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Abstract

In the paper, the authors present some inequalities involving the extended gamma
function and the Kummer confluent hypergeometric k-function via some classical
inequalities such as the Chebychev inequality for synchronous (or asynchronous,
respectively) mappings, give a new proof of the log-convexity of the extended
gamma function by using the Holder inequality, and introduce a Turdn type mean
inequality for the Kummer confluent k-hypergeometric function.
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1 Introduction
The gamma function T' can be defined [24, 28, 31, 32] by

I'(2) :/ t*~lte7tdt, R(z)>0.
0

Alternatively, it can also be defined [19] by

1h2—1
I'(z) = lim el

n—oo  (2)n ’

where (2),, for z # 0 is the Pochhammer symbol defined [27] as

(2)n = 2z+1D)(z4+2)---(z+n-1), n>1;
", n=0.

The relation between (z),, and I'(z) is

_ T(z+n)
=1

Kottakkaran Sooppy Nisar, Feng Qi, Gauhar Rahman, Shahid Mubeen, and

Muhammad Arshad, Some inequalities involving the extended gamma function and the Kum-

mer confluent hypergeometric k-function, Journal of Inequalities and Applications 2018,
Paper No. 135, 12 pages; available online at nttps://doi.org/10.1186/s13660-018-1717-8.


mailto:qifeng618@gmail.com
https://doi.org/10.1186/s13660-018-1717-8

Nisar et al. Page 2 of 12

The beta function B(xz,y) can be defined [17, 20, 21] by

1
B@ﬂ):/'ﬁ4uf¢w4du R(z), R(y) > 0
0
and can be expressed by
B(z,y) =
In 1995, Chaudhry and Zubair [3] introduced the extended gamma function
> -1
Typ(z) = / e M A, R(2) >0, b>0. (1.1)
0

If b =0, then I'y becomes the classical gamma function I'.
In 1997, Chaudhry et al [2] introduced the extended beta function

By(z,y) = /01 N1 — )Y et R(b), R(x), R(y) > 0. (1.2)

It is clear that By(z,y) = B(z,y).
In 2009, Barnard et al [1] established three inequalities

[p(a,a+b,2)]* > ¢la+v,a+bx)pla—v,a+b2),
[(b(a/a c, .%')]2 > (b(a/ + v, C, '/E)(b(a/ - U, JT),

and

Alp(a+v,a+b,z),¢(a —v,a+b,z)) > dla,a+ b, x)
> G(d(a+v,a+b,2),d(a—v,a+bz),

where A(a, ) = # and G(a, f) = /af are the arithmetic and geometric means
and

Tl

¢(a,b, ) ia

is the Kummer confluent hypergeometric function [25, 28].

The Kummer confluent hypergeometric k-function is defined by

o0
ankx"

k(a, b, x)
bnkn!’
n:O

where

(@)nx =ala+k)(a+2k)---[a+ (n —1)k]
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for n > 1 and k > 0 with (a)o,x = 1 is the Pochhammer k-symbol, which can also

be rewritten as

_ Tp(a+nk)
(a)ﬂ,k - Fk(a)

and the gamma k-function I'y(a) is defined [5, 20, 21] by
I'i(a) :/ o le= "k gy
0
In 2012, Mubeen [14] introduced the k-analogue of Kummer’s transformation as

¢k(aab7x) = eI(bk(avb_av _:E)‘ (13)

In Section 2, we prepare two lemmas. In Section 3, we discuss applications of
some integral inequalities such as the Chebychev integral inequality. In Section 4,
we prove the logarithmic convexity of the extended gamma function. In the last
section, we introduce a mean inequality of Turdn type for the Kummer confluent

hypergeometric k-function.

2 Lemmas

In order to obtain our main results, we need the following lemmas.

Lemma 2.1 (Chebychev integral inequality [6, 7, 11, 23]) Let f,g,h: I CR —- R
be mappings such that h(x) > 0, h(z)f(z)g(x), h(z)f(x), and h(z)g(x) are inte-
grable on I. If f(x) and g(x) are synchronous (or asynchronous, respectively) on
I, that is,

forall x,y € I, then

/Ih(a:)dx/lh(x)f(x)g(x)dx z /h(x)f(x)dx/h(z)g(x)dw

I I

Lemma 2.2 (Holder’s inequality [29, 30]) Let p and g be positive real numbers
such that ]% + % =1 and f,g: [c,d] = R be integrable functions. Then

< [/jﬂm)vﬂdx} Up [/ 9(2)7dz] "

3 Inequalities involving the extended gamma function via the
Chebychev integral inequality

In this section, we prove some inequalities involving the extended gamma function

