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10.2. Mathematics. Systematical Concepts
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Abstract

The paper investigates the notions of number, extensive quantity, algebraic quantity,
similarity, and probability as introduced in Wolff’'s mathematical writings, and evalu-
ates the coherence of these definitions with Wolff’s presentation of the mathematical
method. Wolff’s original epistemology is based on the belief that the discussion on the
foundation of mathematics and on the history of mathematical ideas is essential not

only to pure mathematics but also to its application and teaching.

Wolff’s investigation of probable propositions allowed for a unique demonstrative

methodology applied to philosophical mathematical and historical knowledge, thus

explaining

The paper shows the internal coherence
between Wolff’s choice of mathematical definitions and his overall epistemology, and
underlines the heritage of Descartes, of Barrow’s edition of Euclid’s Elements and of
Aristotle’s notion of contiguity rather than the influence exerted by Leibniz’s mathe-

matics or by Newton’s fluentist conception of geometrical quantities.
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1 Introduction

Both in philosophy and in mathematics Wolff has been often considered as a mere
epiphenomenon of other authors (Leibniz, Euclid), and at most appreciated for his di-
dactical influence. The construction of the so-called Leibnizio-Wolffian tradition has
played this role in the history of philosophy. In the history of mathematics, Wolff was
mainly mentioned for his influential textbooks, which practically substituted Euclid’s
Elements in the university curricula. His mathematical contributions, on the contrary,
have been mostly criticized, because of his insistence on geometrical representation,
on the non-existence of negative quantities, and on the idea that infinitesimals cannot

be taken to be numbers (see § 2.4).!

Whereas the literature on Wolff’s philosophy is now quite rich, the same cannot be
said for the analysis of Wolff’'s mathematical notions, which are still evaluated mainly

in comparison with others’ ideas—especially Euclid’s® or Leibniz’s,> or appreciated for

! Interesting exceptions are Shabel and Schubring, who analyze in detail Wolff's mathemat-
ical practice and Wolff's foundational stance on algebra, geometry, and analysis. Shabel traces the
origin of Wolff's concept of number in traditional geometric notions, underlying the connection
with a mathematical tradition that was strongly influenced by Euclid, and includes Descartes, Viéte,
Williamson, Barrow and Lamy. Schubring discusses at length the connection between proportion
theory and Wolff's reasons for refuting the idea that zero is a number, as well as earlier and later
supporters of similar arguments (Arnauld, Leibniz, Duhamel, Martin). See Lisa Shabel, Mathematics
in Kant’s Critical Philosophy. Reflections on Mathematical Practice, New York and London, 2002; see
also Gert Schubring, Conflicts Between Generalization, Rigor, and Intuition. Number Concepts Under-
lying the Development of Analysis in 17th-19th Century, New York, NY, 2005.

2 See Shabel, Mathematics in Kant’s Critical Philosophy. Reflections on Mathematical Practice,
op. cit; see also Henk ].M. Bos, Lectures in the History of Mathematics, London, Providence, 1993, pp.
141-152.

3 See Shabel, Mathematics in Kant’s Critical Philosophy. Reflections on Mathematical Practice,
op. cit; see also Katherine Dunlop, Mathematical method and Newtonian science in the philosophy of

Christian Wolff, in: Studies in History and Philosophy of Science Part A 44/3 (2013),
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their historical and pedagogical impact.* For example, Wolff has been considered as an
opponent of negative numbers,’ and opposed to Kant.® Exception made for Kastner
and Lambert, who associated a sharp criticism of specific aspects of Wolff’'s mathemat-
ics with a general praise of his difficult enterprise, mathematicians have been mainly

critical towards Woff (e.g. Gauss and Schumacher, Euler, ...).”

This article will investigate Wolff’'s mathematical definitions from a point of view that is
rather internal to his epistemology, especially in the light of the mathematical method
presented in the mathematical writings. The aim will be to evaluate the coherence and
epistemic value of , Wolff’s elucidation and definition of mathematical technical terms.
Much has been said in the literature about Wolff’s mathematical method, but the fo-
cus has often been on the application of this method to Wolff’s philosophy, or its in-

trinsic relation to logic.® Consequently, the mathematical method has often been pre-

Cf. Charles A. Corr, Christian Wolff and Leibniz, in: Journal of the History of Ideas 36(2)
(1975), pp. 241-262.

4 See Joseph W. Dauben and Cristoph |. Scriba, Writing the History of Mathematics. Its His-
torical Development, Basel, 2002.

5 See Johann Michael Hube, Versuch einer Analytischen Abhandlung von den Kegelschnitten,
Gottingen, 1759, p. xxxi, cited in Schubring, Conflicts Between Generalization, Rigor, and Intuition,
op. cit., p. 135, fn.77.

6 See Jennifer McRobert, Kant on negative quantities, real opposition and inertia, Paper Pre-
sented at the 2004 Meeting of the Western Canadian Philosophical Association in Victoria B.C., Can-
ada, 2004.

7 See Christian Friedrich Gauss, Briefwechsel zwischen C.F. Gauss und H.C. Schumacher, ed.
by C.AF. Peters, Altona, vol. 4, 1862, pp. 332-342; see also Calinger, R. S. (2015). Leonhard Euler:
Mathematical Genius in the Enlightenment. Princeton, NJ, 2015, pp. 146 ss.; see Schubring, Conflicts
Between Generalization, Rigor, and Intuition, op. cit,, p. 134 and p. 135, fn, 77.

8 See Herman J. d. Vleeschauwer, (1931). La genése de la méthode mathématique de Wolff,
in: Revue belge de philologie et d’histoire 11 (1931), pp. 651-677; see Giorgio Tonelli, Der Streit tiber
die mathematische Methode in der Philosophie in der ersten Hdlfte des 18. Jahrhunderts und die Ent-
stehung von Kants Schrift iiber die “Deutlichkeit”, in: Archiv fiir Philosophie 9 (1959), pp. 51-84; see
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sented as it is introduced in Wolff’s philosophical—especially logical or metaphysical—
writings. The starting point here will be the method as it is presented in the mathe-
matical writings, in order to verify its application in Wolff’s mathematical textbooks.
We will consider here only pure mathematics, but a second step of the investigation
should include applied mathematics too, given Wolff’s firm belief that applications
belong to mathematics, and especially that the practical use of a theory should be ex-
plained together with the theory itself.’ The analysis is focused on the first edition of
Wolff's Mathematical Dictionary,'® on the German and Latin editions of the Elements
of All Mathematical Sciences, on their German and Latin summaries, and on the Math-

ematico-Philosophical Essays and Dissertations (1740)."

Tore Frangsmyr, Christian Wolff's mathematical method and its impact on the Eighteenth century,
in: Journal of the History of Ideas 36/4 (1975), pp. 653-668; see Guido Zingari, Die Philosophie von
Leibniz und die “deutsche Logik” von Christian Wolff, in: Studia Leibnitiana 12/2 (1980), pp. 265-
278; see Katerine Dunlop, Mathematical method and Newtonian science in the philosophy of Chris-
tian Wolff, in: Studies in History and Philosophy of Science Part A 44/3 (2013), pp. 457-469; see
Paola Basso, Il secolo geometrico. La questione del metodo matematico in filosofia da Spinoza a Kant.
Firenze, 2004; see Volker Peckhaus, Logik, Mathesis universalis und allgemeine Wissenschaft. Leibniz
und die Wiederentdeckung der formalen Logik im 19. Jahrhundert. Berlin, 1997; see Ferdinando L.
Marcolungo, Wolff e il problema del metodo, in: Nuovi studi sul pensiero di Christian Wolff, ed. by
Sonia Carboncini and Luigi Cataldi Madonna, Hildesheim, Ziirich and New York, 1992, pp. 11-37.

