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Abstract—A promising solution to achieve autonomous wireless
sensor networks is to enable each node to harvest energy in
its environment. To address the time-varying behavior of energy
sources, each node embeds an energy manager responsible for
dynamically adapting the power consumption of the node in order
to maximize the quality of service while avoiding power failures.
A novel energy management algorithm based on reinforcement
learning, named RLMan, is proposed in this work. By contin-
uously exploring the environment, RLMan adapts its energy
management policy to time-varying environment, regarding both
the harvested energy and the energy consumption of the node.
Linear function approximations are used to achieve very low
computational and memory footprint, making RLMan suitable
for resource-constrained systems such as wireless sensor nodes.
Moreover, RLMan only requires the state of charge of the energy
storage device to operate, which makes it practical to implement.
Exhaustive simulations using real measurements of indoor light
and outdoor wind show that RLMan outperforms current state
of the art approaches, by enabling almost 70 % gain regarding
the average packet rate. Moreover, RLMan is more robust to
variability of the node energy consumption.

I. INTRODUCTION

Many applications, such as smart cities, precision agriculture
and plant monitoring, rely on the deployment of a large num-
ber of individual sensors forming Wireless Sensor Networks
(WSNs). These individual nodes must be able to operate for
long periods of time, up to several years or decades, while
being highly autonomous to reduce maintenance costs. As
refilling the batteries of each device can be expensive or
impossible if the network is dense or if the nodes are deployed
in a harsh environment, maximizing the lifetime of typical
sensors powered by individual batteries of limited capacity is
a perennial issue. Therefore, important efforts were devoted in
the last decades to develop low power consumption devices
as well as energy efficient algorithms and communication
schemes to maximize the lifetime of WSNs. Typically, a
node quality of service (sensing rate, packet rate. . . ) is set
at deployment to a value that guarantees the required lifetime.
However, as batteries can only store a finite amount of energy,
the network is doomed to die.

A promising solution to increase the lifetime of WSNs is
to enable each node to harvest energy in its environment. In
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this scenario, each node is equipped with one or more energy
harvesters, as well as an energy buffer (battery or capacitor)
to allow storing part of the harvested energy for future use
during periods of energy scarcity. Various energy sources are
possible [1], such as light, wind, motion, fuel cells. . . . As
the energy sources are typically dynamic and uncontrolled,
it is required to dynamically adapt the power consumption of
the nodes, by adjusting their quality of service, in order to
avoid power failure while maximizing the energy efficiency
and ensuring the fulfilment of application requirements. This
task is done by a software module called Energy Manager
(EM). For each node, the EM is responsible for maintaining
the node in Energy Neutral Operation (ENO) [2] state, i.e.,
the amount of consumed energy never exceeds the amount
of harvested energy over a long period of time. Ideally, the
amount of harvested energy equals the amount of consumed
energy over a long period of time, which means that no energy
is wasted by saturation of the energy storage device.

Many energy management schemes were proposed in the
last years to address the non trivial challenge of designing ef-
ficient adaptation algorithms, suitable for the limited resources
provided by sensor nodes in terms of memory, computation
power, and energy storage. They can be classified based on
their requirement of predicted information about the amount of
energy that can be harvested in the future, i.e., prediction-based
and prediction-free. Prediction-based EMs [2]–[5] rely on pre-
dictions of the future amount of harvested energy over a finite
time horizon to take decision on the node energy consumption.
In contrast with prediction-based energy management schemes,
prediction-free approaches do not rely on forecasts of the
harvested energy. These approaches were motivated by (i) the
significant errors from which energy predictors can suffer,
which incur overuse or underuse of the harvested energy,
and (ii) the fact that energy prediction requires the ability
to measure the harvested energy, which incur a significant
overhead [6]. Indeed, most of the EMs require an accurate
control of the spent energy, as well as detailed tracking of
the previously harvested and previously consumed energies to
operate properly.

Considering these practical issues, we propose in this paper
RLMan, a novel EM scheme based on Reinforcement Learning
(RL) theory. RLMan is a prediction-free EM, whose objective
is to maximize the quality of service, defined as the packet
rate, i.e., the frequency at which packets are generated (e.g.,
by performing measurements) and sent, while avoiding power
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failure. It is assumed that the node is in the sleep state between
two consecutive packet generations and sendings, in order
to allow energy saving. RLMan requires only the state of
charge of the energy storage device to operate and aims to
set the packet rate by both exploiting the current knowledge
of the environment and exploring it, in order to improve the
policy. Continuous exploration of the environment enables
adaptation to varying energy harvesting and energy consumed
dynamics, making this approach suitable for the uncertain
environment of Energy Harvesting WSNs (EH-WSNs). The
problem of maximizing the quality of service in EH-WSNs
is formulated as a Markovian Decision Process (MDP), and
a novel EM scheme based on RL theory is introduced. The
major contributions of this paper are:
‚ A formulation of the problem of maximizing the quality

of service in energy harvesting WSNs using the RL
framework.

