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Abstract

A model for longitudinal wave propagation in rocks and concrete is presented. Such materials
are known to soften under a dynamic loading, i.e. the speed of sound diminishes with forcing
amplitudes. Also known as slow dynamics, the softening of the material is not instantaneous.
Based on continuum mechanics with internal variables of state, a new formulation is proposed,
which accounts for nonlinear Zener viscoelasticity and softening. A finite-volume method using
Roe linearization is developed for the system of partial differential equations so-obtained. The
method is used to carry out resonance simulations, and its performance is assessed in the lin-
ear viscoelastic case. Qualitative agreement with experimental results of nonlinear ultrasound
spectroscopy (NRUS) and dynamic acousto-elastic testing (DAET) is obtained.

Keywords: Nonlinear acoustics, softening, viscoelasticity, numerical methods
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1. Introduction

Longitudinal vibrations of rocks and concrete highlight features which cannot be reproduced
by standard elastodynamics [1]. First, in nonlinear resonance ultrasound spectroscopy (NRUS),
a frequency-shift of the resonance peaks with the amplitude of forcing is observed [2, 3]. This
feature reveals the highly nonlinear behavior of such material. Second, in dynamic acousto-
elastic testing (DAET) [4, 5], a decrease of the sound speed over a time scale larger than the
period of the dynamic loading is observed (softening), which highlights the phenomenon of slow
dynamics. When the excitation is stopped, the sound speed recovers gradually its initial value
(recovery). Third and last, hysteresis curves are obtained when the speed of sound is represented
with respect to the axial strain. All these phenomena are accentuated when the forcing amplitude
is increased.

Several models can be found in the literature to describe these phenomena (see e.g. [6–8]).
The approach proposed by Vakhnenko et al. in their soft-ratchet model [9, 10] consists in adding
a variable g to describe the softening of the material. Also, an evolution equation for g is pro-
vided, and a relaxation time is included. A similar model with refinements was proposed by
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Lyakhovsky and coauthors in a series of papers [11, 12], with application to resonance experi-
ments [13]. Recently, a 3D model of continuum [14] has been developed by the authors in the
framework of continuum thermodynamics with internal variables of state [15, 16]. This model
generalizes the soft-ratchet model to 3D geometries and fixes thermodynamical issues. The first
goal of the present paper is to show how viscoelastic attenuation of Zener type can be accounted
for, by adding a set of relaxation equations. This modeling step is necessary to reproduce the
vibrations of real materials.

The equations of motion write as a system of conservation laws with relaxation terms. Thus,
the numerical techniques for nonlinear hyperbolic systems apply [17–19]. The second goal of
the present paper is then to derive a finite-volume method based on the Roe linearization by
computing an adequate Roe matrix. Second-order accuracy is obtained by using Strang splitting,
where an adaptive Rosenbrock method is used for the relaxation part. The resulting scheme is
well-suited for nonlinear wave propagation, in the case of smooth acoustic waves.

The article is organized as follows. The physical model is proposed in section 2. Then, the
numerical method is developed (section 3). In particular, the construction of a Roe matrix is
detailed. In section 4, several numerical experiments are carried out. Firstly, resonance curves
are estimated numerically. Secondly, dynamic acousto-elasticity experiments are reproduced.
The results are in qualitative agreement with experimental observations.

Appendix A describes the optimization procedure to determine the parameters of the Zener
model. Appendix B gives details about the construction of the Roe matrix.

2. Physical modeling

Let us consider a solid continuum in the Lagrangian representation of motion, which length
L along the x-axis is very large compared to its other dimensions. No heat transfer occurs in
the material, and self-gravitation is neglected. Only longitudinal vibrations are considered, and
the displacement field is described by its component u(x, t) along the x-axis. On one hand,
kinematics reads

∂ε

∂t
=
∂v
∂x

, (1)

where ε = ∂u/∂x > −1 denotes the strain, and v = ∂u/∂t denotes the particle velocity. On the
other hand, the conservation of momentum writes

ρ0
∂v
∂t

=
∂σ

∂x
, (2)

where ρ0 is the density in the reference (undeformed) configuration. According to the conserva-
tion of mass, the density ρ in the deformed configuration satisfies ρ0/ρ = 1 + ε. The expression
of the stress σ in (2) will be specified later on.