9 See Henk ].M. Bos, Lectures in the History of Mathematics. Providence, Rl and London,
1993. p. 146.

10 Wolff never acknowledged further editions of the dictionary. See Christian Wolff, Elemen-
ta Matheseos V, chap. 1, p. 10 (GWII 33). See also Moritz Cantor, Vorlesungen iiber die Geschichte der
Mathematik, Leipzig, vol. 3, 1898, p. 478.

11 See in particular the following writings: Mathematisches Lexicon (1717) (GW I 11),
Auszug aus den Anfangs-Griinden aller mathematischen Wissenschaften (1732) (GW 1 25), Anfangs-
Griinde aller mathematischen Wissenschaften (1737) (GW 1 12-15), Elementa Matheseos I-V (1740-
46) (GW II 29-33), Christiani Wolfii Meletemata Mathematico-Philosophica Quibus Accedunt Disser-
tationes (1740) (GW 11 35), Kurtzer Unterricht von den vornehmsten mathematischen Schriften (GW 1
15.2).
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Among the most important mathematical concepts defined by Wolff, one should ex-
amine the notions of number, extensive quantity and algebraic quantity—occurring in
the definition of mathematics itself—, but also the concept of probability,12 the no-
tions of infinitesimals and continuum,® and the concept of similarity, which is related

to the concepts of quantity and quality.**

2 Mathematics consists of arithmetic, algebra and geometry

The concepts of arithmetical number, algebraic quantity, and geometrical magnitude
are the subjects of what Wolff identifies as the three main disciplines of mathematics:
arithmetic, geometry, and algebra. The analysis of Wolff’s definition of these notions is
useful to test his mathematical method, which rests exactly on the analysis and com-
parison of definitions. As Cantor remarked, the mathematical dictionary is a collection
of definitions or clarifications of mathematical technical terms, rather than an intro-
ductory survey of mathematics.” The survey of contemporary mathematics is not ex-
tensive neither in the Latin nor in the German version of the Elements of Mathematics
either, and many shortages and gaps have been remarked. Besides criticism of short-
ages and gaps in the treatment of mathematical topics, mathematicians criticized

Wolff’s choice of definitions: e.g. Schumacher and Gauss commented on the errors

12 See Luigi Cataldi Madonna, Wolff, Bolzano e la probabilita, in: Nuovi studi sul pensiero di
Christian Wolff, ed. by S. Carboncini and L. Cataldi Madonna, Hildesheim and New York, NY, 1992,
pp- 107-130. See also Martin Schonfeld, Wolff, Christian (1679-1754), in: Encyclopedia of Philoso-
phy, ed. by D. M. Borchert, Detroit, vol. 9, 2006, pp. 822-832. See Luigi Cataldi Madonna, Wahr-
scheinlichkeit und wahrscheinliches Wissen in der Philosophie von Christian Wolff. Studia Leibnitiana
XIX/1 (1987), pp. 2-40.

13 See Gert Schubring, Conflicts Between Generalization, Rigor, and Intuition. op. cit.

14 See Daniel Sutherland, Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early
Kant, in: Discourse on a New Method: Reinvigorating the Marriage of History and Philosophy of Sci-
ence, ed. by M. Friedman, M. Domski, and M. Dickson, Chicago, 2010, pp. 155-192.

15 Moritz Cantor, Vorlesungen iiber die Geschichte der Mathematik, op. cit., p. 477.
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contained in the definition of barycenter.'® This proves not only the difficulty but also
the fruitfulness of Wolff’s enterprise, which had at least the merit of highlighting the
problematicity of several definitions actually used in the mathematical practice or in
the teaching practice, thereby calling for emendations. But the modernity of Wolff’s
perspective, lies mainly in his belief that the discussion on the foundation of mathe-
matics and on the history of mathematical ideas is not only intrinsic to the develop-
ment of pure mathematics, but is also essential to the applications of mathematics and
to the educational enterprise. Not only did he create a new literary genre (see e.g. Bol-
zano’s text “On the mathematical method”), but based his textbooks on extensive sur-

veys of mathematical literature, long before Késtner.

2.1  Mathematics as the science of quantities

Mathematics is, according to Wolff’s definition in the Mathematical Dictionary, a sci-
ence that measures all that can be measured, a “science of quantities” [scientia quan-
titatum, Grossenlehre], i.e. a science of all things that can be enlarged or reduced;
pure mathematics embraces only three disciplines: geometry, arithmetic and alge-
bra.'® In the Latin version of the Elements of mathematics Wolff distinguishes between

arithmetic, geometry, trigonometry, finite analysis (algebra), and infinite analysis (dif-

16 See Christian Friedrich Gauss, Briefwechsel zwischen C.F. Gauss und H.C. Schumacher, ed.
by C.AF. Peters, Altona, vol. 4, 1862, pp. 332-342.

171 do not share here Dauben and Scriba’s diminishing remark that Wolff’s achievements in
the fifth volume of the Anfangsgriinde and in the fifth volume of the Elementa Matheseos, were “no
more than a dry annotated guide to the literature”, or Struijk’s comment on Késtner’s Geschichte der
Mathematik as “an artless compilation of titles and descriptions of ancient books without an at-
tempt at a readable narrative”. See Dauben, and Scriba, Writing the History of Mathematics. Its His-
torical Development, op. cit., pp. 111-113.

18 See Mathematisches Lexicon, pp. 864-66 (GW I 11). But in the entry on mathesis pura,
Wolff also mentions trigonometry as a distinct discipline. Ibid., p. 868 (GW I 11).
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ferential and integral calculus).” But to better understand what mathematics is, let’s

look at what it is not.

Mathematics is not a universal mathesis, which means that mathematics is not a calcu-
lus, because Wolff distinguishes four different conceptions of mathesis universalis,
which have in common exactly the fact that they are kinds of calculi: 1) Rasmus
Berthelsen’s art of symbolical calculus, 2) John Wallis” calculus with cyphers and let-
ters, 3) the investigation of general properties of quantities by means of the symbolical
calculus, and 4) Leibniz’s science of the measurement of all things.zo Wolff’s distinction
is acute, because he clearly distinguishes four tendencies in mathematics that have
sometimes been misunderstood: 1) the literal calculus, 2) the unification of arithmeti-
cal and algebraic calculus (Wallis), 3) the study of general properties of magnitudes
(Viete, Descartes, Newton), and 4) the investigation of other things beyond quantities
(Leibniz). Yet, Wolff does not really do justice to Leibniz’s project, because even if he
rightly asserts that it concerns all things, he also insists on the notion of measurement,
whereas Leibniz claims that the mathesis universalis does not concern only the rela-
tionship of equality, and thus size and quantities, but also other types of relationships

between things, and therefore also quality.”*

19 See Elementa Matheseos 1, § 132, p. 341 (GW II 29). Note that in the Mathematical Dic-
tionary, the differential calculus included differential, exponential and integral calculus [Calculus
differentio-differentialis, exponentialis, integralis seu sommatorius]. See Mathematisches Lexicon,
pp- 283-291 (GW I 11). Analysis is a part of algebra because differentiation and integration were
conceived as arts of calculi, or, as Shabel has claimed, because both analysis and algebra are, in a
sense, arts of calculi. See Shabel, Mathematics in Kant’s Critical Philosophy. Reflections on Mathemat-
ical Practice, op. cit.