‚ A novel EM scheme based on RL theory named RLMan,
which requires only the state of charge of the energy
storage device, and which uses function approximations
to minimize the memory footprint and computational
overhead.

‚ An exploration of the impact of the parameters of RL-
Man using extensive simulations, and real measurements
of both indoor light and outdoor wind.

‚ The comparison of RLMan to three state-of-the-art EMs
(P-FREEN, Fuzzyman and LQ-Tracker) that aim to max-
imize the quality of service, regarding the capacitance
of the energy storage device and the variability of the
node task energy cost.

The rest of this paper is organized as follows: Section II
presents the related work focusing on prediction-free EMs,
and Section III provides the relevant background on RL
theory. In Section IV, the problem of maximizing the packet
rate in energy harvesting WSNs is formulated using the RL
framework, and RLMan is derived based on this formulation.
In Section V, RLMan is evaluated. First, the simulation setup
is presented. Next, exploration of the parameters of RLMan is
performed. Finally, the results of the comparisons of RLMan
to three other EMs are shown. Section VI concludes this paper.

II. RELATED WORK

The first prediction-free EM was LQ-Tracker [7], proposed
in 2007 by Vigorito et al.. This scheme relies on linear
quadratic tracking, a technique from control theory, to adapt
the duty-cycle according to the current state of charge of the
energy buffer. In this approach, the energy management prob-
lem is modeled as a first order discrete time linear dynamical
system with colored noise, in which the system state is the
state of charge of the energy buffer, the controller output is
the duty-cycle and the colored noise is the moving average of
state of charge increments produced by the harvested energy.
The objective is to minimize the average squared tracking error
between the current state of charge and a target residual energy
level. The authors used classical control theory results to get
the optimal control, which does not depend on the colored
noise, and the control law coefficients are learned online using

gradient descent. Finally, the outputs of the control system are
smoothed by an exponential weighting scheme to reduce the
duty-cycle variance.

Peng et al. proposed P-FREEN [8], an EM that maximizes
the duty-cycle of a sensor node in the presence of battery
storage inefficiencies. The authors formulated the average
duty-cycle maximization problem as a non-linear programming
problem. As solving this kind of problem directly is computa-
tionally intense, they proposed a set of budget assigning prin-
ciples that maximizes the duty-cycle by only using the current
observed energy harvesting rate and the residual energy. The
proposed algorithm requires the current state of charge of the
energy buffer as well as the harvested energy to take decision
about the energy budget. If the state of charge of the energy
buffer is below a fixed threshold or if the amount of energy
harvested at the previous time slot is below the minimum
required energy budget, then the node is operating with the
minimum energy budget. Otherwise, the energy budget is set
to a value that is a function of both the amount of energy
harvested at the previous time slot and the energy storage
efficiency.

In [9] the authors proposed to use fuzzy control theory
to dynamically adjust the energy consumption of the nodes.
Fuzzy control theory proposes to extend conventional con-
trol techniques to ill-modeled systems, such as EH-WSNs.
With this approach, named Fuzzyman, an intuitive strategy
is formally expressed as a set of fuzzy IF-THEN rules. The
algorithm requires as an input both the residual energy and
the amount of harvested energy since the previous execution
of the EM. The first step of Fuzzyman is to convert the crisp
entries into fuzzy entries. The so-obtained fuzzy entries are
then used by an inference engine which applies the rule base
to generate fuzzy outputs. The outputs are finally mapped to a
single crisp energy budget that can be used by the node. The
main drawbacks of Fuzzyman are that it requires the amount
of energy harvested which can be unpractical to measure, and
the lack of systematic way to set the parameters.

RL theory was used in the context of energy harvesting
communication systems [?], [10]. In [?], the authors addressed
the problem of maximizing the throughput at the receiver
in energy harvesting two-hop communications. The problem
was first formulated as a convex optimization problem, and
then reformulated using the reinforcement learning framework,
so it can be solved using only local causal knowledge. The
well-known SARSA algorithm was used to solve the obtained
problem. With RLMan, we focus on maximizing the packet
rate in point-to-point communication systems.

