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Introduction

The gamma function Γ can be defined [START_REF] Qi | Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function[END_REF][START_REF] Rainville | Special Functions[END_REF][START_REF] Yang | Monotonicity and inequalities for the gamma function[END_REF][START_REF] Yang | Monotonicity and sharp inequalities related to gamma function[END_REF] by

Γ(z) = ∞ 0 t z-1 e -t d t, (z) > 0.
Alternatively, it can also be defined [START_REF] Qi | Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities[END_REF] by

Γ(z) = lim n→∞ n!n z-1 (z) n ,
where (z) n for z = 0 is the Pochhammer symbol defined [START_REF] Qi | Several identities involving the falling and rising factorials and the Cauchy, Lah, and Stirling numbers[END_REF] as

(z) n =    z(z + 1)(z + 2) • • • (z + n -1), n ≥ 1; 1, n = 0.
The relation between (z) n and Γ(z) is

(z) n = Γ(z + n) Γ(z) .
The beta function B(x, y) can be defined [START_REF]NIST Handbook of Mathematical Functions[END_REF][START_REF] Qi | Parametric integrals, the Catalan numbers, and the beta function[END_REF][START_REF] Qi | Catalan numbers, k-gamma and k-beta functions, and parametric integrals[END_REF] by B(x, y) = 1 0 t x-1 (1 -t) y-1 d t, (x), (y) > 0 and can be expressed by B(x, y) = Γ(x)Γ(y) Γ(x + y) , (x), (y) > 0.

In 1995, Chaudhry and Zubair [START_REF] Chaudhry | On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms[END_REF] introduced the extended gamma function

Γ b (z) = ∞ 0 t z-1 e -t-bt -1 d t, (z) > 0, b ≥ 0. (1.1)
If b = 0, then Γ b becomes the classical gamma function Γ.

In 1997, Chaudhry et al [START_REF] Chaudhry | Extension of Euler's beta function[END_REF] introduced the extended beta function

B b (x, y) = 1 0 t x-1 (1 -t) y-1 e -b/t(1-t) d t, (b), (x) 
, (y) > 0.

(

It is clear that B 0 (x, y) = B(x, y).

In 2009, Barnard et al [START_REF] Barnard | A note on Turán type and mean inequalities for the Kummer function[END_REF] established three inequalities [φ(a, a + b, x)] 2 > φ(a + v, a + b, x)φ(a -v, a + b, x),

[φ(a, c, x)] 2 > φ(a + v, c, x)φ(a -v, c, x), and

A(φ(a + v, a + b, x), φ(a -v, a + b, x)) > φ(a, a + b, x) > G(φ(a + v, a + b, x), φ(a -v, a + b, x)),
where A(α, β) = α+β 2 and G(α, β) = √ αβ are the arithmetic and geometric means and

φ(a, b, x) = ∞ n=0 (a) n (b) n x n n!
is the Kummer confluent hypergeometric function [START_REF] Qi | On the sum of the Lah numbers and zeros of the Kummer confluent hypergeometric function[END_REF][START_REF] Rainville | Special Functions[END_REF].

The Kummer confluent hypergeometric k-function is defined by

φ k (a, b, x) = ∞ n=0 (a) n,k (b) n,k x n n! , where (a) n,k = a(a + k)(a + 2k) • • • [a + (n -1)k]
for n ≥ 1 and k > 0 with (a) 0,k = 1 is the Pochhammer k-symbol, which can also be rewritten as

(a) n,k = Γ k (a + nk) Γ k (a)
and the gamma k-function Γ k (a) is defined [START_REF] Díaz | On hypergeometric functions and Pochhammer k-symbol[END_REF][START_REF] Qi | Parametric integrals, the Catalan numbers, and the beta function[END_REF][START_REF] Qi | Catalan numbers, k-gamma and k-beta functions, and parametric integrals[END_REF] by

Γ k (a) = ∞ 0 t a-1 e -t k /k d t
In 2012, Mubeen [START_REF] Mubeen | k-analogue of Kummer's first formula[END_REF] introduced the k-analogue of Kummer's transformation as

φ k (a, b, x) = e x φ k (a, b -a, -x). (1.3)
In Section 2, we prepare two lemmas. In Section 3, we discuss applications of some integral inequalities such as the Chebychev integral inequality. In Section 4, we prove the logarithmic convexity of the extended gamma function. In the last section, we introduce a mean inequality of Turán type for the Kummer confluent hypergeometric k-function.