20 See Mathematisches Lexicon, p. 869 (GW I 11).

21 See Gottfried W. Leibniz, Mathesis universalis, in: Leibnizens mathematische Schriften, ed.
by C.I. Gerhardt, vol. 7, Halle, 1863, pp. 49-76. See also Vincenzo De Risi, Geometry and Monadolo-
gy: Leibniz’s Analysis Situs and Philosophy of Space, Basel, Boston and Berlin, 2007, p. 118.
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To resume, mathematics is the science of the measurement of certain kinds of things
that Wolff generically calls quantities. To avoid the ambiguity of the term, let’s turn to
the analysis of the objects of the main mathematical disciplines: the number in arith-

metic, extensive quantities in geometry, and quantity in algebra.

2.2 Arithmetical numbers

Wolff defines arithmetic (Arithmetica, Rechenkunst) as the science of number, which
includes the infinitesimal calculus and the arithmetic of irrationals.?? Again, arithmetic
is better understood by verifying what it is not: it is distinguished from the algebraic or
literal calculus [arithmetica speciosa sive litteralis, Buchstabenrechenkunst], and from
algebra, which Wolff conceives as the theory of equations (see further § 2.4).% Yet,
Wolff’s analysis undergoes some changes in time, because in the later Latin versions of
the Elements of mathematics, algebra is merged with finite analysis, and the latter is

part of arithmetic.**

If arithmetic is the science of number, and includes analysis, the definition of number
[numerus, eine Zahl] should be as general as possible, in order to include not only inte-
gers, but also rational and irrational numbers, and even 1, which is not a number ac-
cording to the Euclidean definition of number as a multitude of units.”® On the contra-
ry, the definition should not be as general as to include zero, which is, according to
Wolff, a sign, and not a concept. This depends on the metaphysical implications of

Wolff’s understanding of a concept as a representation of a thing that the subject

22 See Mathematisches Lexicon, pp. 169,176,179 (GW 1 11).
23 Ibid., pp. 280, 292,178 (GW 1 11).

24 See Elementa Matheseos 1, §132, p. 341 (GW 11 29).

25 See Mathematisches Lexicon, p. 945 (GW I 11).
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should acknowledge. Zero [Cyphra, eine Nulle] is not a concept, because it does not
represent anything;|it is rather a cipher that is used in decimal notation.?®

Wolff defines a number as “what stands in proportion to 1 as a straight line stands in a
proportion to another straight line”.?” For example, an integer [Numerus integer, gan-
ze Zahl] is “a number that stands in proportion to 1 as the whole stays to a part”; a
fraction [Fractio, Bruch] is “a number that stands in proportion to 1 as a part stays to
the whole”; a rational number [Numerus rationalis, eine Rational-Zahl] is “a number
that consists either of pure units or of equal parts of the units”; an irrational number
[Numerus irrationalis, surdus, eine Irrational-Zahl] is “a number that has no rational
1;;.28

proportion to So, arithmetic is the science of natural, fractional, rational and irra-

tional numbers.

It should be noted that fractions are numbers of the form 1/b, whereas rationals have
the form a/b, with a and b natural numbers. Even if this is certainly far away from the
contemporary distinction between fractions and rational numbers (a distinction that
has been introduced only at the beginning of the 20" century,” it is very interesting to
remark that Wolff accurately distinguishes these two kinds of number, which are used
in different ways in the applications: one thing is to divide a whole into parts (fraction),
another thing is to measure how many times a quantity is measured by another quan-

tity, thereby establishing the ratio of two quantities. Wolff’s belief that the applica-

26 “The symbol 0, denoting nothing [...] is needed to fill in the empty places, where no num-
ber stands. For example 1 means in the third place ‘hundred’: to understand that it stays in the third
place, when there are no other numbers near to him, two zeros are placed there. So, ‘hundred’ is
written 100”. Ibid., p. 1485 (GW 1 11).

27 Ibid., p. 944 (GW111).

28 Ibid., pp. 953, 647, 965,953 (GW 1 11).

29 See Alessandro Padoa, Che cosa é una relazione?, in: Atti della Accademia Reale delle Sci-

enze di Torino, 41 (1905-06), pp. 818-826. See also Alessandro Padoa, Frazioni, relazioni ed astra-

zioni, in: Periodico di Matematica, (3) 25/7 (1910), pp. 257-258.|:|
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tions of mathematics belong to mathematics is here evident: the operation that gave
origin to the specific kind of number is recalled in its definition. Only afterwards, a
general definition is given that might include all the specific cases. As a result, one
should not expect Wolff to produce pure definitions, i.e. definitions that include no-
tions belonging to the same discipline, e.g. only arithmetical notions in arithmetic. An-
other reason is of course that mathematics is subordinated to philosophy.*® Wolff’s
definition of number is impure for two reasons: it presupposes the notion of straight
line, and the notion of 1. If 1 is conceived as the integer number 1, then the definition
is circular (at least in the case of number 1 itself). If 1 is conceived as the whole, then
metaphysical, or more precisely ontological notions enter into the definition of num-
ber, which is then impure because philosophical considerations enter into an arithmet-

ical definition.

The presence of non-arithmetical elements in Wolff’s definition has been explained in

the literature as an effect of his interpretation of Descartes’ geometry, where an oper-

30 The notion of purity is usually applied to proofs, and goes back to a passage by Aristotle,
where he claims that “you cannot prove anything by crossing from another kind—e.g. something
geometrical by arithmetic. . . . where the kinds are different, as with arithmetic and geometry, you
cannot attach arithmetical demonstrations to what is incidental to magnitudes—unless magnitudes
are numbers. ... Hence the kind must be the same, if a demonstration is to cross”. See Aristotle, Pos-
terior Analytics, 75a-75Db, transl. by Jonathan Barnes, Oxford, 1994, p. 12. The notion of a pure defi-
nition is less common in the literature. Transposing Arana’s notion of extraneousness from proof to
definitions is one way to give a general definition of impure definition, i.e. definitions containing
notions that are extraneous to the disciplinary field. See Andrew Arana, On formally measuring and
eliminating extraneous notions in proofs, in: Philosophia Mathematica 17/2 (2009), pp. 189-207 and
also Andrew Arana, Purity in arithmetic: Some formal and informal issues. In Formalism and Beyond.
On the Nature of Mathematical Discourse, ed. by M. Detlefsen and G. Link, Boston, 2014, pp. 275-
314. Craig Walton used the notion of impure definition in a different sense, as he considered Ramus
as one of the first who explicitly introduced impure definitions in mathematics, i.e. including no-
tions that do not belong to pure mathematics but rather to its applications. See Craig Walton, Ra-

mus and Socrates, in: Proceedings of the American Philosophical Society 114/2 (1970), p. 122.