2.1. Nonlinear viscoelasticity

Experimental evidence shows that elastic models are not sufficient to model vibrations in
concrete and geomaterials. In particular, resonance experiments demonstrate the need of atten-
uation to describe accurately wave propagation in real media [1–3]. In the framework of linear
elasticity, several rheological models based on a combination of springs and dashpots can be
found in the literature. The standard linear solid, also known as generalized Zener or Maxwell
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Figure 1: Rheological model of a nonlinear generalized Zener material.

body, is commonly used for the description of seismic wave propagation [20–22]. It consists
in the combination of N elementary Zener mechanisms with elastic constants M` > 0, K` > 0
and damping constants η` > 0, where ` = 1, . . . ,N. Here, a generalization of the standard lin-
ear solid to nonlinear constitutive laws proposed in [10] is used. The corresponding schematic
representation in terms of springs and dashpots is given in figure 1. When the springs with con-
stant M` are linear springs, the standard linear solid model is recovered. Furthermore, inviscid
nonlinear elasticity is recovered when the viscous effects are null, in the sense that η` → +∞ for
` = 1, . . . ,N.

The parameters of the model M`, K`, η` are deduced from the quality factor Q of the material
over a frequency range of interest [10, 22]. To do so, the relaxation times τσ`, τε` and the relaxed
elastic modulus Mrel are introduced:

τσ` =
η`

M` + K`
, τε` =

η`
K`

,
Mrel

N
=

M`K`

M` + K`
. (3)

In the following numerical experiments, N = 5 Zener mechanisms are used, and the quality factor
is optimized over the frequency range [ fmin, fmax] = [1, 100] kHz towards the value Q = 20. The
relaxation times τσ`, τε` are deduced from a nonlinear optimization procedure described briefly
in Appendix A.

In the case of nonlinear Zener materials [10], the linear springs with constant M` are replaced
by nonlinear springs (figure 1). Their state of deformation is described by the variables ξ`, and
their strain energy density W` is expressed by using a suitable strain energy density function. For
example, W` may be expressed as a polynomial function of the strain [14]

W` : ξ` 7→
(

1
2
− β

3
ξ` − δ4ξ`

2
)

M` ξ`
2 , (4)

where the dimensionless parameters β and δ are high-order elastic constants. The polynomial
expression of the strain energy density (4) is widely used to describe nonlinear elastic materials in
the community of nondestructive evaluation. The strain energy function (4) amounts to Hooke’s
law W` = 1

2 M` ξ`
2 in the case of small strains ξ` → 0, which is also recovered by setting β = 0

and δ = 0 in (4).
In counterpart, the parts with spring constant K` and damping constant η` are still considered

as linear, but other choices are also suitable. Their state of deformation is described by the
variables χ` = ε− ξ`, so that the strain energy density in each mechanism is 1

2 K` χ`
2. Finally, the
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total strain energy W in the material is the sum of the strain energies in all the springs:

W =

N∑
`=1

W`(ε − χ`) +
1
2

K` χ`
2 . (5)

According to the diagram in figure 1, the stress σ` in the `th Zener mechanism is expressed by

σ` = W ′`(ε − χ`) , (6)

= K` χ` + η`
∂χ`
∂t

, (7)

where W ′` is the derivative of the function W`. Combining (6) and (7), the evolution equations

∂χ`
∂t

=
1
η`

(
W ′`(ε − χ`) − K` χ`

)
(8)

are obtained. The relation σ =

N∑
`=1

σ` and (6) lead to the constitutive law

σ =

N∑
`=1

W ′`(ε − χ`) . (9)

2.2. Softening
To describe the softening of the nonlinear viscoelastic material, we introduce a scalar variable

g, which value in [0, 1[ modifies the stiffness of the material. This variable is modified along the
time following an evolution equation. Similarly to [14], the derivation of a softening model is
based on continuum thermodynamics with internal variables [15, 16]. As usual in acoustics,
the process is assumed adiabatic. The first principle of thermodynamics introduces the internal
energy e per unit of initial volume. The conservation of total energy writes

ė = σε̇ , (10)

where the dot denotes the material time-derivative ∂/∂t. The second principle of thermodynamics
reads

ρ0 ṡ ≥ 0 , (11)

where s is the specific entropy. The system is described by the variables of state {ε, s, χ1, . . . , χ`, g},
leading to the Gibbs identity

ė = ρ0T ṡ +
∂e
∂ε
ε̇ +

∂e
∂p
· ṗ , (12)

where T = ρ0
−1∂e/∂s > 0 is the absolute temperature. The variable p = (χ1, . . . , χN , g)> is a vec-

tor of internal variables, which evolution ṗ depends only on the state of the system. Combining
(10), (11) and (12), the Clausius-Duhem inequality is obtained:

D =

(
σ − ∂e

∂ε

)
ε̇ − ∂e

∂p
· ṗ ≥ 0 , (13)
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for all state {ε, p} and all evolution ε̇. The left-hand term in (13) is the dissipation D per initial
volume of material (W m−3).