Lemmas

In order to obtain our main results, we need the following lemmas.

Lemma 2.1 (Chebychev integral inequality [START_REF] Dragomir | Inequalities for beta and gamma functions via some classical and new integral inequalities[END_REF][START_REF] Dragomir | Applications of Ostrowski's inequality to the estimation of error bounds for some special means and for some numerical quadrature rules[END_REF][START_REF] Kumar | Some inequalities involving beta and gamma functions[END_REF][START_REF] Qi | Some inequalities constructed by Tchebysheff's integral inequality[END_REF]) Let f, g, h : I ⊆ R → R be mappings such that h(x) ≥ 0, h(x)f (x)g(x), h(x)f (x), and h(x)g(x) are integrable on I. If f (x) and g(x) are synchronous (or asynchronous, respectively) on I, that is,

[f (x) -f (y)][g(x) -g(y)] 0 for all x, y ∈ I, then I h(x) d x I h(x)f (x)g(x) d x I h(x)f (x) d x I h(x)g(x) d x.
Lemma 2.2 (Hölder's inequality [START_REF] Rudin | Real and complex analysis[END_REF][START_REF] Tian | Properties of generalized sharp Hölder's inequalities[END_REF]) Let p and q be positive real numbers such that 1 p + 1 q = 1 and f, g : [c, d] → R be integrable functions. Then

d c f (x)g(x) d x ≤ d c |f (x)| p d x 1/p d c |g(z)| q d x 1/q .
3 Inequalities involving the extended gamma function via the Chebychev integral inequality

In this section, we prove some inequalities involving the extended gamma function via the Chebychev integral inequality in Lemma 2.1.

Theorem 3.1 Let m, p and r be positive real numbers such that p > r > -m. If r(p -m -r) 0, then

Γ b (m)Γ b (p) Γ b (p -r)Γ b (m + r). (3.1)
Proof Let us define the mappings f, g, h : [0, ∞) → [0, ∞) given by f (t) = t p-r-m , g(t) = t r , and h(t) = t m-1 e -t-bt -1 .

If r(p -m -r) 0, then we can claim that the mappings f and g are synchronous (asynchronous) on (0, ∞). Thus, by applying the Chebychev inequality on I = (0, ∞) to the functions f , g and h defined above, we can write

∞ 0 t m-1 e -t-bt -1 d t ∞ 0 t p-r-m t r t m-1 e -t-bt -1 d t ∞ 0 t p-r-m t m-1 e -t-bt -1 d t ∞ 0 t r t m-1 e -t-bt -1 d t.
This implies that

∞ 0 t m-1 e -t-bt -1 d t ∞ 0 t p-1 e -t-bt -1 d t ∞ 0 t p-r-1 e -t-bt -1 d t ∞ 0 t m+r-1 e -t-bt -1 d t.
By (1.1), we acquire the required inequality (3.1).

Corollary 3.1 If p > 0 and q ∈ R with |q| < p, then

Γ b (p) ≤ [Γ b (p -q)Γ b (p + q)] 1/2 .
Proof By setting m = p and r = q in Theorem 3.1, we obtain r(p-m-r) = -q 2 ≤ 0 and then the inequality (3.1) provides the desired Corollary 3.1.

Theorem 3.2 If m, n > 0 are similarly (oppositely) unitary, then

Γ b (m + n + b) Γ b (m + b + 1)Γ b (n + b + 1) Γ b (b + 2) . Proof Consider the mappings f, g, h : [0, ∞) → [0, ∞) defined by f (t) = t m-1 , g(t) = t n-1 , and h(t) = t b+1 e -t-bt -1 .
Now if the condition (m-1)(n-1) 0 holds, then the Chebychev integral inequality applied to the functions f , g, and h means

∞ 0 t b+1 e -t-bt -1 d t ∞ 0 t m-1 t n-1 t b+1 e -t-bt -1 d t ∞ 0 t m-1 t b+1 e -t-bt -1 d t ∞ 0 t n-1 t b+1 e -t-bt -1 d t.
This implies that

∞ 0 t b+1 e -t-bt -1 d t ∞ 0 t m+n+b-1 e -t-bt -1 d t ∞ 0 t m+b e -t-bt -1 d t ∞ 0 t n+b e -t-bt -1 d t.
By the definition of the extended gamma function, we have