10
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ation of addition and multiplication is defined on segments by means of certain geo-
metrical constructions.** Following Euclid, Wolff defines a ratio as “the relation of a
thing to another homogeneous thing that determines the quantity [Grosse] of the
former by means of the quantity of the latter, without need for a further measure
[Maass]. For example, “taking the width of a window as measurement unit, then if the
length of the window is the double of the width, the relation of the latter to the former
is 1:2. On the contrary, if the length of the window is taken as measurement unit, then
the relation of the height to the width is 2:1.”% So, a ratio of two quantities expresses
a measurement of the quantities, but is not a number. Number are introduced only by

proportions, i.e. by “the similarity of two ratios”.*

It has been remarked that Wolff’s definition is similar to Newton’s definition of num-
ber as the ratio of two quantities, but Newton is not explicitly mentioned in the 1714
edition, and one should note that Wolff defines number as the fourth proportional of a
proportion and not explicitly as the ratio of two quantities. This difference is even
more evident if one considers that Newton’s definition is not as impure as Wolff’s. The

modern aspect of Wolff’s notion, an aspect that he was probably unaware of, is that

31 See Shabel, Mathematics in Kant’s Critical Philosophy. Reflections on Mathematical Prac-
tice, op. cit. Shabel’s remarks on the geometrical origin of the notion are certainly confirmed by
Wolff’'s own claim that his definition explains why “it is possible to multiply and divide lines by lines
so that the product or respectively the quotient might be itself a line, as Descartes showed in Book 1
and 2 of Geometry”, and is thus useful in the application of algebra to geometry. See Mathematisches
Lexicon (GW 1 11), pp. 944-5. Yet, it should be remarked that Wolff gives an epistemological justifi-
cation too. Wolff's notion of number satisfies what is nowadays called an “application constraint”,
i.e. the fact that the notion already contains a hint to its possible application.

32 [bid., p. 1169 (GW 1 11). See also Elementa Matheseos I, § 126, p. 55 (GW 11 29).

33 See Mathematisches Lexicon, p. 1105 (GW I 11). Here Wolff introduces only numerical
examples, but he elsewhere considers generic quantities (letters or numbers). See Elementa Arith-
meticae, part 111, § 155 in Elementa Matheseos 1, p. 60 (GW II 29). See Gert Schubring, Conflicts Be-

tween Generalization, Rigor, and Intuition, op. cit.

11
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measuring (constructing ratios of quantities) might take place both between numbers
and between lines, but numbering arises only when one perceives the similarity be-
tween the two ratios by means of a proportion. In modern parlance, numbering occurs
when one recognizes by means of a representation theorem that the structure of a

given numerical system and the structure of the quantities to be measured are similar.

2.3 Geometrical extensive quantities

The definition of geometry and in particular of geometrical quantities is ambiguous. It
changes in time, and expresses in the clearest way Wolff’s tension between the atten-
tion to mathematical practice, the search for distinct and adequate definitions (see
below), and the debt to Euclid’s tradition. Wolff considers geometrical quantities
sometimes from a rather applied perspective (e.g. in the Anfangsgriinde and in the
Mathematisches Lexicon), and sometimes from a pure mathematical point of view (as
in the latter editions of the Elementa Matheseos). Besides, Wolff is partly fascinated by
Barrow’s edition of the Elements, and partly strongly unsatisfied with the order of the
propositions in the Elements. The definition of arithmetic is based on the kind of ob-
jects it concerns (i.e. numbers) but can also be enriched by opposition to what arith-
metic is not (mathesis universalis). Geometry on the contrary is defined only by refer-
ence to its objects. This makes it more difficult to understand what it actually is, espe-

cially because Wolff gives at least two rather divergent definitions.

In early works, geometry “is the science of space, which considers physical things ac-
cording to their length, width, and height”, whereas in later writings it is “the science
of extensive things (Extensorum), inasmuch they are finite, i.e. lines, surfaces and sol-
ids”.>* In the Mathematical Dictionary Wolff considered lines and surfaces as abstrac-

tions of solids, claiming that lines are quantities, but cannot actually be separated in

34 See Mathematisches Lexicon, p. 665 (GW I 11); see also Elementa Matheseos I, § 1, p. 121
(GW I 29).

12
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thought from width and depth.>®> On the contrary, in the Elements of Mathematics he
considered lines, surfaces and solids to be extensive quantities: “a line is described
when a point A moves to a point B”; a point is “what delimits itself wheresoever

turned, or what does not have ends distinct from itself”.®

In the earlier writings the impure nature of the definition relies mainly in the fact that
geometry is considered as the science of space, and thus as having to do directly with
physical things, of which it considers certain aspects (length, width, and height).>’ In
later writings, the definition is impure for a different reason: it relies on the notion of
extension, which Wolff defines in the ontology as “multorum diversorum, aut, si mavis,
extra se invicem existentium, coéxistentia in uno, atque conflituatur multorum extra se
invicem existentium unione (the coexistence in one of several different, existing one

” 3% A straight line is an extensive

outside the other, which is generated by their union)
qguantity because we can distinguish in it many separate parts that, once unified, gen-
erate the line. This notion of extension, which has been compared with the Aristotelian
notion of continuity based on contiguity,*® is taken from philosophy rather than from
physical applications, but again is not explained in geometrical terms. On the contrary,
the insistence on the operation of unification of separate parts is clearly opposite to

Newton’s fluentist perspective: “Lines are described, and by describing are generated,

35 See Mathematisches Lexicon, p. 792 (GW I 11).

36 See Elementa Matheseos 1, § 10, p. 122 and § 6, p. 121(GW 11 29) respectively.

37 One should also note that geometry is not considered as a mixed or applied discipline,
and not as a mixed science, as it will be often the case in the 19t century. Wolff claims that geome-
try is pure rather than applied, because it concerns “the straight line in general”, and not “the
straight line as the width of a river, the height of a body, the distance between earth and moon”, and
so on. See Mathematisches Lexicon, pp. 866-7 (GW I 11).

38 See Philosophia prima sive Ontologia, Part 11, Sect. I, Chap. II, § 548, p. 428 (GW 1II 3).

39 See Antonio Moretto, La rilevanza matematica della discussione sui concetti di continuo e
di funzione nella filosofia tedesca dell’eta dell'illuminismo. Grandezza estensiva, continua e inten-

siva in Leibniz, Wolff, Baumgarten e Kant, in: Fenomenologia e societa 18/2-3 (1995), p. 117.
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not by any apposition of Parts, but by a continual motion of Points”.* The shift from a
physical to a philosophical definition of extension does not alter the opposition that
Wolff introduces between geometry, and Leibniz’s calculus situs, which is considered
as an investigation of the respective position of lines (e.g. of orthogonality and parallel-
ism) rather than of their Iength.41 The latter, as it was already the case for algebra and
analysis, is considered as a calculus and is not really included in Wolff’s definition of

mathematics as the science of quantities.

So, Wolff does not seem to include qualities in the definition of geometry. Yet, in the
Latin version of the Elements of Mathematics he aims at improving Euclid’s order of
geometrical propositions, and uses a philosophical notion of similarity to ground the
geometrical similarity between angles and figures. Wolff shares Leibniz’s conception of
similarity, at least inasmuch it concerns the fact that “qualities are those properties of
an object that can be distinctly known or understood when viewed in isolation from
other objects, and the similarity of two objects consists in identity of such proper-
ties”.** So, on the one hand, similarity is not obtained by proportions, on the other
hand it makes possible to investigate qualities as well as quantities in geometry. We
find here another example of impurity underlined by Lambert and Kant: the use of a

philosophical notion of similarity to exploit the geometrical notion of similarity, and to

reform the logical order of the Elements.*

40 See Isaac Newton, Quadrature of curves, in: Mathematical Works of Isaac Newton, ed. by
D.T. Whiteside, New York, vol. 1, 1964, p. 141.