/C ()

via the Chebychev integral inequality in Lemma 2.1.
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Theorem 3.1 Let m,p and r be positive real numbers such that p > r > —m. If
r(p—m-—r) E 0, then

Ty (m)Cy(p) Z To(p — )Ty (m + 7). (3.1)
Proof Let us define the mappings f, g, h : [0,00) — [0, 00) given by

FA) =t g(t) =t", and h(t) =tmle b

Ifr(p—m-—r) E 0, then we can claim that the mappings f and g are synchronous
(asynchronous) on (0,00). Thus, by applying the Chebychev inequality on I =
(0,00) to the functions f, g and h defined above, we can write

00 o
/ tm—le—t—bt71 dt/ tp—r—m_lfrtm—1e—t—bi&’1 dt
0 0
0 0
> / tp—'r—mt'rn—le—t—bt71 dt/ t'r'tm—le—t—lnfl dt.
0

<
0

This implies that

o0 o0
/ tm—le—t—bf1 dt/ tp—le—t—bf1 dt
0 0

> -1 > -1
E / tp—r—le—t—bt dt/ tm-l—r—le—t—bt dt.
0 0

By (1.1), we acquire the required inequality (3.1). O

Corollary 3.1 Ifp >0 and ¢ € R with |q| < p, then

To(p) < [Tolp— Q)Ts(p+ q)]l/?

Proof By setting m = p and r = ¢ in Theorem 3.1, we obtain 7(p—m—7) = —¢? < 0
and then the inequality (3.1) provides the desired Corollary 3.1. O

Theorem 3.2 If m,n > 0 are similarly (oppositely) unitary, then

> Dy(m+ b+ DTy(n+b+1)

I‘b(m+n+b)< o0 +2)

Proof Consider the mappings f,g,h : [0,00) = [0,00) defined by
f(t) = tm_lv g(t) = tn_l, and h(t) = tb+1e_t_bt71 .

Now if the condition (m—1)(n—1) z 0 holds, then the Chebychev integral inequality
applied to the functions f, g, and h means

> —1 > -1
/ tb-‘rle—t—bt dt/ tm—ltn—ltb-‘rle—t—bt dt
0 0

Page 4 of 12
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o0 o0
E / tm—1tb+1e—t—bt*1 dt/ tn—ltb-&-le—t—bt*l dt.
0 0

This implies that

o0 o0
/ tb+1e—t—bt*1 dt/ tm+n+b—1e—t—bt*1 dt
0 0

> -1 o0 -1
; / tm+be—t—bt dt/ tn+be—t—bt dt
0 0

By the definition of the extended gamma function, we have

Ly(b+2)Ty(m+n+b) Z Ty(m+ b+ 1)Iy(n+ b+ 1),

or
I‘b(m +b+ 1)Fb(n +b+ 1)
r b) = :
pm+n+b) 2 (b + 2)
The required proof is complete. O

Corollary 3.2 Ifb=0, then

I'(m+n) z mnI'(m)T'(n).

Theorem 3.3 If m and n are positive real numbers such that m and n are simi-
larly (oppositely) unitary, then

Ly(b+ Dy(m+n+b+1) ZDy(m+b+DIy(n+b+1), b>0.
Proof Consider the mappings f, g, h: [0,00) — [0,00) defined by
FO)=t", g(t)=t", and h(t)=tle 70"
If the conditions of Theorem 3.1 hold, then the mappings f and g are synchronous

(asynchronous) on [0, 00). Thus, by applying the Chebychev integral inequality in
Lemma 2.1 to the functions f, g and h defined above, we have

o0 —1 o0 —1
/ the—t—0t dt/ et
0

0

> -1 ° -1

E / tmtbe—t—bt dt/ tntbe—t—bt dt.
0 0

This implies that

o0 oo
/ tbe—t—bt*1 dt/ tm+n+be—t—bt*1 dt
0 0

> -1 o0 -1
; / tm+be—t—bt dt/ tn+be—t—bt dt
0 0
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Thus by the definition of the extended gamma function, we have
Ly(b+ 1)y(m+n+b+1) ZTy(m+b+ 1)Ty(n+b+1).
The required proof is complete. O

Corollary 3.3 Ifb=0, then

mnI'(m)I'(n) .

I‘(m+n)§ e

4 Log-convexity of the extended gamma function

It is well known that, if f > 0 and In f is convex, then f is said to be a logarithmically
convex function. Every logarithmically convex must be convex. See [15] and [18,
Remark 1.9]. In this section, we verify the log-convexity of the extended gamma

function.

