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In this short note, we prove a sharp quantization for positive solutions of Lane-Emden problems in a bounded planar domain. This result has been conjectured by

Introduction

Let Ω be an open, non-empty, connected and bounded subset of R 2 with smooth boundary ∂Ω and let ∆ = -(∂ xx + ∂ yy ) be the (positive) laplacian. In this paper, we are interested in the asymptotic behavior as p → +∞ of a sequence (u p ) p of smooth functions, positive in Ω, and satisfying the so-called Lane-Emden problem

∆u p = |u p | p-1 u p in Ω , u p = 0 on ∂Ω , (0.1) 
together with the bounded-energy type assumption

p Ω |∇u p | 2 ds = O(1) , (0.2) 
for all p. Up to now, the most general results on this problem were obtained by De Marchis, Ianni and Pacella [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF]. In particular, for such a given (u p ) p satisfying (0.1)-(0.2), it is proved in [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF] that, up to a subsequence, there exists an integer n ≥ 1 and a subset B = {x 1 , ..., x n } of Ω such that the following quantization

lim p→+∞ p Ω |∇u p | 2 ds = 8π n j=1 m 2 j (0.3)
holds true, where the m j 's can be obtained through

m j = lim β→0 + lim p→+∞ u p C 0 (Bx j (β)) , (0.4) 
for j ∈ {1, ..., n}, where B xj (β) is the ball of center x j and radius β. Observe that, in particular, the x j 's are not in ∂Ω. It is also proved in [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF] that we necessarily have that m j ≥ √ e , (0.5) for all j ∈ {1, ..., n} and that

lim p→+∞ u p = 0 in C 2 loc ( Ω\B) . (0.6)
In [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF]Remark 1.2], it is conjectured that we must have equality in (0.5), so that, in some sense, the constant 8πe plays here the same role as the Sobolev constant in dimensions greater than 2 (see Struwe [START_REF] Struwe | A global compactness result for elliptic boundary value problems involving limiting nonlinearities[END_REF]). This is the point in the following theorem.

Theorem 0.1. Let Ω be a smooth bounded domain of R 2 . Let (u p ) p be a sequence of smooth functions positive in Ω, and satisfying (0.1) and (0.2). Then, up to a subsequence, there exists an integer n ≥ 1 such that

lim p→+∞ p Ω |∇u p | 2 ds = (8πe) × n . (0.7)
Moreover, there exists a subset {x 1 , ..., x n } of Ω such that

m j = √ e , (0.8) 
where m j is given by (0.4), for all j ∈ {1, ..., n}.

In addition, by [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF], we get from (0.8) that

lim p→+∞ pu p = 8π √ e n j=1 G xj in C 2 loc ( Ω\B) , (0.9) 
and that

∇ xj   H xj (x j ) + i =j G xi (x j )   = 0 , (0.10) 
for all j ∈ {1, ..., n}, where G is the Green's function of ∆ with Dirichlet boundary conditions and where H is its regular part, which is smooth in Ω 2 and given by

G x (y) = 1 2π log 1 |x -y| + H x (y) ,
for all x = y.

Concerning the previous works, Ren and Wei [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF] and [START_REF]Single-point condensation and least-energy solutions[END_REF] where able to prove that (0.7) with n = 1 holds true if the u p 's are minimizers, i.e. if we assume in addition that u p is proportional to a solution of the problem

min {v∈H 1 0 s.t. Ω v p ds=1} Ω |∇v| 2 ds.
Answering to a former question, Adimurthi and Grossi [START_REF] Adimurthi | Asymptotic estimates for a two-dimensional problem with polynomial nonlinearity[END_REF] were able to prove that

lim p→+∞ u p C 0 (Ω) = √ e , (0.11) 
in the case of minimizers, while they discovered the way to perform the first rescaling for the u p 's as p → +∞, and the key link with the Liouville equation. Observe that (0.4), (0.6) and (0.8) clearly imply (0.11) in general case. Now in the radial case where Ω is a disk, observe that the u p 's are necessarily minimizers, since (0.1) admits only one solution (see Gidas-Ni-Niremberg [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF] and the nice survey by Pacella [START_REF] Pacella | Uniqueness of positive solutions of semilinear elliptic equations and related eigenvalue problems[END_REF]); according to the previous discussion, we necessarily then have that n = 1 in (0.7). In contrast, if Ω is not simply connected, Esposito, Musso and Pistoia [START_REF] Esposito | Concentrating solutions for a planar elliptic problem involving nonlinearities with large exponent[END_REF] were able to prove that, for all given integer n ≥ 1, there exists a sequence of positive functions (u p ) p satisfying (0.1)-(0.2) such that (0.7) holds true, together with (0.8)-(0.11). Thus, in some sense, Theorem 0.1 is sharp. We mention that very interesting complementary results were obtained recently by Kamburov and Sirakov [START_REF] Kamburov | Uniform a priori estimates for positive solutions of the Lane-Emden equation in the plane[END_REF]. At last, we also mention that, even if the situation is far from being as well understood in the nodal case, where we no longer assume that the u p 's are positive, some asymptotic-analysis [START_REF] De Marchis | Asymptotic analysis and signchanging bubble towers for Lane-Emden problems[END_REF][START_REF] Grossi | Lane-Emden problems: asymptotic behavior of low energy nodal solutions[END_REF], as well as some constructive [START_REF]Morse index and sign-changing bubble towers for Lane-Emden problems[END_REF][START_REF]On the existence and profile of nodal solutions for a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF][START_REF] Gladiali | Quasi-radial nodal solutions for the Lane-Emden problem in the ball[END_REF] results were obtained.