41 See Mathematisches Lexicon, p. 292 (GW 1 11).

42 See Daniel Sutherland, Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early
Kant, op. cit., p. 166.

43 See Sutherland, Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant, op.
cit,, p. 155.
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2.4  Algebraic quantities

We have already mentioned that algebra as a discipline is distinguished by Wolff both
from the literal calculus as from Leibniz’s general investigation on qualities. On the one
hand, it is defined as the science that uses equations to solve given problems, thereby
recalling its origin and development; on the other hand it is associated to the determi-
nation of the rules that govern the search for solutions, and to the application to infini-
tesimal small quantities.** Yet, as Wolff distinguishes ancient from modern algebra, i.e.
numerical [algebra numerosa] from literal equations [algebra speciosa], he defines the
former as a calculus on numbers and the latter as a calculus on letters, thereby sug-

gesting the close relationship between algebra and calculus.*

The notion of algebraic quantity is even more difficult to enucleate.* It is a quantity
expressed in an algebraic way, an indeterminate number expressed through letters,*’
whereas a quantity in general is something that can be increased or decreased. The
choice of the terms ‘vermehren’ and ‘vermindern’, which derive from the terms ‘mehr’
und ‘minus’, i.e. from the names of the arithmetical signs + and —, already indicates the

algebraic meaning attributed by Wolff to quantities, as well as his debt to Descartes:

44 See Mathematisches Lexicon, p. 34 (GW 1 11).

45 See Shabel, Mathematics in Kant’s Critical Philosophy. Reflections on Mathematical Prac-
tice, op. cit.

46 In the entry “quantitas, eine Grosse” Wolff says that quantities, identified here with “in-
determinate numbers” [undeterminierte Zahlen], are what can be increased or diminished [ver-
mehren and vermindern}, whereas in the entry “mathematics”, defined as the science of quantities”,
the latter are defined as that which might be enlarged or reduced [vergrossern and verkleinern],
without taking into due account the linguistic nuance between these respectively discrete and con-
tinuous terms. See Mathematisches Lexicon, p. 1143, and pp. 864—66 (GW I 11) respectively. Be-
sides, Wolff uses the same term Grosse both to translate quantitas and to translate ‘Moles, Volu-
men’, i.e. the space that a body occupies according to its lenght, height, and width. See Mathe-
matisches Lexicon, pp. 906-7 (GW I 11). Cf. Paola Cantu, Aristotle’s prohibition rule on kind-crossing
and the definition of mathematics as a science of quantities, in: Synthese, 174/2 (2008), pp. 225-235.

47 See Mathematisches Lexicon, p. 1144, and p. 1143 (GW I 11) respectively.
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“Notandum est deinde, nihil ad istam aequalitatem reduce posse, nisi quod recipit ma-
jus et minus, atque illud omne per magnitudinis vocabulum comprehendi (One has to
note, moreover, that nothing can be reduced to such an equality except what admits of
more and less, and that all this is covered by the term ‘magnitude’)”.*® Quantities are
indeterminate numbers when it is unsettled to which unit they should refer: the pro-
portion used to define a number is thus incomplete. The importance of defining quan-
tities as indeterminate numbers relies in the fact that it becomes possible to apply
them to “all what has been demonstrated upon numbers”.* A similar notion is main-
tained in the Latin version of the Elements of Mathematics, where quantities are dis-
tinguished in determinate and indeterminate, according to the fact that they refer to a
given unit or to a vague unit: so for example the quantity of the width of a river is an

indeterminate quantity that is referred to a vague unit, because the number associat-

ed to it might vary according to the measurement unit that is assumed.”®

Anyway, algebraic letters always stand for quantities. Wolff’s definition does not in-
clude qualities among the possible objects of algebra. Wolff seems to have been more
influenced by the Cartesian symbolism in the treatment of geometrical figures than by
the Leibnizian definition of quantity, which is determined by the presence of some-
thing to be measured and of something that might play the role of a measurement

unit.>® Leibniz himself remarked a discrepancy between his own conception and

48 René Descartes, Regule ad Directionem Ingenii. Rules for the Direction of the Natural Intel-
ligence, ed. by G. Heffernan, Amsterdam and Atlanta, GA, 1998, pp. 180-181.

49 See Mathematisches Lexicon, p. 1143 (GW 1 11).

50 See Elementa Matheseos 1, §§ 13-14, p. 24, (GW 11 29).

51 See Gottfried W. Leibniz, Initia rerum mathematicarum metaphysica, in: Leibnizens math-
ematische Schriften, ed. by C.I. Gerhardt, volume 7, Halle, 1863, pp. 18-19. Engl. transl in Gottfried
W. Leibniz, Philosophical Papers and Letters: A Selection, ed. by L.E. Loemker, Dordrecht, Boston,
and London, 1975, p. 667.
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Wolff’s presentation of it.>> We have already mentioned that Wolff acknowledges the
importance of Leibniz’s calculus situs, but does not modify the definition of geometry
in order to include the study of orthogonality or parallelism. Again, he introduces a
distinction between absolute, positive and privative quantities that had never been
thematized before,”® but then restricts mathematics to positive quantities, claiming
that positive and negative (privative) quantities are not homogeneous, i.e. once multi-

plied, cannot exceed one another.

The insistence on a condition of homogeneity was probably derived from Euclid’s Ele-
ments, but might also be related to the fact that Wolff conceived proportions as a way
to determine numbers rather than as a way to study qualitative relations between
things. It is the definition of number as the fourth proportional that forced him to in-
clude among quantities only those that can be put in proportion, i.e. only homogene-
ous quantities. This was also the main reason why Wolff did not admit negative quanti-
ties: given that they lack some positive property (and should thus be rather called priv-
ative quantities), they cannot be compared to quantities that have positive properties.
So, setting apart the critical remarks by mathematicians who saw a regressive trait in
this aspect of Wolff’s mathematics (see e.g. Kastner’s criticism),>* Schubring has con-
vincingly shown that Wolff was quite consistent on this point, and that his arguments
were based on claims that had been advanced by Arnauld and accepted also by Leib-

niz.>> The same line of reasoning was used to defend the idea that infinitesimals could

52 Leibniz actually refers to an anonymous review of the first volume of the Elementa
Matheseos published in the Acta Eruditorum in 1714. See Leibniz, Initia rerum mathematicarum
metaphysica, op. cit. p. 17; Engl. transl. p. 667 and p. 673, fn. 1. See also De Risi, Geometry and Mon-
adology, op. cit., p. 118.

53 See Schubring, Conflicts Between Generalization, Rigor, and Intuition, op. cit., p. 96.

54 [bid., p. 134 and p. 135, fn. 77.

55 Arnauld refused to admit negative quantities on the basis of the following reasoning ap-
plied to the proportion -1: 1 = 1: -1: How is it possible that a minor is to a major like a major to a

minor? See Schubring, Conflicts Between Generalization, Rigor, and Intuition, op. cit., p. 97.
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be ignored, because they are not homogeneous to other quantities, and thus cannot
enter in the proportion used to define numbers.>® So, if one accepts Wolff’s definition
of number, then it is difficult to include negative numbers. In this case, Wolffs’ defini-
tions do not account for a mathematical practice that he knew and accepted in appli-
cations, where he used numbers preceded by the sign minus to express debts. A rea-
son for this discrepancy between conceptualization and practice might rely in the idea
that the ‘numbers’ used in the calculus of debts and credits are not a true case of
numbering, because it is not possible to build a proportion based on the similarity with

guantities to be measured, which are, in a sense, always something, and thus positive.