Theorem 4.1 The extended gamma function Ty : (0,00) — R is logarithmically

CONveET.

Proof Let p and g be positive numbers such that zlv + % = 1. Since

r (24 2) < @ P

see [4], letting A = % and (1 —\) = % leads to
Ty[Az + (1= \)y] < [Ty ()] [Ty ()] .
As a result, the function I'y is logarithmically convex. O
5 A mean inequality of the Turdn type for the Kummer confluent
hypergeometric k-function

In this section, we present a mean inequality involving the Kummer confluent hy-
pergeometric k-function. For this purpose, we consider the relation

or(a+k,b,x) — Pr(a,b,z) = k%(;ﬁk(a +Ekb+kx), k>0 (5.1)
Theorem 5.1 Fora,b,k >0 and v € N with a,b > v — k, the inequality
[pr(a,a+b,2)]? > ¢r(a+v,a+b,x)pp(a —v,a+ b, x) (5.2)
is valid for all nonzero x € R.
First proof Assume that x > 0. For ¢ #0,—1,—2,..., define

for(z) = [pr(a,c,)]* — ¢r(a+v,c,x)pp(a —v,a+ b, x)

Page 6 of 12
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and

forei(®@) = drla,c,x)> = dpla+v+k,c,x)pr(a—v—k,a+b,z).

From (5.1), it follows that

forr k(@) = for(@) = dr(a+v,c,z)¢(a —v,c )
—drla+v+k,e,x)pr(a—v—k,cx)
= ¢r(a —v,c,z)[pr(a+ v, e, 2) — pr(a+ v+ k, ¢, )]
+or(a+v+k,cx)pr(a—v,c,x) — drla—v—k, e )

= ¢r(a — U,C,$)<_Ckx>¢k(a+v +k,c+k x)
kx
+q§k(a+v+k,c,x)(C)@.@(a—v,c—i—k,x)
k
= —gui(a),

where

gok(x) = dr(a+v+k,c,x)or(a —v,c+ k, z)
—¢pla—v,c,x)pp(a+v+k,c+k,x).

Accordingly, by the Cauchy product, we have

geale) =3y el s

s=0 r=0
1 1

e et e e
= (@ v+ k) p(a— )k [ (c+mk) — (c+ nk — mk)
N Z ri(s —r)! [ cle+k)splct+k)s—rk

X

S

where

(a+v+k)skla—0v)s—rk
(s =r)l(c+k)sklc+k)s—rk

Ts,'r',k =

If s is even, then

s/2—1
ZTsrk 2r —s) Z Tsrk(2r —s) Z Tsri(2r — )
r=s/2+1
s/2—1 s/2—1

= Z Tsri(2r—s)+ Z Tss—rik(2(s—1)—5)
r=0
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[(s—1)/2]
== Z (Te,s—r,k - Te,r,k)(’s - 27’),
r=0

where [2] denotes the ceiling function whose value is the greatest integer not more
than z. Similarly, if s is odd,

s [(s—1)/2]
S Topr@r—s5)= > (Tesri — Torp)(s —2r).
r=0 r=0
Accordingly,
kx
fork k(@) = for(x) = 791),16(‘@)

oo [(s—1)/2]

2
k Z Z Tss—rp — Tsrp)(s—2r)z®. (5.3)

Carefully simplifying gives

(a+v+k)skla—v)se —(a+v+1)sk(a—v)sk
(s =) (c+k)s—rr(c+k)sk
(a+v+k)s k(@ —v)sk (a+v+k)s—r,k _ (a_v)s—r,k

ri(s =) c+k)s—rplc+k)sk | (a+v+k)sk (a —v)sk
_ (a+v+k)sk( )sk
(s =) e+ E)s—rplc+ E)sk

Ts,s—r,k - Ts,r,k =

[hi(a+v + k) — hi(a —v)], (5.4)

where hy(z) = (25) f’“ For x > 0 and s — r > r, that is, [5%] > r, the logarithmic
derivatives of hy is

=Yr(x+ (s — r)k) — Yp(z + nk) > 0,

where 1, = % is the digamma k-function (see [5, 10, 15]). Hence, the function hy,
is increasing under the condition stated. This fact together with the aid of (5.3)
and (5.4) yields

Forin(@) — forle) = ’“—xgu,m)

oo [(s—1)/2]
Z Z s s—r,k — 1s ’I‘k?)(s - 27")-'153 > 0, (55)

where a > v >0,z > 0, c+ k > 0, and ¢ # 0. Consequently, from (5.5), it follows
that

Jotre k(@) = [foar k(@) = for(@)] + [for(®) = fompr(@)] +- -+ [fre(@) = for ()]
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is positive fora > v >v—k > v —2k > --- > 0 and for(x) = 0. Now replacing v
by v — k shows that

for(®) >0, >0veNa>v—k. (5.6)
Therefore, the function f, j is absolutely monotonic on (0, co), that is, fv(z,)C () >0
for £ =0,1,2,.... This proves Theorem 5.1 for the case x > 0.