Hsu et al. [10] considered energy harvesting WSNs with
packet rate requirement, and used Q-Learning, a well-known
RL algorithm, to meet the packet rate constraints. In this
approach, states and actions are discretized, and a reward
is defined according to the satisfaction of the packet rate
constraints. The aim of the algorithm is to maximize the overall
rewards, by learning the Q-values, i.e., the accumulative reward
associated with a given state-action pair. The proposed EM
requires the tracking of the harvested energy and the energy
consumed by the node in addition to the state of charge.
Moreover it uses two dimensional look-up tables to store
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Fig. 1: Markovian decision process illustration.

the Q-values, which incurs significant memory footprint. At
each execution of the EM, the action is chosen according
to the Q-values using soft-max function, and the Q-value
of the last state-action pair observed is updated using the
corresponding last observed reward. With RLMan, we propose
an approach that requires only the state of charge of the energy
storage device in order to maximize the packet rate. Indeed,
measuring the amount of harvested energy or consumed energy
requires additional hardware, which incurs additional cost, and
increases the form factor of the node. Moreover, linear function
approximators are used to minimize the memory footprint and
computation overhead, which are critical when focusing on
constrained systems such as WSN nodes.

III. BACKGROUND ON REINFORCEMENT LEARNING

RL is a framework for optimizing the behavior of an
agent, or controller, that interacts with its environment. More
precisely, RL algorithms can be used to solve optimization
problems formulated as MDPs. In this section, MDPs in
continuous state and action spaces are introduced, and the
RL theoretical results required to understand the proposed EM
scheme are given.

An MDP is a tuple xS,A, T ,Ry where S is the state space,
A is the action space, T : S ˆ A ˆ S Ñ r0, 1s is the state
transition probability density function and R : S ˆ A Ñ R
is the reward function. In discrete time MDPs, which are
considered in this work, at each time step k, the agent is in a
state Srks P S and takes an action Arks P A according to a
policy π. In response to this action, the environment provides a
scalar feedback, called reward and denoted by Rrk`1s, and the
agent is, at the next time slot k`1, in the state Srk`1s. This
process is illustrated in Figure 1. The aim of the RL algorithm
is to find a policy which maximizes the accumulated reward
called return. In this work, MDPs are assumed to be stationary,
i.e., the elements of the tuple xS,A, T ,Ry do not change over
time.

Continuous state and action spaces are considered in this
work, however in Figure 1, an illustration of a discrete state
and action spaces MDP is shown for clarity. The stochastic
process to be controlled is described by the transition proba-
bility density function T , which models the dynamics of the
environment. The probability of reaching a state Srk ` 1s in
the region Srk`1s after taking the action Arks from the state

Srks is therefore:

Pr pSrk ` 1s P Srk ` 1s | Srks, Arksq

“

ż

Srk`1s

T pSrks, Arks, Sq dS. (1)

When taking an action Arks in a state Srks, the agent receives
a scalar reward Rrk` 1s assumed to be bounded. The reward
function is defined as the expected reward given a state and
action pair:

RpS,Aq “ E rRrk ` 1s | Srks “ S, Arks “ As . (2)

The aim of the agent is to find a policy which maximizes the
total discounted accumulated reward defined by:

Jpπq “ E

«

8
ÿ

k“1

γk´1Rrks

ˇ

ˇ

ˇ

ˇ

ρ0, π

ff

, (3)

where γ P r0, 1q is the discount factor, and ρ0 the initial
state distribution. From this last equation, it can be seen that
choosing values of γ close to 0 leads to "myopic" evaluation
as immediate rewards are preferred, while choosing a value of
γ close to 1 leads to "far-sighted" evaluation.

Policies in RL can be either deterministic or stochastic. A
deterministic policy π maps each state to an action: π : SÑ A
in a unique way. When using a stochastic policy, actions are
chosen randomly according to a distribution of actions given
states:

π pA | Sq “ Pr pArks “ A | Srks “ Sq . (4)

Using stochastic policies allows exploration of the environ-
ment, which is fundamental. Indeed, RL is similar to trail
and error learning, and the goal of the agent is to discover
a good policy from its experience with the environment, while
minimizing the amount of reward "lost" while learning. This
leads to a dilemma between exploration (learning more about
the environment) and exploitation (maximizing the reward by
exploiting known information).