Analogously to the Ogden-Roxburgh model of filled rubber [14, 23], we assume an internal
energy per unit of initial volume of the following form:

e = (1 − g) W + φ(g) , (14)

with W given in (5). The first term in (14) is the strain energy. Similarly to models of isotropic
damage [24], the softening of the material is expressed by multiplying the strain energy W of the
undamaged material by 1 − g. Hence, the material is undamaged when g = 0, and completely
destroyed when g → 1. The second term φ(g) is a storage energy. A suitable expression of the
storage energy is

φ(g) = −1
2
γ ln

(
1 − g2

)
, (15)

where γ > 0 is an energy per unit volume, but other choices are possible. As discussed in [14],
this expression is chosen such that equilibrium points are unique, the value g = 0 is an equilib-
rium point, and g is bounded by 1. For small values of g, the storage energy is φ(g) ' 1

2γg2.
Both the internal energy e and the stress σ are state functions. Thus, the Clausius-Duhem

inequality (13) rewrites as A(ε, p) ε̇ + B(ε, p) ≥ 0, where A = σ − ∂e/∂ε and B = −∂e/∂p · ṗ. To
ensure a positive dissipation for all ε̇, one must have A = 0 and B ≥ 0, i.e.

σ =
∂e
∂ε

and − ∂e
∂p
· ṗ ≥ 0 . (16)

The first condition in (16) leads to the constitutive law

σ = (1 − g)
N∑
`=1

W ′`(ε − χ`) . (17)

The expression of the stress is the same as in the viscoelastic case (9), but multiplied by 1 − g.
The second condition in (16) yields the possible choice

ṗ = − diag
(

1
(1 − g) η1

, . . . ,
1

(1 − g) ηN
,

1
α

)
∂e
∂p

, (18)

where α > 0 is a constant expressed in J m−3 s. Thus, the evolution equations of viscoelasticity
(8) are unchanged, and the evolution of the softening variable g is governed by

αġ = W − φ′(g) , (19)

where φ′ is the derivative of the storage energy (15) and W is given in (5). Finally, the dissipation
per unit of initial volume is B = −∂e/∂p · ṗ, i.e.

D = αġ2 + (1 − g)
N∑
`=1

η` (χ̇`)2 , (20)

which is positive. If α → +∞, then no softening occurs: the viscoelastic case from section 2.1
is recovered. Conversely, if α → 0, the material softens instantaneously. As shown in [14], the
constant

τg =
α

γ
(21)
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is the relaxation time of the slow dynamics.
To summarize, the equations of motion are (1), (2) with the constitutive law (17), and the

evolution equations (18). For convenience, we use now the relation χ` = ε − ξ` to eliminate the
variables χ`. The evolution of the variables ξ` is governed by ξ̇` = ε̇ − χ̇`, where ε̇ and χ̇` are
specified in (1) and (8), respectively. Thus, a system of N + 3 partial differential equations in
space and time is obtained,

∂ε

∂t
=
∂v
∂x

,

ρ0
∂v
∂t

=
∂

∂x
σ with σ = (1 − g)

N∑
`=1

W ′`(ξ`) ,

∂ξ`
∂t

=
∂v
∂x

+
1
η`

(
K` (ε − ξ`) −W ′

`(ξ`)
)
, ` = 1, . . . ,N ,

α
∂g
∂t

=

 N∑
`=1

W`(ξ`) +
1
2

K` (ε − ξ`)2

 − φ′(g) ,

(22)

with N + 3 unknowns. The system (22) rewrites as a system of conservation laws with relaxation

∂

∂t
U +

∂

∂x
F(U) = R(U) , (23)

where U = (ε, v, ξ1, . . . , ξN , g)> is the vector of unknowns. The physical flux F(U) and the
relaxation function R(U) are

F(U) = −
(
v,
σ

ρ0
, v, . . . , v, 0

)>
,

R(U) =

(
0, 0,

K1 (ε − ξ1) −W ′1(ξ1)
η1

, . . . ,
KN (ε − ξN) −W ′N(ξN)

η`
,

W − φ′(g)
α

)>
,

(24)

where the stress σ is deduced from the constitutive law (17), the strain energy W is defined in
(5), and the storage energy φ is given in (15).

2.3. Properties
2.3.1. Mathematical properties
Hyperbolic system of conservation laws. Some properties of the system (23) without relaxation,
i.e. R(U) = 0, are listed below without proof. Interested readers are referred to standard text-
books about hyperbolic systems of conservation laws [17, 18, 25]. Details about the analysis
hereinafter can be found in [26].

The Jacobian matrix F′(U) of the physical flux has the eigenvalues {−c(U), 0, . . . , 0,+c(U)},
where the speed of sound c(U) satisfies

ρ0 c(U)2 = (1 − g)
N∑
`=1

W ′′` (ξ`) . (25)

The hyperbolicity of the system (23) amounts to the fact that c(U) is real and strictly positive. A
sufficient condition is that g belongs to [0, 1[, and that ξ` satisfies W ′′

` (ξ`) > 0 for all `. In the
6



Table 1: Physical parameters.

