o tε γ -5 ε implies that

,ε γ 5 ε

 5 + (A(γ ε ) -2ξ ε ) S 2,ε γ ε + ζ ε wε γ ε . (A.11)Let δ > 0 be fixed and let rε ≥ 0 be given by rε = sup r > 0 s.t. | wε | ≤ δt ε in [0, r] . (A.12)

  )) . (A.[START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] Observe that, as soon as we have ∆B ε > 0 in [0, rε ], then B ε is radially decreasing and (3.93) holds true in [0, rε ]. Let L H ε and L g ε be given byH(B ε ) = H(γ ε ) 1 + L H ε and then, (1 + g(B ε )) = H(γ ε ) 1 + L H ε + L g ε . (A.14)In view of (A.10) and (A.13), estimates of L H ε , L g ε are given by (1.5) and (3.2), respectively. We are now in position to expand the right-hand side of (3.81). From now on, it is convenient to denote Ñε = N ε -1 . 83), (A.10) and (A.13) and since rε ≤ ρ ε , we have that min [0,rε] B ε ≥ (ε 0 + o(1))γ ε → +∞ (A.17)

  ), we have that L H ε = o(1) and L g ε = o(1) (A.21) in [0, rε ] as ε → 0, using (1.1), (3.3) and (A.14). In (A.20), the term O(exp(-γ 2 ε )) equals (1 + L H ε )/ϕ Ñε (γ 2 ε ) and we thus get this control by (3.30) and (A.21). In the following lines, we expand the terms of (A.20). By (3.48) with Γ = γ 2 ε and T = B 2 ε , we get that

2 ε- S 1 ,ε γ 4 ε-

 214 [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF]) and (A.11), we may writeτ ε = t ε -S 0,ε γ (A(γ ε ) -2ξ ε ) S 2,εζ ε wε .Then, keeping in mind (A.3), (A.6), (A.12), (A.13) and t ε ≤ γ 2 ε , we may compute exp(B 2 ε -

+ 2 (

 2 A(γ ε ) -2ξ ε ) S 2,ε + 2ζ ε wε rε ] as ε → 0. Independently, by (3.30), (3.45), (A.10), (A.12), (A.13) and since B ε (x ε ) = γ ε , for all given R > 0, we have thatB 2 Ñε ε Ñε ! ϕ Ñε (B 2 ε ) + B 2Nε ε N ε ! ϕ Ñε (B 2 ε )L ∞ ([0,min(Rµε,rε)] rε ], the second inequality being obvious by (3.5) and (A.15). In the sequel, by (3.31), we may assume thatβ β 0 ∈ [0, 1] , (A.26)up to a subsequence. Now, we give estimates for F ε given in(A.22). Up to a subsequence, we can split our results according to the following two cases Case

2 ε 2 ε γ 4 ε.

 224 r ε ≤ ρ ε , we get from(3.14),(3.30),(3.31), (A.29) and by Stirling's formula thatr∈[0,rε],Bε(r) 2 ≥ Ñε+ √ Ñε F ε (r)rdr exp γ 2 ε [f (β ε ) + O((log γ ε )/γ 2 ε )] × µ 2 ε if β 0 > 1/2 , µ 2 ε exp(γ 2 ε (1ε 0 )(1 -2β 0 + o(1))) if β 0 ≤ 1/2 , (A.37)where f is the continuous function in [0, 1] given for β ∈ (0, 1] byf (β) = β log 1 β + β -1 .Independently, since rε ≤ ρ ε , ifr ε ∈ J ε := r ∈ [0, rε ], B ε (r) 2 < Ñε + Ñε , then J ε = ∅and γ Ñε , by (A.10), (A.13) and (A.33). Thus we have that γ ε Ñε ≪ t ε (r ε ) , using that we are in (Case A) for the last estimate. Then, we get from (A.29) that Jε F ε (r)rdr {r≤ρε,tε≥γε} exp (-(1 + ε 0 + o(1))t ε (r)) rdr = o µ (A.38)

  Proof of Step 3.3. Assume by contradiction that (3.8) does not hold true, or in other words that u ε

	2 H 1 0

1,θ 

( Ω).

  using (3.51) for the first line, and (3.27) for the second one.

	Then, using either
	(3.53) or (3.38) with (3.72), we get that	
	∆w ε L p ( ΩR,ε\Bxε (1/R)) → 0	(3.73)
	as ε → 0. Independently, since u ε H 1 0 = O(1), we easy get that	
		(3.76)
	as ε → 0. By (3.56), (3.73), (3.74), and similar arguments including again Harnack's principle, we get that

ΩR,ε |∇w ε | 2 dz = O(1) . (3.74) Observe that |x ε | ≥ 1. Now, we claim that up to a subsequence, ν ε → 0 and d(y ε , ∂Ω) |x εy ε | → +∞ (3.75) as ε → 0. In particular, by (3.71), this implies that ν ε = |x εy ε |. Now we prove (3.75). Indeed, if we assume by contradiction that (3.75) does not hold, for all R ≫ 1 sufficiently large, we get that the (w ε /u ε (y ε ))'s converge locally out of B xε (1/2) to some C 1 function which is 1 at 0 and 0 on the non-empty and smooth boundary of lim R→+∞ lim ε→0 ΩR,ε (maybe after a harmless rotation). We use here the Harnack inequality and elliptic theory with (3.56), (3.73) (with p > 2) and (3.74), since u ε = 0 in ∂Ω. This clearly contradicts (3.74) and (3.75) is proved. Up to a subsequence, we may now assume that xε → x, |x| = 1 ,

  Summarizing what we have just obtained in B xε (r ε ), we may write

.91) so that, by

(3.52)

, the condition in the definition of rε never saturates: rε = r ε for all ε ≪ 1. Observe for this that (3.91) combined with (3.53) (see also the paragraph below (3.53)) and with our assumption eε 2 0 > 1 implies B xε (r ε ) ⊂ Ω ε . Observe in particular that (3.31) provides γ 2 ε ≥ N ε (1 + o(1)).