Γ b (b + 2)Γ b (m + n + b) Γ b (m + b + 1)Γ b (n + b + 1), or Γ b (m + n + b) Γ b (m + b + 1)Γ b (n + b + 1) Γ b (b + 2) .
The required proof is complete. Proof Consider the mappings f, g, h : [0, ∞) → [0, ∞) defined by

Corollary 3.2 If b = 0, then Γ(m + n) mnΓ(m)Γ(n).
f (t) = t m , g(t) = t n , and h(t) = t b e -t-bt -1 .
If the conditions of Theorem 3.1 hold, then the mappings f and g are synchronous (asynchronous) on [0, ∞). Thus, by applying the Chebychev integral inequality in Lemma 2.1 to the functions f, g and h defined above, we have

∞ 0 t b e -t-bt -1 d t ∞ 0 t m t n t b e -t-bt -1 d t ∞ 0 t m t b e -t-bt -1 d t ∞ 0 t n t b e -t-bt -1 d t.
This implies that

∞ 0 t b e -t-bt -1 d t ∞ 0 t m+n+b e -t-bt -1 d t ∞ 0 t m+b e -t-bt -1 d t ∞ 0 t n+b e -t-bt -1 d t.
Thus by the definition of the extended gamma function, we have

Γ b (b + 1)Γ b (m + n + b + 1) Γ b (m + b + 1)Γ b (n + b + 1).
The required proof is complete.

Corollary 3.3 If b = 0, then Γ(m + n) mnΓ(m)Γ(n) m + n .
4 Log-convexity of the extended gamma function

It is well known that, if f > 0 and ln f is convex, then f is said to be a logarithmically convex function. Every logarithmically convex must be convex. See [START_REF] Nantomah | The k-analogues of some inequalities for the digamma function[END_REF] and [18, Remark 1.9]. In this section, we verify the log-convexity of the extended gamma function.

Theorem 4.1 The extended gamma function Γ b : (0, ∞) → R is logarithmically convex.

Proof Let p and q be positive numbers such that

1 p + 1 q = 1. Since Γ b x p + y q ≤ [Γ b (x)] 1/p [Γ b (y)] 1/q , see [4], letting λ = 1 p and (1 -λ) = 1 q leads to Γ b [λx + (1 -λ)y] ≤ [Γ b (x)] λ [Γ b (y)] (1-λ) .
As a result, the function Γ b is logarithmically convex.

A mean inequality of the Turán type for the Kummer confluent hypergeometric k-function

In this section, we present a mean inequality involving the Kummer confluent hypergeometric k-function. For this purpose, we consider the relation

φ k (a + k, b, x) -φ k (a, b, x) = kx b φ k (a + k, b + k, x), k > 0.
(5.1)

Theorem 5.1 For a, b, k > 0 and v ∈ N with a, b ≥ v -k, the inequality [φ k (a, a + b, x)] 2 > φ k (a + v, a + b, x)φ k (a -v, a + b, x) (5.2)
is valid for all nonzero x ∈ R.

First proof Assume that x > 0. For c = 0, -1, -2, . . . , define

f v,k (x) = [φ k (a, c, x)] 2 -φ k (a + v, c, x)φ k (a -v, a + b, x)
and

f v+k,k (x) = φ k (a, c, x) 2 -φ k (a + v + k, c, x)φ k (a -v -k, a + b, x).
From (5.1), it follows that

f v+k,k (x) -f v,k (x) = φ k (a + v, c, x)φ k (a -v, c, x) -φ k (a + v + k, c, x)φ k (a -v -k, c, x) = φ k (a -v, c, x)[φ k (a + v, c, x) -φ k (a + v + k, c, x)] + φ k (a + v + k, c, x)[φ k (a -v, c, x) -φ k (a -v -k, c, x)] = φ k (a -v, c, x) -kx c φ k (a + v + k, c + k, x) + φ k (a + v + k, c, x) kx c φ k (a -v, c + k, x) = kx c g v,k (x),
where

g v,k (x) = φ k (a + v + k, c, x)φ k (a -v, c + k, x) -φ k (a -v, c, x)φ k (a + v + k, c + k, x).
Accordingly, by the Cauchy product, we have

g v,k (x) = ∞ s=0 s r=0 (a + v + k) s,k (a -v) s-r,k r!(s -r)! × 1 (c) s,k (c + k) s-r,k - 1 (c) s-r,k (c + k) s,k x s = ∞ s=0 s r=0 (a + v + k) s,k (a -v) s-r,k r!(s -r)! (c + mk) -(c + nk -mk) c(c + k) s,k (c + k) s-r,k x s = k c ∞ s=0 s r=0 T s,r,k (2r -s)x s ,
where