ρ0 (kg/m3) M0 (GPa) β δ Q γ (J/m3) α (J/m3.s)
2.6 × 103 10 200 108 20 1.0 10−3

case of the polynomial law (4), W ′′
` (ξ`) is positive provided that

ξ` ∈
 1

β −
√
β2 + 3δ

,
1

β +
√
β2 + 3δ

 . (26)

If β = δ = 0, the stress-strain relationship ξ` 7→ W ′
`(ξ`) deduced from the polynomial law

(4) is linear, and all N + 3 characteristic fields are linearly degenerate. Otherwise, there are
N + 1 linearly degenerate characteristic fields, corresponding to zero eigenvalues. If β > 0 and
δ = 0, then the stress-strain relationship is concave. The two remaining characteristic fields with
eigenvalues ±c are genuinely nonlinear. If δ , 0, the stress-strain relationship is neither convex
nor concave. Indeed, the constitutive law has an inflexion point at the strain ε0 = −β/(3δ). Then,
the two characteristic fields with eigenvalues ±c are neither genuinely nonlinear nor linearly
degenerate (nongenuinely nonlinear).

Relaxation spectrum. Now, we examine the spectrum of the relaxation function R in (24). In
the small parameter limit, W`(ξ`) ' 1

2 M`ξ`
2 amounts to Hooke’s law and φ(g) ' 1

2γg2. The
eigenvalues of the Jacobian matrix R′(U) are then {−1/τσN , . . . ,−1/τσ1,−1/τg, 0, 0}, where the
relaxation times are defined by (3) and (21). As discussed in the Appendix A, the relaxation
times τσ` belong to a frequency range [ fmin, fmax] surrounding the excitation frequency. If the
relaxation times τσ` are sorted in descending order, then fmin ≈ 1/τσ1 < 1/τσN ≈ fmax. Using
the numerical values in table 1, one shows that the characteristic frequency 1/τg of the slow
dynamics is smaller than the exciting frequency. Therefore, the spectral radius of R′(U) is equal
to 1/τσN .

2.3.2. Qualitative properties
Sinusoidal strain forcing. To illustrate the decrease of the elastic modulus, we consider that a
sinusoidal strain with frequency fc = 2 kHz and amplitude V ≈ 10−6 is applied locally to the
material. The evolution equations (8) and (19) for the variables χ1, . . . , χN and g are integrated
numerically, with physical parameters given in the tables 1 and A.3. The Matlab solver “ode15s”
for stiff differential equations is used with at least 80 points per period at the frequency fc. The
effective elastic modulus is M = ρ0 c2, where c is the speed of sound (25). In figure 2-(a), the
time evolution of its relative variation

∆M
M

= ρ0 c2
/  N∑

`=1

M`

 − 1 (27)

is represented for increasing strain amplitudes V . A diminution of the effective elastic modulus
is observed, until a steady state is reached. Figure 2-(b) represents the relative variation of the
effective elastic modulus with respect to the strain in steady state (t � τg). Hysteresis curves
are obtained, which size increases with the strain amplitude. In figure 2-(c), the hysteresis in the
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Figure 2: Softening in the case of a sinusoidal strain forcing ε = V sin(2π fct). (a) Time evolution of the relative variation
∆M/M of the effective elastic modulus (27). (b) Hysteresis curves ∆M/M versus ε in steady state (t � τg); (c) effect of
hysteresis on the stress-strain relationship. The stress variation ∆σ defined in (28) is represented with respect to ε.

stress-strain relationship (17) is represented. Here, the variation of the stress

∆σ = σ −
N∑
`=1

M`ε (28)

is represented with respect to the strain. The hysteresis curves have the shape of ellipses. The
slope of their major axis diminishes with increasing strain amplitudes, which illustrates the soft-
ening of the material.

Strain step. Now, we consider that a strain step of amplitude ε is applied locally to the material.
The variable χ` evolves in time towards its equilibrium value χ∗` , and the corresponding relaxation
time is τσ`. The equilibrium value of χ` is implicitly defined as a function of ε by the relation

W ′`
(
ε − χ∗`

)
= K` χ

∗
` , (29)

i.e. χ∗` =
M`

M`+K`
ε in the case of Hooke’s law (β = 0 and δ = 0 in (4)). The variable g evolves in

time towards its equilibrium value

g∗ = (φ′)−1 (W∗) , (30)

where W∗ is the strain energy (5) at equilibrium. Assuming the separation of time scales τσ1 �
τg, the corresponding relaxation time is τg (21). With the logarithmic expression (15) of the
storage energy, the equilibrium value (30) is

g∗ =
2W∗

γ +
√
γ2 + 4W∗

, (31)
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which is bounded by 1 for all W∗ ≥ 0. In the case of Hooke’s law, the strain energy at equilibrium
W∗ = 1

2 Mrel ε
2 is deduced from the expression of χ∗` and from the definition (3) of Mrel. Thus,

g∗ =
Mrel ε

2

γ +
√
γ2 + 2Mrel ε2

'
(ε→0)

Mrel ε
2

2γ
. (32)

Similar results were obtained in the elastic case [14].