Another line of criticism against Wolff’s algebra concerns his ‘regressive’ insistence on
geometrical representation. Yet, the latter is not merely the effect of the influence of
Descartes’ geometrical operations on segments, but also a consequence of the applica-
tion of his mathematical method. Wolff’s geometrical representation is coherent with
his insistence on the nature of definitions that have an abstract as well as a construc-
tive component.’’ So, the impurity related to the use of a philosophical definition of
similarity in geometry is associated to the impurity of reformulating the Elements giv-
ing preeminence to thirty practical problems, or practical constructions.?® Besides, the
insistence on the geometrical representation had also some innovative aspects, be-
cause Wolff, influenced by Leibniz’s calculus, explicitly defined the notion of a variable
quantity [quantitatis variabilis] opposed to that of constant quantity. Variable quanti-
ties are quantities that always increase or decrease, when other quantities increase or

decrease. What strikes the modern reader here is the constructive flavor of Wolff’s

56 Ibid., pp- 239 ss.

57 As Shabel puts it, “geometrical constructions not only provide a representation of math-
ematical objects but also constitute their definition”. See Shabel, Mathematics in Kant’s Critical Phi-
losophy. Reflections on Mathematical Practice, op. cit.,, p. 162.

58 See Sutherland, Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant, op.
cit., p. 163.
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approach. Yet, this aspect should not be overemphasized, because it is somehow de-
rived from practical applications rather than from a theoretical reflection on the con-

structability of mathematical concepts.

2.5  Probability theory

It has often been claimed that Wolff did not take into due account the mathematical
theory of probability, and especially its improvements by Jakob Bernoulli.”® On the
contrary, Wolff was aware of the contemporary mathematical developments already
in 1714.%° Wolff developed an original theory of probability, that had a considerable
influence on Kahle, Mendelssohn, Bolzano, and Kastner.®* In the light of the contempo-

rary distinction between logical, subjective and objective probability, > Wolff's notion

59 See Nicolao Merker, L’illuminismo Tedesco. Eta di Lessing (1968), Germ. transl. by D.
Doucet-Rosenstein and R. Wagenknecht in: Die Aufkldrung in Deutschland, Miinchen 1982, p. 84; see
Raffaele Ciafardone, llluminismo tedesco. Metodo filosofico e premesse etico-teologiche (1690-1765),
Rieti 1978, p. 82; see Schonfeld, Wolff, Christian (1679-1754), op. cit.

60 See for example the (anonymous) review to Bernoulli’s Ars Conjectandi published in the
Acta Eruditorum in 1714 (GW II 38.1), but also Wolff's references to the same book in the Mathe-
matisches Lexicon (GW I 11, p. 401), and in the bibliographic section of Elementa Matheseos V, Part
IV, § 14, p. 57 (GW II 33). Wolff's definition of stochastic (Muthmassungskunst) as the art to deter-
mine the probability of a thing is an almost exact transcription of Bernoulli’s definition of probabil-
ity. See Mathematisches Lexicon pp. 1328-29 (ibid.) and Jakob Bernoulli, Ars Conjectandi. Basel,
1713, §1V.2, p. 213. See also Cataldi Madonna, Wahrscheinlichkeit und wahrscheinliches Wissen, op.
cit.

61 See ibid., pp. 4-5; see Cataldi Madonna, Wolff, Bolzano e la probabilita, op. cit.; see Edith
Dudley Sylla, Mendelssohn, Wolff, and Bernoulli on Probability, in: Moses Mendelssohn’s Metaphysics
and Aesthetics, ed. by R. Munk, Dordrecht, Heidelberg, London and New York, 2011, pp. 41-63; see
Ridiger Campe, The game of probability. Literature and calculation from Pascal to Kleist. Stanford,
2012, especially pp. 305-310 and p. 256.

62 | distinguish here three ways of conceiving probability: 1) a logical (objective) notion,
that should measure the strength of the evidence for a given event, on the basis of the analysis of
the space of possible outcomes; 2) a subjective notion, that should measure the degree of an agent’s

belief in his own assertions by an investigation of his betting behavior; 3) a scientific (objective)
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could be considered to be at the same time logical and subjective, because it is based
on the space of all requisites for the truth of a proposition, and can measure the de-

gree of belief of the agent.®®

Wolff aims at developing Leibniz’s logica probabilium, which is based on the principle
of sufficient reason, in the light of the contemporary mathematical notion of probabil-
ity developed among others by Jakob Bernoulli. Wolff defines the degree of probability

of a proposition® as the ratio between the number of requisites for the truth of the

notion that applies to the relations between things (either by considering all actual outcomes or by
analyzing the physical propensity or disposition towards a given outcome). See Alan Hajek, Inter-
pretations of probability, in: The Stanford Encyclopedia of Philosophy, ed. by E. N. Zalta, Stanford,
Winter 2012 Edition. Classical probability is usually associated to Laplaces’ formulation, but it is
related to the writings of several authors that were well known to Wolff (e.g. Pascal, Jakob Bernoul-
li, Huygens, and Leibniz). Even if its interpretation is multiple, it is often considered as an instance
of a quasi-logical objective notion, because it is based on an exploration of the space of possibilities:
the probability of an event depends on the ratio between the number of cases favorable to that
event and the number of all possible cases. The subjective approach (De Finetti, Ramsey, Kemeny)
connects probabilities with rational preferences and utilities, and finds its forerunners in Daniel
Bernoulli. The third approach includes theories like frequentism, propensity, and the best system
interpretations that were developed in late 19th or early 20th century: they are based on actual
rather than on possible outcomes.

63 Wolff was clearly aware of the distinction between objective and subjective probability,
for he explicitly mentions Bernoulli’s distinction between an objective treatment of certainty (con-
cerning the actual existence, present or future, of a thing) and a subjective treatment of certainty
(reltive to us and consisting in the measurement of our knowledge of that actuality). See Jakob Ber-
noulli, Ars Conjectandi, op. cit., § IV.1, p. 210 and Wolff’s review, p. 22 (GW 1I 38.1).

64 It should be noted that probability concerns propositions rather than inferences. The
conclusion of an inference is probable only if one of the premises is probable, and not because the
inference rule is probable. Wolff maintains, like Aristotle, that there is only one inferential structure
(deduction), and that the probability concerns propositions. Claiming that there is a strong contuin-
ity between Wolff's and Bolzano’s notion of probablity, Cataldi Madonna insists on the fact that
Wolff considers also the probability of implications—what he calls “quasi-implications”—but does

not give textual support for this claim. See Cataldi Madonna, Wolff, Bolzano e la probabilita, op. cit.,
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proposition that are accessible to an agent (insufficient reason), and the number of all
requisites for the truth of that proposition (i.e. its sufficient reason).®® In other words,
truth and falsity are the limit values 1 and 0 that such ratio might assume, when all

requisites are known and the knowledge is certain.