Now suppose that < 0, a,b > 0, and v € N with a,b > v — k. Since ¢x(a,c, x)
is symmetric in a and b, by interchanging a and b in Theorem 5.1, we obtain

dr(bya+b,—)? — dpp(b+v,a+b,—2)pp(b — v,a + b, —x) > 0.

By using Kummer’s transformation (1.3), we have

e or(a,a+b,x)* — e *gr(a—v,a+bx)pr(a+v,a+bx) > 0.

Thus, Theorem 5.1 also holds for x < 0. O

Second proof Since

(@) =ala+k)(a+2k) - (a+ (n—1)k)

= k" Z<Z+1>(Z+2)~-~(Z+(n—1))

it follows that

k(a,b;x) Zzn:fﬁ an x|_¢( )

Replacing a and b by 7 and %, respectively, gives Theorem 5.1. O
Corollary 5.1 Ifa >0 and c+ k > 0 with ¢ # 0, then the inequality

[68(a, c,2)]2 = éa — v, c,)én(a+v,¢,2)
holds for any v € N with a > v — k.

Proof This follows directly from the proof of Theorem 5.1 and the fact that the
equation (5.6) holds under the conditions ¢ + k£ > 0 and ¢ # 0. O

Corollary 5.2 IfveN and a,b > v, then

A((bk(a—i—v,a—l—b,x),(bk(a—U,@—&—b,x)) > ¢r(a,a+ b, x)
>G(¢k(a+v,a+b,x),¢k(a—v,a+b,x)) (5.7)
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for all nonzero x € R, where A and G are, respectively, the arithmetic and geometric
means.

Proof First assume z > 0 and a,b > v for v € N. Then the left hand side inequality
in (5.7) is a direct consequence of the facts that

A(a+v)s ks (@ =) k) = (@)s.k

for s = 0,1 and

A((a + U)s,ka ((l - v)s,k) > (a’)s,k

for s > 2. Hence, by induction, we have

o0

A(¢k(a+v,a+b,x),¢k(affu,a+b,x Z

S=

— skx o
>Z @t s ~ fl@atba).

A((a+v)sx, (a —v)gx)2®
(a4 b)s k8!

s=

For z > 0, the right hand side inequality in (5.7) follows from taking square root
of (5.2). The proof of Corollary 5.2 for z > 0 is thus complete.
Now assume x < 0 with a,b > v. Interchanging a and b in (5.7) one arrives at

A(¢k(b+vva+ba _x)a¢k(b_vaa+ba —{E)) > (j)k(b,d-f—b, —1’)
> G(¢k(b+ v,a + ba _x)a(bk(b —v,a+ ba —J}))

Making use of the k-analogue of Kummer’s transformation and the homogeneity of
A and G acquires

€_£A((bk(a —v,a + ba LL’), Qj)k(a’ + v,a + ba l’)) > e_g;(bk(a?a + b,(E)
eixG(qsk(a‘ —v,a+ b7 I)a ¢k(a +v,a+ ba .I‘))

Consequently, Theorem 5.7 also follows for x < 0. O

Remark 5.1 1In Section 5, we have established a Turan type and mean inequality for
k-analogue of the Kummer confluent hypergeometric function. If we let £ — 1, then
we can conclude to the corresponding inequalities of the confluent hypergeometric
function.

Remark 5.2 In [22], some inequalities of the Turdn type for confluent hypergeo-
metric functions of the second kind were also discovered.

Remark 5.3 By the way, we note that the papers [8, 9, 12, 13, 26, 32, 33] belong
to the same series in which inequalities and complete monotonicity for functions
involving the gamma function T'(z) and the logarithmic function In(1 4+ ) were
discussed.

Remark 5.4 This paper is a slightly revised version of the preprint [16].

Page 10 of 12
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6 Conclusions

In this paper, we present some inequalities involving the extended gamma func-
tion I'y(z) via some classical inequalities such as the Chebychev inequality for
synchronous (or asynchronous, respectively) mappings, give a new proof of the log-
convexity of the extended gamma function I'y(z) by using the Holder inequality, and
introduce a Turdn type mean inequality for the Kummer confluent k-hypergeometric
function ¢(z).
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