3. Numerical resolution

3.1. Numerical strategy
We consider a finite domain [0, L]. It is discretized using a regular grid in space with mesh

size ∆x. The abscissas of the nodes are xi = i ∆x, where 0 ≤ i ≤ Nx and the number of nodes is
Nx = L/∆x. A variable time step ∆t = tn+1 − tn is introduced. Therefore, U(xi, tn) is the solution
to (23) at the ith grid node and at the nth time step. Numerical approximations of the solution
are denoted by Un

i ' U(xi, tn).
As discussed in [10], an efficient and flexible numerical strategy results from splitting the

system (23) in a propagation part (or hyperbolic part)

∂

∂t
U +

∂

∂x
F(U) = 0 (33)

and a relaxation part

∂

∂t
U = R(U) . (34)

The discrete operators corresponding to the discretization of (33) and (34) are denoted Ha and
Hb, respectively. Numerically, both parts are solved successively at each time step, with dedi-
cated numerical methods. Here, a second-order accurate Strang splitting scheme

U(1)
i = Hb(∆t/2)

[
Un

i
]

U(2)
i = Ha(∆t)

[
U(1)

i

]
Un+1

i = Hb(∆t/2)
[
U(2)

i

] (35)

is used. As described in the next subsections, both Ha and Hb are fourth-order accurate opera-
tors. The operator Ha is stable under the CFL condition (38), whereas the operator Hb is made
unconditionally stable using an adaptive Rosenbrock method. Thus, the coupled scheme (35) is
stable under the CFL condition. A second-order error is introduced by the splitting [18], which
penalizes the fourth-order accuracy of each operator. Nevertheless, the global accuracy observed
practically is much larger than with second-order schemes. This choice reduces significantly
numerical diffusion, which is crucial in the simulation of resonance experiments.

3.2. Propagation part
The numerical resolution of nonlinear systems of conservation laws (33) is usually performed

using nonlinear conservative schemes such as finite-volume schemes with flux limiters, MUSCL
or WENO schemes [18, 27]. Such methods are designed to capture nonsmooth solutions with-
out introducing spurious oscillations. However, the presence of viscoelasticity prevents the oc-
curence of shocks. Therefore, this approach would be either too expensive from a computational
point of view, or it would introduce to much numerical diffusion. Here, a fourth-order conserva-
tive ADER scheme [28, 29], well-suited to smooth solutions, is preferred.
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Table 2: Coefficients Υ jk in the numerical flux of the ADER scheme (37).

j
k

0 1 2 3

i − 1 −1/12 −1/24 1/12 1/24
i 7/12 5/8 −1/12 −1/8

i + 1 7/12 −5/8 −1/12 1/8
i + 2 −1/12 1/24 1/12 −1/24

ADER scheme. The homogeneous system of conservation laws (33) is integrated numerically in
space and time according to

Ha(∆t)
[
Un

i
]

= Un
i −

∆t
∆x

(
Fn

i+1/2 − Fn
i−1/2

)
, (36)

where Fn
i+1/2 is the numerical flux. The physical flux F(U) is approximated locally by the linear

flux Ai+1/2 U at each time step, where Ai+1/2 approximates the Jacobian F′(U) at the midpoint of
[xi, xi+1] and the time tn. The numerical flux of the ADER scheme is then obtained similarly to
the flux of the Lax-Wendroff scheme for nonlinear systems (see section 12.2 of [30]). Thus,

Fn
i+1/2 =

i+2∑
j=i−1

3∑
k=0

Υ jk

(
∆t
∆x

Ai+1/2

)k

F(Un
j ) , (37)

where the coefficients Υ jk are given in table 2.
In practice, the numerical scheme (36) with the numerical flux (37) is stable under the clas-

sical CFL condition

κ = cn
max

∆t
∆x
≤ 1 , (38)

where κ is the Courant number and cn
max denotes the maximum sound speed (25) that is en-

countered at time tn. If the stress-strain relationship ξ` 7→ W ′`(ξ`) is convex or concave, then
cn

max = maxi c(Un
i ). Otherwise, larger sound speeds may be reached between grid nodes (see e.g.

section 16.1 in [18]). The more general expression is

ρ0 (cn
max)2 = max

0≤i<Nx

(1 −min{gn
i , g

n
i+1})

N∑
`=1

max
ξ`∈(Γ`)i

W ′′` (ξ`)

 , (39)

where (Γ`)i is the interval with bounds (ξ`)n
i and (ξ`)n

i+1.