The initial state distribution is denoted by ρ0 : SÑ r0, 1s,
and the discounted accumulated reward is defined by:

Jpπq “

ż

S

ρπpSq

ż

A
πpA|SqRpS,AqdAdS, (5)

where:

ρπpSq “

ż

S

ρ0pS
1q

8
ÿ

k“1

γk´1 Pr
“

Srks “ S | S0 “ S1, π
‰

dS1

(6)
is the discounted state distribution under the policy π. During
the learning, the agent evaluates a given policy π by estimating
the J function (5). This estimate is called the value function of
π and comes in two flavors. The state value function, denoted
by V π , is a function that gives for each state S P S the
expected return when the policy π is used:

V πpSq “ E

«

8
ÿ

i“1

γi´1Rrk ` is

ˇ

ˇ

ˇ

ˇ

Srks “ S, π

ff

. (7)
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This function aims to predict the future discounted reward
if the policy π is used to walk through the MDP from a
given state S P S, and thus evaluates the "goodness" of
states. Similarly, the state-action value function, denoted by
Qπ , evaluates the "goodness" of state-action couples when π
is used:

QπpS,Aq “ E

«

8
ÿ

i“1

γi´1Rrk ` is

ˇ

ˇ

ˇ

ˇ

Srks “ S,Arks “ A, π

ff

.

(8)
The optimal state value function gives for each state S P

S the best possible return over all policies, and is formally
defined by:

V ˚pSq “ max
π

V πpSq. (9)

Similarly, the optimal state-action value function is the maxi-
mum state-action value function over all the policies:

Q˚pS,Aq “ max
π

QπpS,Aq. (10)

The optimal value functions specify the best achievable per-
formance in an MDP.

A partial ordering is defined over policies as follows:

π ě π1 if @S P S, V πpSq ě V π
1

pSq.

An important result in RL theory is that there exists an optimal
policy π˚ that is better than or equal to all the other policies,
i.e., π˚ ě π, @π. Moreover, all optimal policies achieve the
optimal state value function, i.e., V π

˚

“ V ˚, and the optimal
state-action value function, i.e., Qπ

˚

“ Q˚. One can see that
if Q˚ is known, a deterministic optimal policy can be found
by maximizing over Q˚: π˚pSq “ argmaxAQ

˚pS,Aq.
In the next section, the energy management problem for EH-

WSN is formulated using the RL framework presented in this
section. Then, RLMan, an energy manager based on RL, is
introduced.

IV. ENERGY MANAGER BASED ON REINFORCEMENT
LEARNING

A. Formulation of the Energy Harvesting problem
It is assumed that time is divided into equal length time slots

of duration Ts, and that the EM is executed at the beginning of
every time slot. The amount of residual energy, i.e., the amount
of energy stored in the energy storage device, is denoted by
er and the energy storage device is assumed to have a finite
capacity denoted by Emaxr . The hardware failure threshold is
denoted by Efailr , and corresponds to the minimum amount
of residual energy required by the node to operate, i.e., if the
residual energy drops below this threshold, a power failure
arises. It is assumed that the job of the node is to periodically
send a packet at a packet rate denoted by χg P rXmin, Xmaxs,
and that the goal of the EM is to dynamically adjust the
performance of the node by setting χg . Choosing a continuous
action space enables more accurate control of the consumed
energy, as a continuum of packet rates is available. The goal
of the EM is to maximize the packet rate χg while keeping
the node sustainable, i.e., avoiding power failure.

Critic Actor

Reward
Node

&

Environment

Feature

RLMan

Estimates the

  objective function

Computes the

  TD-Error

Updates the policy

  parameter by 

  sampling the

  gradient

Sets the packet

  generation rate

Fig. 2: Global architecture of RLMan.

In RL, it is assumed that all goals can be described by
the maximization of expected cumulative reward. Formally,
the problem is formulated as an MDP xS,A, T ,Ry, detailed
below.

1) The set of states S: The state of a node at time slot k
is defined by the current residual energy er. Therefore, S “

rEfailr , Emaxr s.
2) The set of actions A: An action corresponds to setting

the packet rate χg at which packets are sent. Therefore, A “
rXmin, Xmaxs.

3) The transition function T : The transition function gives
the probability of a transition to errk ` 1s when action χg
is performed in state errks. The transition function models
the dynamics of the MDP, which is in the case of energy
management the energy dynamics of the node, related to both
the platform and its environment.