T s,r,k = (a + v + k) s,k (a -v) s-r,k r!(s -r)!(c + k) s,k (c + k) s-r,k .
If s is even, then

s r=0 T s,r,k (2r -s) = s/2-1 r=0 T s,r,k (2r -s) + s r=s/2+1 T s,r,k (2r -s) = s/2-1 r=0 T s,r,k (2r -s) + s/2-1 r=0 T s,s-r,k (2(s -r) -s) = (s-1)/2 r=0 (T s,s-r,k -T s,r,k )(s -2r),
where x denotes the ceiling function whose value is the greatest integer not more than x. Similarly, if s is odd,

s r=0 T s,r,k (2r -s) = (s-1)/2 r=0 (T s,s-r,k -T s,r,k )(s -2r).
Accordingly,

f v+k,k (x) -f v,k (x) = kx c g v,k (x) = k 2 x c 2 ∞ s=1 (s-1)/2 r=0 (T s,s-r,k -T s,r,k )(s -2r)x s . (5.3)
Carefully simplifying gives

T s,s-r,k -T s,r,k = (a + v + k) s,k (a -v) s,k -(a + v + 1) s,k (a -v) s,k r!(s -r)!(c + k) s-r,k (c + k) s,k = (a + v + k) s,k (a -v) s,k r!(s -r)!(c + k) s-r,k (c + k) s,k (a + v + k) s-r,k (a + v + k) s,k - (a -v) s-r,k (a -v) s,k = (a + v + k) s,k (a -v) s,k r!(s -r)!(c + k) s-r,k (c + k) s,k [h k (a + v + k) -h k (a -v)], (5.4) 
where

h k (x) = (x) s-r,k (x) s,k . For x > 0 and s -r > r, that is, [ s-1 2 ] ≥ r, the logarithmic derivatives of h k is h k (x) h k (x) = ψ k (x + (s -r)k) -ψ k (x + nk) > 0,
where [START_REF] Díaz | On hypergeometric functions and Pochhammer k-symbol[END_REF][START_REF] Kokologiannaki | Properties and inequalities of generalized k-gamma, beta and zeta functions[END_REF][START_REF] Nantomah | The k-analogues of some inequalities for the digamma function[END_REF]). Hence, the function h k is increasing under the condition stated. This fact together with the aid of (5.3) and (5.4) yields

ψ k = Γ k Γ k is the digamma k-function (see
f v+k,k (x) -f v,k (x) = kx c g v,k (x) = k 2 x c 2 ∞ s=1 (s-1)/2 r=0 (T s,s-r,k -T s,r,k )(s -2r)x s > 0, (5.5) 
where a ≥ v ≥ 0, x > 0, c + k > 0, and c = 0. Consequently, from (5.5), it follows that

f v+k,k (x) = [f v+k,k (x) -f v,k (x)] + [f v,k (x) -f v-k,k (x)] + • • • + [f 1,k (x) -f 0,k (x)] is positive for a ≥ v ≥ v -k ≥ v -2k ≥ • • • ≥ 0 and f 0,k (x) = 0. Now replacing v by v -k shows that f v,k (x) > 0, x > 0, v ∈ N, a ≥ v -k. (5.6) 
Therefore, the function f v,k is absolutely monotonic on (0, ∞), that is, f

( ) v,k (x) 
> 0 for = 0, 1, 2, . . . . This proves Theorem 5.1 for the case x > 0. Now suppose that x < 0, a, b > 0, and v ∈ N with a, b ≥ v -k. Since φ k (a, c, x) is symmetric in a and b, by interchanging a and b in Theorem 5.1, we obtain

φ k (b, a + b, -x) 2 -φ k (b + v, a + b, -x)φ k (b -v, a + b, -x) > 0.
By using Kummer's transformation (1.3), we have

e -2x φ k (a, a + b, x) 2 -e -2x φ k (a -v, a + b, x)φ k (a + v, a + b, x) > 0.
Thus, Theorem 5.1 also holds for x < 0. 