Roe linearization. Here, the matrix Ai+1/2 is obtained by Roe linearization. The Roe matrix is
defined by the following statements [18]:

1. the matrix Ai+1/2 is diagonalizable with real eigenvalues;
2. the discrete Rankine-Hugoniot condition holds for all Un

i and Un
i+1:

Ai+1/2 (Un
i+1 − Un

i ) = F(Un
i+1) − F(Un

i ) ;
10



3. the consistency with the physical flux is satisfied: lim
Un

i+1→Un
i

Ai+1/2 = F′(Un
i ).

According to section 15.3.2 of [18], the Roe matrix may be expressed by the formula

Ai+1/2 =

∫ 1

0
F′

(
Un

i + ζ(Un
i+1 − Un

i )
)

dζ , (40)

which ensures that the properties 2. and 3. are satisfied. In the case of the system (23), the
following (N + 3) × (N + 3)-matrix is obtained:

Ai+1/2 =



0 −1 0 · · · 0 0

0 −a1 · · · −aN aN+1

... −1 0 · · · 0 0
...

...
...

...
...

0 −1 0 · · · 0 0

0 0 0 · · · 0 0


. (41)

The coefficients deduced from (40) are for ` = 1, . . . ,N,

a` =
(1 − gn

i+1)W ′`
(
(ξ`)n

i+1

)
− (1 − gn

i )W ′`
(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

) + (gn
i+1 − gn

i )
W`

(
(ξ`)n

i+1

)
−W`

(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)2 ,

aN+1 =

N∑
`=1

W`

(
(ξ`)n

i+1

)
−W`

(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

) .

(42)

To avoid divisions by zero when (ξ`? )n
i = (ξ`? )n

i+1 for some `? between 1 and N, the coefficients
(42) are modified as follows (see Appendix B):

a`? =

(
1 − gn

i + gn
i+1

2

) W ′′`?
(
(ξ`? )n

i

)
ρ0

,

aN+1 =
W ′`?

(
(ξ`? )n

i

)
ρ0

+

N∑
`=1
`,`?

W`

(
(ξ`)n

i+1

)
−W`

(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

) .

(43)

The eigenvalues of Ai+1/2 are {−ci+1/2, 0, . . . , 0,+ci+1/2}, where

ci+1/2 =

√√√ N∑
`=1

a` . (44)

In the Appendix B, we prove that ci+1/2 is real in the hyperbolicity domain. Therefore, property 1.
is satisfied by Ai+1/2, and the matrix (41) is a Roe matrix.
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3.3. Relaxation part

The relaxation equation (24)-(34) writes as a nonlinear system of first-order differential equa-
tions in time:

∂ξ`
∂t

=
1
η`

(
K` (ε − ξ`) −W ′`(ξ`)

)
, ` = 1, . . . ,N ,

∂g
∂t

=
1
α

 N∑
`=1

W`(ξ`) +
1
2

K` (ε − ξ`)2

 − φ′(g)
α

,

(45)

where ε is constant. Due to the various orders of magnitude of the time constants τσ`, τg in the
relaxation spectrum, this differential system is stiff. To avoid stability issues, the operator Hb in
(35) is deduced from the adaptive Rosenbrock method of the Odeint C++ library [31]. For the
numerical integration of (45) over a duration ∆t/2, the maximum time step of the Rosenbrock
method is set to ∆t/2, and the tolerances are 10−4 (relative) and 10−5 (absolute). Finally, the
numerical method (35) is stable under the CFL condition (38). Even if nothing avoids the con-
dition g < 1 to be broken numerically, this unwanted event happens only at very high exciting
amplitudes.

3.4. Initial conditions and boundary conditions

In the examples of section 4, we assume that the material is initially undeformed and at rest.
Hence, the initial data U(x, 0) is zero for all x in the physical domain. To carry out one iteration in
time at some grid node i, the numerical values of U at the grid nodes i − 2, . . . , i + 2 are required.
Therefore, two “ghost cells” must be added on the left and on the right of the numerical domain,
which can account for various types of boundary conditions [18].

• A first case is a piston condition which imposes a particle velocity u̇d(t) at the abscissa x =

0. For compatibility with the initial conditions, one must have u̇d(0) = 0. By construction
of the rheological model, the same boundary conditions apply to the variables ξ1, . . . , ξN

as to the strain ε. Such a boundary condition is represented numerically by setting for k in
{1, 2} at each time step

εn
−k = εn

k ,

vn
−k = −vn

k + 2u̇d(tn+1) ,

(ξ`)n
−k = (ξ`)n

k , ` = 1, . . . ,N,

gn
−k = gn

0 .