4) The reward function R: The reward is computed as a
function of both χg and er:

R “ φχg, (11)

where φ is the feature, which corresponds to the normalized
residual energy:

φ “
er ´ E

fail
r

Emaxr ´ Efailr

. (12)

Therefore, maximizing the reward involves maximizing both
the packet rate and the state of charge of the energy storage
device. However, because the residual energy depends on
the consumed energy and the harvested energy, and as these
variables are stochastic, the reward function is defined by:

Rper, χgq “ E rRrk ` 1s | Srks “ er, Arks “ χgs . (13)

Energy management can be seen as a multiple reward functions
system, in which both the normalized residual energy φ and
the packet rate χg need to be maximized. These two rewards
are combined by multiplication to form a single reward and to
reduce to a single reward system. Other approaches to combine
multiple rewards exist [11], [12].
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B. Derivation of RLman

An RL agent uses its experience to evaluate a given policy
by estimating its value function, a process referred to as policy
evaluation. Using the value function, the policy is optimized
such as the long-term obtained reward is maximized, a process
called policy improvement. The EM scheme proposed in this
work is an actor-critic algorithm, a class of RL techniques well-
known for being capable to search for optimal policies using
low variance gradient estimates [13]. This class of algorithms
requires storing both a representation of the value function
and the policy in memory, as opposite to other techniques
such as critic-only or actor-only methods, which require only
storing the value function or the policy respectively. Critic-
only schemes require at each step deriving the policy from
the value function, e.g., using a greedy method. However,
this involves solving an optimization problem at each step,
which may be computationally intensive, especially in the case
of continuous action space and when the algorithm needs
to be implemented on limited resource hardware, such as
WSN nodes. On the other hand, actor-only methods work with
a parameterized family of policies over which optimization
procedure can be directly used, and a range of continuous
actions can be generated. However, these methods suffer
from high variance, and therefore slow learning [13]. Actor-
critic methods combine actor-only and critic-only methods by
storing both a parameterized representation of the policy and
a value function.

Figure 2 shows the relation between the actor and the critic.
The actor updates a parameterized policy πψ , where ψ is the
policy parameter, by gradient ascent on the objective function
J defined in (3). A fundamental result for computing the
gradient of J is given by the policy gradient theorem [14]:

5ψJpπψq “

ż

S

ρπψ perq

ż

A
Qπψ per, χgq5ψ πψpχg | erqdχgder

“ E
„

Qπψ per, χgq5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



.

(14)

This result reduces the computation of the performance objec-
tive gradient to an expectation, and allows deriving algorithms
by forming sample-based estimates of this expectation. In this
work, a Gaussian policy is used to generate χg:

πψpχg | eRq “
1

σ
?

2π
exp

˜

´
pχg ´ µq

2

2σ2

¸

, (15)

where σ is fixed and controls the amount of exploration, and
µ is linear with the feature:

µ “ ψφ. (16)

Defining µ as a linear function of the feature enables minimal
memory footprint as only one floating value, ψ, needs to be
stored. Moreover, the computational overhead is also minimal
as 5ψµ “ φ, leading to:

5ψ log πψpχg | erq “
pχg ´ µq

σ2
φ. (17)

It is important to notice that other ways of computing µ
from the feature can be used, e.g., artificial neural networks,
in which case ψ is a vector of parameters (the weights of
the neural network). However, these approaches incur higher
memory usage and computational overhead, and might thus
not be suited to WSN nodes.

Using the policy gradient theorem as formulated in (14)
may lead to high variance and slow convergence [13]. A way
to reduce the variance is to rewrite the policy gradient theorem
using the advantage function Aπψ per, χgq “ Qπψ ´ V πψ .
Indeed, it can be shown that [14]:

5ψJpπψq “ E
„

Aπψ per, χgq5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



.

(18)
This can reduce the variance, without changing the expectation.
Moreover, the TD-Error (Temporal Difference-Error), defined
by:

δ “ Rrk ` 1s ` γV πψ perrk ` 1sq ´ V πψ perrksq, (19)

is an unbiased estimate of the advantage function, and therefore
can be used to compute the policy gradient [13]:

5ψJpπψq “ E
„

δ5ψ log πψpχg | erq

ˇ

ˇ

ˇ

ˇ

ρπψ , πψ



. (20)

Algorithm 1 Reinforcement learning based energy manager.

Input: errks, Rrks
1: φrks “

errks´E
fail
r

Emaxr ´Efailr
Ź Feature (12)

2: δrks “ Rrks ` γθrk ´ 1sφrks ´ θrk ´ 1sφrk ´ 1s Ź TD
Error (19), (21)

3: Ź Critic: update the value function estimate (22), (23):
4: νrks “ γλνrk ´ 1s ` φrks

5: θrks “ θrk ´ 1s ` αδrksνrks

6: Ź Actor: updating the policy (16), (17), (20):
7: ψrks “ ψrk ´ 1s ` βδrks pfrk´1s´ψrk´1sφrk´1sq