  117) uniformly in {y ∈ B xε (ρ ′ ε ) s.t. t ε ≥ γ ε /4}, using also (A.3). Then, noting that the averages of (3.105) and (3.117) have to match on ∂B xε (ρ ′ ε ), we compute and get that

	λ ε =	γ 2 ε exp 1 + M +	4 ε (A(γε)-2ξε) γ 2 2	ε ) + o( ζε γ 2	,	(3.118)
	by (3.12), (3.116) and (3.40) with (3.3) and (3.45). Observe in particular that
		1 γ -2 ε G xε 1 , 1 γ -2 ε t ε 1		
	on ∂B xε (ρ ′ ε ), by (3.95) and (3.96) with (1.8) and (3.12). By (3.10) and (3.118),
	(3.11) is proved.					

  2 ε ζε , (4.[START_REF] Malchiodi | Critical points of the Moser-Trudinger functional on a disk[END_REF] not only by combining (1.1), (1.5)-(1.6), Lemma 3.2, (3.12), (3.97)-(3.99) and Appendix A, and by splitting Ω as in (4.10), but also by using (4.5) and (4.12). In particular, once (4.14) is proved, choosing η ε = 0 and z ε = x ε , we get from (4.16) that

	Ω

  2 0 > 1/e with (3.31). Similarly, for all given integer k ≥ 0, , rε ] as ε → 0. Then, by (3.40), (A.10), (A.19) and (A.18), we may rewrite (A.16) as

	we have that		
	B k ε ϕ Nε (B 2 ε )	= o(1)	(A.19)
	in [0		
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Observe that, since we assume (3.31), all the possible situations are considered in (A.27). Let (r ε ) ε be any sequence such that r ε ∈ [0, rε ] (A.28) for all ε. We prove that, in (Case A):

while we get in (Case B):

Now we prove (A.29). We start with the first estimate of (A.29). Then, we assume that B ε (r ε ) 2 ≥ Ñε + Ñε , and thus in particular that

Writing now F ε according to the first formula of (A.22), using (3.93), (A.17) and

we get first that

and conclude the proof of the first estimate of (A.29), by (3.31), (A.13) and (A.31).

In order to prove the second estimate of (A.29), it is sufficient to write F ε according to the second formula of (A.22), to check that

and to use (A.10), (A.13) and (3.30). Now we turn to the proof of (A.30). Then, we assume that (Case B) in (A.27) holds true and in particular that

Writing F ε according to the third estimate of (A.22), we get that

Expanding the log, we easily get the first estimate of (A.30) from (A.13), (A.34), (A.35) and the assumption t ε (r ε ) = o(γ ε ). The second estimate of (A.30) can also be obtained from (A.35) by (A.13), (A.32), (A.33) and (A.34). This in (Case A) (see (A.39)). By (A.13) and the second part of (A.25), using that rε ≤ ρ ε , we may rewrite (A.20) as where, still using radial notations, w′ ε (r) = d wε dr (r). From now on, we estimate wε in [0, rε ] with (A.43). By (1.5) and (A.14), we may expand L H ε in (A.41). Now, since (3.81) holds true, by taking the laplacian of B ε , we get from (A.11) and (A.41) an estimate of ∆ wε and then of the RHS of (A.43), for r ε still as in (A.28). The key observation is that the precise form of the ODE's in (A.2) generates a cancellation, when plugging (A.24) in (A.41). The lower order terms when taking the laplacian of (A.11) are estimated thanks to (A.3). We are left with estimating the lower order terms in (A.41), in both Cases A and B of (A.27). Assume first that we are in (Case A). Estimating these lower order terms amounts to gather the appropriate previous estimates (see (A.21), (A.25), (A.29), (A.36), (A.40), (A.42)). This gives after some a bit long, but elementary computations that

We also use (1.5) and (3.2) to estimate L H ε and L g ε . The first term in the right hand side of (A.44) uses that, for all r ∈ [0, r ε ],

. Observe now that (A.44) still holds true in (Case B) of (A.27), replacing (A.29), (A.36) and (A.40) by (A.30) in the above argument. Since ε 0 > 1/2, we clearly get from (A.43) and (A.44) that, in (Case A) and in (Case B), 

In particular, up to a subsequence, we may assume that there exists α 0 ∈ (0, +∞] such that rε /µ ε → α 0 as ε → 0. Let wε be given by wε (y) = wε (µ ε y)/(µ ε w′ ε L ∞ ([0,rε]) ). By (A.45) and (A.47), we get that ( (1 + •) w′ ε L ∞ ([0,rε/µε]) ) ε is a bounded sequence. Then, computing as in (A.44) and by radial elliptic theory with (3.81), we get that wε

still making usual radial identifications, and where T 0 is given in (A.1). By standard theory of radial elliptic equation, this implies w0 ≡ 0, which contradicts (A.47) and proves (A.46). Then, since wε (0) = 0 and by the fundamental theorem of calculus, we get from (A.45) with (A.46) that rε = ρ ε in (A.12). By the discussion just above (A.13), this concludes the proof of Proposition A.1.