(46)

• A second case is a free edge at the abscissa x = L, which corresponds to a zero-strain
condition. Therefore, one has also ξ` = 0 for all ` at x = L. Such a condition is represented
by setting for k in {1, 2} at each time step

εn
Nx+k = −εn

Nx−k ,

vn
Nx+k = vn

Nx−k ,

(ξ`)n
Nx+k = −(ξ`)n

Nx−k , ` = 1, . . . ,N,

gn
Nx+k = gn

Nx
.

(47)

12



4. Numerical experiments

In this section, several experiments are carried out with the numerical method described in
the previous section. The Courant number (38) is set to κ = 0.95. If not specified differently,
the material parameters are given in the tables 1 and A.3. The physical domain is bounded, with
length L = 30 cm. A particle velocity u̇d(t) is imposed at the abscissa x = 0 using the piston
condition (46). A free edge (47) is located at the abscissa x = L, as is the case with several
experimental setups [4, 5].

4.1. Resonance
Linear viscoelasticity. We consider a linear Zener material (β = 0, δ = 0, no softening). By
definition, the frequency-response function of a linear system is the ratio of the output spectrum
(x = L) to the input spectrum (x = 0), i.e.

FRF(ω) =
û(L, ω)
ûd(ω)

=
v̂(L, ω)
ˆ̇ud(ω)

, (48)

where the hat denotes the Fourier transform in time. A Fourier transform in space and time
of (22) with α → +∞ gives the following relation between the wavenumber k and the angular
frequency ω,

k = ω

 Mrel

ρ0

1
N

N∑
`=1

1 + iωτε`
1 + iωτσ`

−1/2

, (49)

where i denotes the imaginary unit. For a harmonic excitation ud(t) = exp(iωt), we write the
displacement field as a superposition of left-going and right-going monochromatic plane waves.
Thus, u(x, t) = A exp(i(ωt − kx)) + B exp(i(ωt + kx)), where the wavenumber k satisfies the
dispersion relation (49). The coefficients A and B are deduced from the boundary conditions
u(0, t) = ud(t) and ∂u/∂x (L, t) = 0. Finally, the ratio of the output to the input (48) at the
frequency ω yields

FRF(ω) =
2

exp(ikL) + exp(−ikL)
, (50)

where k is complex and frequency-dependent (49).
To assess the quality of the numerical method, the frequency response is simulated numeri-

cally. For this purpose, a broadband chirp signal is used:

u̇d(t) = V sin
2π  finf +

fsup
2 − finf

2

4n
t
 t

 10≤t≤2n/( finf+ fsup) . (51)

Here, the bandwidth is [ finf , fsup] = [1, 15] kHz, the velocity amplitude is V = 0.1 m/s, and
the number of arches is n = 50. The numerical solution is computed up to t = 20 ms, on a
grid with Nx = 100 points. During the simulation, the particle velocity at the abscissas x = 0
and x = L is recorded (figure 3-(a)). Then, a discrete time-domain Fourier transform of the
signals is computed. Figure 3-(b) displays the ratio of the spectra (48) so-obtained. Since the
spatial discretization is fine enough — the signals have 43 points per wavelength at the frequency
fsup = 15 kHz — the numerical estimation of the frequency response function is very close to the
analytical result (50) over the frequency range of the figure. The frequency response is made of
resonance peaks, with a quasi-constant quality factor Q (Appendix A). In the viscoelastic case,
the resonance frequencies differ slightly from the elastic case, where they are odd multiples of
c/(4L).
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Figure 3: Computation of the frequency response of a linear Zener solid. (a) Time-domain signals at the abscissas x = 0
and x = L. (b) Numerical estimation (48) of the frequency response compared to the analytical expression (50), modulus
(top) and phase (bottom). The vertical dotted lines mark the bandwidth of the exciting signal (51).

Full model. Let us focus on the first mode of vibration which resonance frequency is 1585 Hz.
The frequency range of interests reduces to [ finf , fsup] = [1.4, 1.7] kHz. In the nonlinear case,
defining the frequency response for broadband signals does not make any sense, due to the gen-
eration of harmonics. However, one can still define the frequency response for monochromatic
signals. To do so, a sine function u̇d(t) = V sin (2π fct) of frequency fc is used. In the linear case,
the value of FRF(ω) is also given by the ratio

FRF(ω) =
C1(v(L, t))
C1(u̇d(t))

, (52)

where C1 denotes the first complex Fourier coefficient at the angular frequency ω = 2π fc. This
definition can still be used in the nonlinear case, where harmonic generation occurs. Since the
frequency response is computed at the exciting frequency, the latter must be varied over the range
[ finf , fsup] to obtain a resonance curve.