σ2 φrk ´ 1s

8: Clamp µt to rXmin, Xmaxs

9: Ź Generating a new action:
10: χgrks „ N pψrksφrks, σq

11: Clamp χgrks to rXmin, Xmaxs

12: return χgrks

The TD-Error can be intuitively interpreted as a critic
of the previously taken action. Indeed, a positive TD-Error
suggests that this action should be selected more often, while
a negative TD-Error suggests the opposite. The critic computes
the TD-Error (19), and, to do so, requires the knowledge of
the value function V πψ . As the state space is continuous,
storing the value function for each state is not possible, and
therefore function approximation is used to estimate the value
function. Similarly to what was done for µ (16), linear function
approximation was chosen to estimate the value function, as
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it requires very few computational overhead and memory:

Vθperq “ θφ, (21)

where φ is the feature (12), and θ is the approximator param-
eter.

The critic, which estimates the value function by updating
the parameter θ, is therefore responsible for performing policy
evaluation. A well-known category of algorithms for policy
evaluation are TD based methods, and in this work, the TD(λ)
algorithm [15] is used:

νrks “ γλνrk ´ 1s ` φrks (22)
θrks “ θrk ´ 1s ` αδrksνrks (23)

where α P r0, 1s is a step-size parameter.
Algorithm 1 shows the proposed EM scheme. It can be seen

that the algorithm has low memory footprint and incurs low
computational overhead, and therefore is suitable for execution
on WSN nodes. At each run, the algorithm is fed with the
current residual energy errks and the reward Rrks computed
using (11). First, the feature and the TD-Error are computed
(lines 1 and 2), and then the critic is updated using the TD(λ)
algorithm (lines 4 and 5). Next, the actor is updated using the
policy gradient theorem at line 7, where β P r0, 1s is a step-size
parameter. The expectancy of the Gaussian policy is clamped
to the range of allowed values at line 8. Finally, a frequency
is generated using the Gaussian policy at line 10, which will
be used in the current time slot. As the Gaussian distribution
is unbounded, it is required to clamp the generated value to
the allowed range (line 11).

V. EVALUATION OF RLMAN

RLMan was evaluated using exhaustive simulations. This
section starts by presenting the simulation setup. Then, the
impact of the different parameters required by RLMan is
explored. Finally, the results of the comparison of RLMan to
three state-of-the-art EMs are exposed.

A. Simulation setup
The platform parameters used in the simulations correspond

to PowWow [16], a modular WSN platform designed for
energy harvesting. The PowWow platform uses a capacitor as
energy storage device, with a maximum voltage of 5.2 V and
a failure voltage of 2.8 V. The harvested energy was simulated
by two energy traces from real measurements: one lasting 270
days corresponding to indoor light [17] and the other lasting
180 days corresponding to outdoor wind [18], allowing the
evaluation of the EM schemes for two different energy source
types. The task of the node consists in acquiring data by
sensing, performing computation and then sending the data to
a sink. However, in practice, the amount of energy consumed
by one execution of this task varies, e.g., due to multiple
retransmissions. Therefore, the amount of energy required
to run one execution was simulated by a random variable
denoted by EC which follows a beta distribution. The mode
of the distribution was set to the energy consumed if only one
transmission attempt is required, denoted by EtypC , and which

All

EtypC 8.672 mJ

EmaxC 36.0 mJ

Xmin 1
300 Hz

Xmax 5 Hz

T 60 s

RLMan

α 0.1

β 0.01

σ 0.1

γ 0.9

λ 0.9

P-FREEN [8]
BOFL 0.95EmaxR

η 1.0

Fuzzyman [9]

K 1.0

η 1.0

EedsB XminTEtypc

EminB XminTEtypc

EstrongH XmaxTEtypc

EweakH XminTEtypc

LQ-Tracker [7]

µ 0.001

B˚ 0.70EmaxR

α 0.5

β 1.0

TABLE I: Parameter values used for simulations. For details about
the parameters of P-FREEN, Fuzzyman and LQ-Tracker, the reader
can refer to the respective literature.

is considered as the typical case. The highest value that EC can
take, denoted by EmaxC , is set to the energy consumed if five
transmission attempts are necessary. The standard deviation of
EC is denoted by σC , and the ratio of σC to EtypC is denoted
by ξ:

ξ “
σC

EtypC
. (24)

Intuitively, ξ measures the variability of EC compared to its
typical value.