Second proof Since (a) n,k = a(a + k)(a + 2k) • • • (a + (n -1)k) = k n a k a k + 1 a k + 2 • • • a k + (n -1) = k n a k n , it follows that φ k (a, b; x) = ∞ n=0 (a) n,k (b) n,k x n n! = ∞ n=0 k n (a/k) n k n (b/k) n x n n! = φ a k , b k , x .
[φ k (a, c, x)] 2 ≥ φ k (a -v, c, x)φ k (a + v, c, x) holds for any v ∈ N with a ≥ v -k.
Proof This follows directly from the proof of Theorem 5.1 and the fact that the equation (5.6) holds under the conditions c + k > 0 and c = 0.

Corollary 5.2 If v ∈ N and a, b ≥ v, then A φ k (a + v, a + b, x), φ k (a -v, a + b, x) > φ k (a, a + b, x) > G φ k (a + v, a + b, x), φ k (a -v, a + b, x) (5.7)
for all nonzero x ∈ R, where A and G are, respectively, the arithmetic and geometric means.

Proof First assume x ≥ 0 and a, b ≥ v for v ∈ N. Then the left hand side inequality in (5.7) is a direct consequence of the facts that

A((a + v) s,k , (a -v) s,k ) = (a) s,k
for s = 0, 1 and

A((a + v) s,k , (a -v) s,k ) > (a) s,k
for s ≥ 2. Hence, by induction, we have

A(φ k (a + v, a + b, x), φ k (a -v, a + b, x)) = ∞ s=0 A((a + v) s,k , (a -v) s,k )x s (a + b) s,k s! > ∞ s=0 (a) s,k x s (a + b) s,k s! = φ k (a, a + b, x).
For x ≥ 0, the right hand side inequality in (5.7) follows from taking square root of (5.2). The proof of Corollary 5.2 for x ≥ 0 is thus complete. Now assume x < 0 with a, b ≥ v. Interchanging a and b in (5.7) one arrives at

A(φ k (b + v, a + b, -x), φ k (b -v, a + b, -x)) > φ k (b, a + b, -x) > G(φ k (b + v, a + b, -x), φ k (b -v, a + b, -x)).
Making use of the k-analogue of Kummer's transformation and the homogeneity of A and G acquires

e -x A(φ k (a -v, a + b, x), φ k (a + v, a + b, x)) > e -x φ k (a, a + b, x) > e -x G(φ k (a -v, a + b, x), φ k (a + v, a + b, x)).
Consequently, Theorem 5.7 also follows for x < 0. Remark 5.2 In [START_REF] Qi | Some inequalities of the Turán type for confluent hypergeometric functions of the second kind[END_REF], some inequalities of the Turán type for confluent hypergeometric functions of the second kind were also discovered.

Remark 5.3 By the way, we note that the papers [START_REF] Guo | Monotonicity of functions connected with the gamma function and the volume of the unit ball[END_REF][START_REF] Ivády | A note on a gamma function inequality[END_REF][START_REF] Kupán | A result regarding monotonicity of the Gamma function[END_REF][START_REF] Kupán | Monotonicity theorems and inequalities for the gamma function[END_REF][START_REF] Qi | Integral representations and properties of some functions involving the logarithmic function[END_REF][START_REF] Yang | Monotonicity and sharp inequalities related to gamma function[END_REF][START_REF] Zhao | A refinement of a double inequality for the gamma function[END_REF] belong to the same series in which inequalities and complete monotonicity for functions involving the gamma function Γ(x) and the logarithmic function ln(1 + x) were discussed.

Remark 5.4 This paper is a slightly revised version of the preprint [START_REF] Nisar | Some inequalities involving the extended gamma and beta functions[END_REF].

Conclusions

In this paper, we present some inequalities involving the extended gamma function Γ b (z) via some classical inequalities such as the Chebychev inequality for synchronous (or asynchronous, respectively) mappings, give a new proof of the logconvexity of the extended gamma function Γ b (z) by using the Hölder inequality, and introduce a Turán type mean inequality for the Kummer confluent k-hypergeometric function φ(z).

Theorem 3 . 3

 33 If m and n are positive real numbers such that m and n are similarly (oppositely) unitary, then Γ b (b + 1)Γ b (m + n + b + 1) Γ b ((m + b + 1)Γ b (n + b + 1), b ≥ 0.

1 . 5 . 1

 151 Replacing a and b by a k and b k , respectively, gives Theorem 5.Corollary If a > 0 and c + k > 0 with c = 0, then the inequality

Remark 5 . 1

 51 In Section 5, we have established a Turán type and mean inequality for k-analogue of the Kummer confluent hypergeometric function. If we let k → 1, then we can conclude to the corresponding inequalities of the confluent hypergeometric function.
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