To conclude, as explained in De Marchis, Ianni and Pacella [START_REF]Asymptotic analysis for the Lane-Emden problem in dimension two[END_REF], the techniques to get the quantization result in [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF] are not without similarity with the ones developed by Druet [START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] to get the analogue quantization for 2D Moser-Trudinger critical problems. Both results [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF][START_REF] Druet | Multibumps analysis in dimension 2: quantification of blow-up levels[END_REF] can be improved by showing that all the blow-up points necessarily carry the minimal energy. It is done here in the Lane-Emden case and in Druet and Thizy [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF] in the Moser-Trudinger case. Unfortunately, the authors of [START_REF] Druet | Multi-bumps analysis for Trudinger-Moser nonlinearities I-Quantification and location of concentration points[END_REF] were not able to find an as easy argument as here, in the more tricky Moser-Trudinger critical case.

1. Proof of Theorem 0.1 Let (u p ) p be a sequence of smooth functions, positive in Ω and satisfying (0.1)-(0.2). Then by [START_REF]Asymptotic profile of positive solutions of Lane-Emden problems in dimension two[END_REF], (0.3)-(0.6) hold true. Thus, the proof of (0.7)-(0.8), i.e. that of Theorem 0.1, reduces to the proof of

lim p→+∞ u p C 0 (Ω) ≤ √ e . (1.1)
Here and in the sequel, we argue up to a subsequence. Now, let (y p ) p be a sequence in Ω such that u p (y p ) = u p C 0 (Ω) , for all p. By (0.4)-(0.6), we have that

lim p→+∞ d(y p , ∂Ω) := 2δ 0 > 0 , (1.2) 
where d(y, ∂Ω) denotes the distance from y to ∂Ω. Now, let µ p > 0 be given by

µ 2 p p u p (y p ) p-1 = 8 . (1.3) 
By (0.4) and (0.5), we get from (1.3) that

log 1 µ 2 p = p log u p (y p ) 1 + O log p p , (1.4) 
and in particular, that µ p → 0 as p → +∞. Let τ p be given by

u p (y p + µ p y) = u p (y p ) 1 - 2τ p (y) p , so that τ p ≥ 0 and τ p (0) = 0 , (1.5) 
by definition of (y p ) p . By (0.1) and (1.3), we have that

∆(-τ p ) = 4 1 - 2τ p p p in Ω p := Ω -y p µ p , (1.6) 
so that, by (1.5), positivity of u p and concavity of the log function, we get that

0 < ∆(-τ p ) ≤ 4 . (1.7) 
By (1.2), (1.5)-(1.7) and standard elliptic theory, including the Harnack principle, we get that there exists a function

τ ∞ ∈ C 2 (R 2 ) such that lim p→+∞ τ p = τ ∞ in C 2 loc (R 2 ) , (1.8) 
and then that

∆(-τ ∞ ) = 4 exp(-2τ ∞ ) in R 2 , τ ∞ (0) = 0 , ∇τ ∞ (0) = 0 , (1.9) 
using also that ∇τ p (0) = 0, by definition of (y p ) p . Let R > 0 be given. Integrating by parts, using (1.3) 

(1 + r 2 ) 2 + o (r p /µ p ) 2 1 + (r p /µ p ) 2 , (1.13) 
using that the laplacian commutes with the average in spheres. Then, using the fundamental theorem of calculus and ūp (0) = u p (y p ), we easily get from (1. 
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From now on, if f is a given continuous function in Ω, we let f be the unique continuous function in [0, d(y p , ∂Ω)) given by f dσ , for all r ∈ (0, , d(y p , ∂Ω)) .

Let (r p ) p be any sequence such that r p ∈ [0, d(y p , ∂Ω)) for all p. By (