Three metrics were used to evaluate the EMs: the dead ratio,
which is defined as the ratio of the duration the node spent in
the power outage state to the total simulation duration, the
average packet rate denoted by χ̄g , and the energy efficiency
denoted by ζ and defined by:

ζ “ 1´

ř

t eW,t
eR,0 `

ř

t eH,t
, (25)

where eR,0 is the initial residual energy, eW,t is the energy
wasted by saturation of the energy storage device during the
tth time slot, i.e., the energy that could not be stored because
the energy storage device was full, and eH,t is the energy
harvested during the tth time slot. Table I shows the values of
EtypC and EmaxC , as well as the parameter values used when
implementing the EMs.
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(b) Impact of γ on the dead ratio (λ “ 0.9, σ “ 0.1).
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(d) Impact of γ on the average packet rate (λ “ 0.9, σ “ 0.1).
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Fig. 3: Impact of the parameters on the performance of RLMan using indoor light energy harvesting.

B. Tuning RLMan

RLMan requires three parameters to be set: the discount
factor γ, the trace decay parameter λ and the policy standard
deviation σ. Using the setup previously introduced, the impact
of these parameters on the performance of the proposed
scheme was explored, and the results are shown in Fig. 3. For
each value of a parameter, one hundred simulations were run,
each performed using different seeds for the random number
generators. The capacitance was set to 1 F, as it is the value
used by the PowWow platform [16] that was simulated, leading
to Efailr « 3.9 J and Emaxr « 13.5 J.. Each cross in Fig. 3

represents the result of one simulation run, while the dots
show the average of all the simulation runs for one value of
a parameter. The results show that λ does not significantly
impact the performance of RLMan, and therefore the results
regarding this parameter are not exposed. Simulations were
performed for both indoor light and outdoor wind energy
traces, but as the obtained results are similar for both cases,
only the results of indoor light are shown.

a) Impact of σ: This parameter is the standard deviation
of the Gaussian policy, and therefore controls the amount of
exploration performed by the agent. Fig. 3a exposes the impact
of σ on the dead ratio. It can be seen that setting this parameter
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Fig. 4: Behavior of the EM scheme the first 30 days.

to values less than 0.05 leads to non-null dead ratio, which can
be explained in Fig. 3c, which shows that values of σ lower
than 0.05 lead to too high average packet rates. On the other
hand, choosing values of σ higher than 0.1 leads to energy
energy waste, as illustrated in Fig. 3e. As a consequence of
these results, σ was set to a value of 0.1 in the rest of this
work.

b) Impact of γ: This parameter is the discount factor of
the objective function, and therefore controls how much future
rewards lose their value compared to immediate rewards. It
can be seen on Fig. 3b that values of γ higher than 0.9 lead
to power outages. Fig. 3d shows that γ strongly impacts the
average packet rate, especially when higher than 0.3. The steep
increase of the average packet rate that can be seen for values
of γ higher than 0.9 explains the power outages. Moreover,
Fig. 3f reveals that choosing values of γ higher than 0.2 and
lower than 0.9 leads to energy waste. Therefore, considering
these results, γ was set to 0.9 in the rest of this work.

Fig. 4 shows the behavior of the proposed EM during
the first 30 days of simulation using the indoor light energy
trace, and with λ “ 0.9, γ “ 0.9 and σ “ 0.1. Fig. 4a
shows the harvested power, and Fig. 4b shows the feature
(φ), corresponding to the normalized residual energy. Fig. 4c
exposes the expectancy of the Gaussian distribution used to
generate the packet rate (µ), and Fig. 4d shows the reward
(R), computed using (11). It can be seen that the first day the
energy storage device was saturated (Fig. 4b), as the average
packet rate was progressively increasing (Fig. 4c), leading to
higher rewards (Fig. 4d). As during the second and third days

the amount of harvested energy was low, the residual energy
dropped, causing a decrease of the rewards while the policy
expectancy was stable. Starting the fourth day, energy was
harvested again, enabling the node to increase its activity, as
it can be seen on Fig. 4c. Finally, it can be noticed that if a
lot of energy was wasted by saturation of the energy storage
device the first 5 days, this is no longer true once this period
of learning is over.

C. Comparison to state-of-the-art

RLMan was compared to P-FREEN, Fuzzyman, and
LQ-Tracker, three state-of-the-art EM schemes that aim to
maximize the packet rate. P-FREEN and Fuzzyman require
the tracking of the harvested energy in addition to the residual
energy, and were therefore executed with perfect knowledge
of this value. RLMan and LQ-Tracker were only fed with the
value of the residual energy. Both the indoor light and the wind
energy traces were considered. First, the EMs were evaluated
for different capacitances of the energy storage device, as it
impacts the cost and form factor of the WSN nodes. Then, the
EMs were compared regarding ξ, which allows us to evaluate
the robustness of the algorithms regarding the variability of
EC .