This continuity between probable and certain knowledge explains why the theory of
probability can be applied not only to the investigation of the physical world, but also
to the solution of questions that belong to historical science, such as Slissmilch’s popu-
lation statistics.®® This change is made possible by the logical turn that is given to prob-
ability, which is no more considered as the probability of things (as it was the case in
the mathematical textbooks), but rather as the probability of propositions, whereby
the latter is grounded on the principle of sufficient reason, which is a general principal
of all human knowledge. The requisites for the truth of a proposition are at the basis of
both certain and uncertain knowledge: there is a difference of degree and not a differ-

ence of nature.®’

p- 111. Wolff distinguishes demonstrations (demonstrationes), based on certain premises, from
proofs (probationes) based on uncertain premises: proofs are probable if the premises are proba-
ble, and precarious if the premises are precarious. See Logica, §§ 599-602, pp. 446-447 (GW II 1.3).
This does not imply, however, that Wolff admits probable inferences. On the contrary, the logical
rules are the same both in demonstrations as in proofs, and this is exactly what allows him to estab-
lish a continuity between physico-mathematical sciences, and historical and social sciences.

65 See Philosophia rationalis sive Logica, §§ 579 (GW II 1.3). See also Cataldi Madonna, Wolff,
Bolzano e la probabilita, p. 110.

66 Wolff wrote in the introduction to Siissmilch’s book: “[A]s yet no one has discussed in a
comprehensive theory how to use the faculties of reason in order to explore that which is probable.
But attempts have been made to test how a theory of probability might be developed for the sake of
use in everyday life. The present book is among these.” See Campe, The game of probability, op. cit.,
pp. 216-217,255-256, 448, fn. 1.

67 On this application of the logic of probability both to physical sciences (the domain of the
legiform) and the moral and historical sciences (the domain of singularities) see in particular

Campe, The game of probability, op. cit,, pp. 315-317. On the Leibnizian principle of sufficient reason
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Wolff’s main contribution to the development of a an extended understanding of sci-
entific knowledge concerns the attention to observations and experience as elements
that might furnish a probable knowledge®® that is not opposed to the knowledge of
truth, but rather presented in continuity with the latter. This continuity is guaranteed
by Wolff’s idea that, even if there are differences between mathematical, philosophi-
cal, and historical knowledge, there is somehow a unique methodology that unifies
them, and that is based on the ideal of demonstrative knowledge. Wolff’s treatment of
probable reasoning (as depending on an insufficient knowledge of the requisites for
the truth of the premises) better explains the role assigned to definitions in the math-
ematical method (see § 3.2), and the sense in which their incompleteness might pro-

duce a fallacy.”

3 On Wolff's mathematical method

3.1 Many names, one method?

It is questionable what should be understood as Wolff's mathematical method, first of
all because Wolff calls his method by many different names: mathematical, geomet-
rical, demonstrative, philosophical, scientific.”® Secondly, because it is defined in dif-
ferent ways in different texts; so, it is not clear in which discipline one should look for
it: logic, where its principles and rules are clarified; philosophy, where it is applied in

metaphysics; or mathematics, where it occurs in arithmetic, geometry, and algebra,

as common ground of true and probable knowledge, see also Cataldi Madonna, Wolff, Bolzano e la
probabilita, op. cit., p. 116 ss.

68 See Cataldi Madonna, Wahrscheinlichkeit und wahrscheinliches Wissen, op. cit.; see also
Zingari, Die Philosophie von Leibniz und die “deutsche Logik” von Christian Wolff, op. cit.

69 See Philosophia rationalis sive logica I, Part 11, Sec. 1, § 633, p. 461 (GW II 1.2). See Jean
Ecole, Introduction, in: Philosophia rationalis sive logica, pp. v-Ixxxvii (GW II 1.1), and also Jean
Ecole, Introduction, in: Philosophia rationalis sive logica, esp. p.cv (GW 11 1.2).

70 See Tore Frangsmyr, Christian Wolff's mathematical method and its impact on the Eight-
eenth century, in: Journal of the History of Ideas, 36/4 (1975), p. 655.
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but also in applications. Most studies in the literature focus on logic, philosophy, and
the origins, rather than the achievements of Wolff’s method.”* For example, it has
been questioned whether Wolff's mathematical method is a heritage of Aristotle’s
syllogistic logic, of Scholastics, of Port Royal Logic, of the mathesis universalis tradition,
of Euclid’s Elements, of Newton, of Descartes and Tschirnhaus, of Barrow, or of Leib-
niz.”* In the following | will try to combine the two approaches, discussing the charac-
terization of the method offered in the mathematical textbooks as well as its applica-
tion in the definition of mathematical key concepts. Having analysed Wolff’s main con-
cepts in the former section, | will now discuss the features of the mathematical meth-

od and make references to several features of those definitions.

3.2 Mathematical method as order

Wollf’'s mathematical method concerns the order of exposition used by mathemati-
cians: first, the definitions, then the axioms and postulates (or experiments and obser-

vations in mixed mathematics), and finally the theorems and problems, all accompa-

71 See in particular the literature mentioned in footnote 8. Paola Basso regrets that Wolff’s
method gets rid of the strictly geometrical nature, thus losing attention to the logic of discovery, to
the investigation of the connection between truths, and to the limits of its application. Basso claims
that the method thus becomes a universal and thus void method, whereby the order of exposition is
much more important than the discovery of truths, and the effort to define is prior to the effort to
prove. See Paola Basso, Il secolo geometrico, op. cit.

72 Cf. in particular Frangsmyr, Christian Wolff's mathematical method, op. cit., p. 656. Shabel,
Mathematics in Kant’s Critical Philosophy. Reflections on Mathematical Practice, op. cit.; cf. Dunlop,
Mathematical method, op. cit.; cf. Vleeschauwer, La genése de la méthode mathématique de Wolff
op. cit; cf. Zingari, Die Philosophie von Leibniz, op. cit. Significant exceptions are Sutherland, Schu-
bring, Dauben and Scriba, who tend to focus on specific results of Wolff's mathematics, but do not
connect them to the question of the method. See Sutherland, Philosophy, Geometry, and Logic in
Leibniz, Wolff, and the Early Kant, op. cit.; see Schubring, Conflicts Between Generalization, Rigor, and
Intuition, op. cit.; see Dauben, and Scriba, Writing the History of Mathematics. Its Historical Develop-

ment, op. cit.
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nied by corollaries and scholia, whenever necessary. Definitions are the fundamental
notions from which all the rest is deduced.”> The mathematical order thus focuses on
definitions, and on the derivation of theorems and problems, as well as of axioms and
postulates from them. If the derivation of theorems is a standard requirement of the
axiomatic method from Euclid’s elements onwards, the sense in which geometrical
axioms could be derived from definitions needs to be clarified. This approach seems
quite incompatible with modern axiomatics, where on the contrary, definitions do not
play any inferential role, but rather serve as clarifications, whereas the axioms are the
beginning of the inferential process. When Wolff aims at reforming Euclid in order to
determine the “fundamental concepts from which all knowledge can be derived by
means of definitions”,”* he believes in a unique hierarchy of concepts, integrating ge-
ometry, philosophy, and all other branches of human knowledge. And he believes in
the possibility of a conceptual analysis that enucleates the notions that should be tak-
en as primitive: e.g. similarity is more fundamental than congruence in geometry, and
thereby all theorems that depend on a principle of similarity should precede the theo-
rems that depend on congruence. Wolff's concern for the right order of concepts is
thus not completely opposed to foundational questions such as those that arose in
Hilbert’s Grundlagen, as he grouped theorems concerning basic relations such as inci-
dence, order, congruence, parallelism and continuity. Besides, even in the 20" century
authors like Peano and Gddel, who had been strongly influenced by Leibniz, were quite

responsive to the question of the right order of concepts.”

73 See Elementa Matheseos 1, § 1-3, p. 5 (GW 11 29).

74 See Sutherland, Philosophy, Geometry, and Logic in Leibniz, Wolff, and the Early Kant, op.
cit., p. 168.

75 See Paola Cantu, The right order of concepts: Grassmann, peano, Gddel and the inheritance
of Leibniz’s universal characteristic, in: Philosophia Scientiae. Studies in History and Philosophy of

Science, 18/1 (2014), pp. 157-182.
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3.3 Mathematical definitions

This idea of an integrated human knowledge explains Wolff's characterization of
mathematical definitions as a special case of definitions in general. Definitions are fun-
damental notions of something, fundamental representations of a thing in the mind.”®

Following Leibniz, Wolff distinguishes

Mathematical definitions should amount to distinct, and—whenever possible—
adequate notions. Impure definitions that involve some features derived from applica-
tions might help us forming clear notions of mathematical objects, whereas philosoph-
ical notions might improve the distinctness and adequateness of the definitions. Even
if Wolff does not say this explicitly, one might find a reason for admitting impure defi-

nitions in the search for virtues, such as clarity, distinctness and adequateness.

Wolff then considers two kinds of definitions:

76 See Elementa Matheseos I, § 3, p. 6 (GW 11 29); see also Auszug aus den Anfangs-Griinden
aller mathematischen Wissenschaften, § 2, p. 3 (GW 1 25).

77 See Elementa Matheseos I, §§ 4-12, pp. 6-7 (GWI129). Cf. also Deutsche Logik, chap. 1, § 9
ff., p. 126 ff. (GW 1 1).
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2. real definitions are distinct notions that express the genesis of the thing, i.e. the
way it might become (e.g. a circle conceived as described by the movement of a
rectilinear line around a fixed point).”®

The search for real definitions explains the importance given to geometrical construc-
tions, and also the effort to separate each definition in two parts: a nominal and a real
one. This holds for the definition of geometrical figures as extensive quantities (i.e.
based on relations of contiguity between their parts), or as the result of specific geo-
metrical constructions. But this might also explain Wolff’s hesitation between physical
definitions and geometrical definitions (e.g. infinitesimals are sometimes described as

particles, straight lines as the length of physical things, and so on).

3.4  The inferential role of definitions

Wolff’s effort to consider definitions not only as a “nomenclature teaching the names
of things”, but also as something from which we can derive postulates, had some un-
desirable consequences in mathematics. [Lambert regretted that Wolff “granted too
much to definitions”, as he claimed that even the principles had to be preceded by
definitions in order to be rightly conceived and understood. Lambert claimed that
Wolff’s use of philosophical definitions as nominal definitions that were assumed to
wrongly prove certain theorems, had the effect that “the very proposition that every
definition, before it is proven, is an empty hypothesis—the very proposition that Euclid
knew so well and took so seriously—was, if not completely lost, then pretty much for-

»n 79

gotten”.”” Interestingly enough, Bolzano’s own reformulation of Euclid’s geometry was

78 See Elementa Matheseos 1, §§ 13-18, p. 7 (GWII29).

79 See ].H. Lambert, Theorie der Parallellinien, in: Die Theorie der Parallellinien von Euklid bis
auf Gauss, ed. by Engel and Stackel, Leipzig, 1895, pp. 157-58, Engl. transl. by A. Laywine in: Kant
and Lambert on geometrical postulates in the reform of metaphysics, in: Discourse on a New Method:
Reinvigorating the Marriage of History and Philosophy of Science, ed. by M. Friedman, M. Domski,
and M. Dickson, Chicago and La Salle, Illinois, 2010, p. 118. See also Jeremy Heis, Kant (vs. Leibniz,
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influenced by Wolff’s principle of similarity, but Bolzano specifically mentions the in-
fluence he received from the formulation presented in the Ontology and only generi-
cally mention the treatment of similarity in mathematical writings.®° The comparison
with Bolzano is interesting, because Bolzano, like Wolff, was a non-professional math-
ematician who published mathematical essays. Bolzano also used conceptual analysis
as an inferential tool, obtaining results that are mathematically more interesting, as an

inductive procedure to prove certain numerical equalities.

Wolff’s understanding of definitions is entirely centered on Leibniz’s idea of conceptual
analysis and on the decomposition of a concept in its features. The main problem con-
cerns the possibility of deriving relational properties of the denoted things from non-
relational features of the notions that compose their concept and that occur in Wolff’s
definition. Lambert would say that only postulates contain the mutual relation be-
tween concept and thing, because they concern the possibility of the construction of
the thing and at the same time the universality of its concept, for it can be applied to

any construction.

4 Summary

Wolff's mathematics is better known as the critical target of Gauss, Schumacher, Leib-
niz, Bernoulli, Kastner, Cantor, and other mathematicians, who disliked the fact that
his books were conceived as textbooks rather than as research writings, and criticized
some of his definitions. This criticism, as well as other remarks on mistakes made in
Wolff’s inferential procedures, prove how Wolff’s philosophy and theory of knowledge

influenced his mathematical orientation. But it is important to show that there is at

Wolff and Lambert) on real definitions in geometry, in: Canadian Journal of Philosophy, 44/5-6
(2014), pp. 605-630.

80 See Bernard Bolzano, Betrachtungen iiber einige Gegenstinde der Elementargeometrie,
Prag, 1804, Engl. transl. in The mathematical works of Bernard Bolzano, ed. by S. Russ, Oxford 2004,
p- 42.
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least an internal coherence between the normative requirements suggested by Wolff’s
philosophy, and in particular by his conception of the mathematical method, and the
notions he actually defined in his textbooks. The impurity of definitions and the impu-
rity of proofs that has been charged against Wolff by Kant and Lambert was a trait that
Wolff shared with other authors of his time such as Leibniz. Indeed, it constituted the
fundamental desideratum of Wolff’'s own epistemology, because he believed in the
integration of mathematical knowledge into the larger body of human knowledge, and
shared the idea that a right order of concepts should not only be introduced separately
in each discipline, but also in the general hierarchy of concepts. This holistic and at the
same time hierarchic vision of human knowledge is certainly very far from successive
hyper-specialization and separation of disciplines, but is part of a coherent epistemo-
logical frame. This explains why several topics that Wolff did not fully develop in his
mathematical books (such as probability, and partly the theory of extensive quantities)
are rather discussed in logic or in metaphysics. This confirms the thesis that Wolff’s
works (like Leibniz’s, Newton’s or Descartes’) cannot be read separately, and that a
fully complete view of Wolff's mathematics cannot be achieved without a deeper in-

vestigation of the relations between mathematics, ontology, metaphysics, and logic.

The analysis of Wolff’s definitions of number and quantity in the light of his theory of
what mathematical definitions should be, reveals on the one hand that Wolff’s debt to
Descartes—whose intense reading has been attested by Hofmann®'—is perhaps as
conspicuous as the influence he received by Leibniz, notwithstanding his defense of
Leibniz in the priority controversy on the discovery of the infinitesimal calculus, and his
acknowledgement of Leibniz highest contributions to algebra, universal mathesis and
calculus situs. Besides, it reveals that Wolff's geometrical definitions were strongly

influenced by Euclid—especially by Barrow’s English edition of the Elements—as well

81 See J.E. Hofmann, Vorwort to Mathematisches Lexicon, p. ix (GW 1 11).
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as by Aristotle’s notion of contiguity, rather than by Newton’s fluentist conception of

geometrical quantities.
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