1) Impact of the capacitance of the energy storage device:
The EMs were evaluated for capacitance sizes ranging from
0.5 F to 3.5 F, and for a value of ξ of 0.16. All the EMs
successfully avoid power failure when powered by indoor light
or outdoor wind. Fig. 5 exposes the comparison results. As it
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(a) Indoor light: Average packet rate.
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(b) Outdoor wind: Average packet rate.
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Fig. 5: Average packet rate and energy efficiency for different capacitance values, in the case of indoor light and outdoor wind.

can be seen on Fig 5c and Fig. 5d, both RLMan and LQ-
Tracker achieve more than 99.9 % efficiency, for indoor light
and outdoor wind, for all capacitance values, and despite the
fact that they require only the residual energy as an input. In
addition, when the node is powered by outdoor wind, RLMan
always outperforms the other EMs in terms of average packet
rate for all capacitance values, as shown in Fig. 5b. When
the node is powered by indoor light, RLMan also outperforms
all the other EMs, except LQ-Tracker when the values of the
capacitance are higher than 2.8 F. Moreover, the advantage of
RLMan over the other EMs is more significant for small values
of the capacitance. Especially, the average packet rate is more
than 20 % higher compared to LQ-Tracker in the case of indoor
light, and almost 70 % higher in the case of outdoor wind,
when the capacitance value is set to 0.5 F. This is encouraging
as using small capacitance leads to lower cost and lower form
factor.

2) Impact of the variability of EC: The EMs were evaluated
for different values of ξ. EtypC and EmaxC were kept constant,
while σC was changed by varying the parameters of the beta
distribution. The capacitance of the energy storage device was
set to 1.0 F, as it is the value used by PowWow. Results are
shown in Fig. 6. It can be seen from Fig. 6c and Fig. 6d that

in both the cases of indoor light and outdoor wind, increasing
the variability of EC does not affect the efficiency of RLMan
and LQ-Tracker, both of which achieve an efficiency of 1.
Concerning Fuzzyman and P-FREEN, increasing ξ enables
higher efficiencies. Indeed, P-FREEN and Fuzzyman outputs
are an energy budget, from which a packet rate must be
calculated. The calculation of the packet rate was performed
based on a typical cost of a task execution EtypC . However,
as ξ increases, EC tends to be higher than EtypC more often,
which causes less energy waste as more energy is required to
achieve the same quality of service.

Fig. 6a and Fig. 6b reveal that RLMan achieves higher
quality of service in term of packet rate. In the case of indoor
light, both packet rates decrease as ξ increases. However, the
gain of RLMan over LQ-Tracker becomes more significant as ξ
increases. Regarding the case of outdoor wind, the packet rate
is not affected by ξ when using RLMan, but decreases when
using LQ-Tracker, showing the benefits enabled by RLMan.
LQ-Tracker output is a duty-cycle in the range r0, 1s, from
which the packet rate must be calculated. Similarly to what
was done with P-FREEN and RLMan, the typical value of
EC , EtypC was used for computing the packet rate from the
duty-cycle.
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(a) Indoor light: Average packet rate.
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(b) Outdoor wind: Average packet rate.
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Fig. 6: Average packet rate and energy efficiency for different values of ξ, in the case of indoor light and outdoor wind.

These results show the practical advantages of using RL-
Man. RLMan does not require any knowledge on the energy
consumption of the node. It successfully adapts to variations of
the energy consumption of the node task (e.g., due to channel
noise or sensors variability), and ensures high energy efficiency
and packet rate. One can imagine that the performance of
the other schemes could be increased by tracking the energy
consumption of the node, and using an adaptive algorithm
to compute the packet rate from the output of the EM,
but this would require additional resources and increase the
complexity, memory and computation footprint of the energy
manager. RLMan inherently adapts to the dynamics of both
the harvested energy and the consumed energy, and therefore
does not require this additional complexity.

VI. CONCLUSION

The problem of designing energy management schemes for
wireless sensor nodes powered by energy harvesting is tackled
in this paper, and a novel algorithm based on reinforcement
learning, named RLMan, is introduced. RLMan uses function
approximations to achieve low memory and computational
overhead, and only requires the state of charge of the en-
ergy storage device as an input, which makes it suitable for

resource-constrained systems such as wireless sensor nodes
and practical to implement. It was shown, using exhaustive
simulations, that RLMan enables significant gains regarding
packet rate compared to state of the art approaches, both in
the case of indoor light and outdoor wind. Moreover, RLMan
successfully adapts to variations of the consumed energy,
and therefore does not require additional energy consumption
tracking schemes to keep high efficiency and quality of service.
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