For validation purposes, we compute the frequency response of the linear viscoelastic solid
from the previous paragraph, but according to the formula (52). The numerical solution is com-
puted on a grid with Nx = 30 points, which corresponds to 115 points per wavelength at the
frequency fsup. The input velocity amplitude is V = 0.1 mm/s. The exciting frequency fc is
increased by ∆ fc = ( fsup− finf)/n every 50 ms, which is long enough to consider that the solution
has reached the steady state. This increase is performed n = 19 times during the simulation. Two
receivers record the numerical solution at the abscissas x = 0 and x = L. The Fourier coeffi-
cients C1 are computed by numerical integration over the last period of signal at each exciting
frequency fc. To do so, the velocity signals are interpolated by a cubic spline over their last pe-
riod, and the midpoint rule is used for numerical integration. As illustrated in figure 4-(a), a high
number of points per wavelength is required to compute accurately the frequency response in the
vicinity of the resonance peak, where the modulus is slightly underestimated. This issue is due
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Figure 4: Computation of the frequency response (52) of nonlinear solids. (a) Validation on a linear viscoelastic material,
by comparison with the analytical expression (50). (b) Numerical estimation of the output velocity amplitude (x = L) in
the nonlinear case for increasing exciting amplitudes.

to the amplification of numerical errors near the resonance, and to the duration of the simulation
until the steady-state is reached.

Now, the full model is considered. The forcing amplitude V is ranging from 0.1 mm/s to
1 mm/s by steps of 0.1 mm/s, and the exciting frequency is increased by ∆ fc every 100 ms.
Figure 4-(b) displays the frequency-evolution of the output velocity amplitude 2 |C1(v(L, t))|.
According to (52), this quantity is equal to V |FRF(ω)| in the linear case. In the present nonlinear
case, the velocity amplitude is not proportional to V anymore. In particular, one can note the
frequency-shift of resonance peaks towards lower frequencies as V increases. At low values of
V , the linear frequency response from figure 4-(a) is recovered. At high values of V , one can note
the occurrence of a jump in the resonance curve. These features are typical of the experimental
observations made on rock samples [2, 3].

4.2. Dynamic acoustoelasticity

In dynamic acousto-elastic testing, the setup is similar. The parameters of the discretization
are the same as in the previous case. A resonance frequency is chosen, so as to maximize the
strain levels. The sinusoidal source with frequency fc = 1585 Hz and velocity amplitude V is
turned on from t = 0 to t ≈ 50.4 ms. Now, the receiver records the numerical solution at the
abscissa x = 0.1 m, up to t = 80 ms.

Figure 5-(a) displays the effective elastic modulus ρ0 c2 (25), which is recorded at the posi-
tion of the receiver. A slow decrease of the elastic modulus combined with fast oscillations is
observed. The frequency of the fast oscillations is the frequency fc of the source signal. When
the source is stopped (t ≈ 50.4 ms), the amplitude of the fast oscillations diminishes, and the
elastic modulus recovers gradually its initial value. The duration of the softening is related to
the characteristic time τg of the slow dynamics (21), and to the quality factor Q. As observed
experimentally, the softening phenomenon is accentuated when the amplitude of forcing V is
increased.

Figure 5-(b) focuses on the steady-state solution. Here, the last period of signal before the
end of excitation is used. When the effective elastic modulus is represented with respect to the
strain at the position of the receiver, a hysteresis curve is obtained. The shape of the hysteresis
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Figure 5: Dynamic acousto-elasticity. (a) Softening of the material, as recorded by the receiver at the abscissa x = 0.1 m.
(b) Hysteresis curves in steady-state (t ≈ 50 ms).

curve is related to the coefficients β and δ of the polynomial law (4), and to the dissipation in the
material (see figure 2 and [14]).

5. Conclusion

A one-dimensional model of continuum which includes nonlinear elasticity, viscoelastic at-
tenuation and softening is proposed. This model is thermodynamically well posed, and repro-
duces the main experimental features qualitatively. A numerical method based on finite volumes
is introduced, so as to solve the equations of motion efficiently. Resonance experiments and dy-
namic acousto-elasticity experiments are simulated, and qualitative agreement with experimental
results is obtained in both cases.

Experimental validations are currently carried out, in order to estimate the value of the pa-
rameters of the model. The expressions of the evolution equation (19) and of the storage energy
(15) are not unique, and may be a key for fine tuning of the model. The use of the harmonic bal-
ance method for the computation of resonance curves is currently explored. Future work will be
devoted to 2D and 3D numerical modeling, in particular to propose a more realistic framework
for the numerical simulation of DAET experiments.
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Appendix A. Parameters of the viscoelastic model

Let us consider the case of linear Zener material, which dispersion relation is given by (49).
If the phase velocity ω/Re k is equal to cref =

√
M0/ρ0 at a given angular frequency ωref , then
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Table A.3: Optimized coefficients of the Zener model.

` τσ` (ms) τε` (ms)

1 2.39556647121688 × 10−1 3.26820245620307 × 10−1

2 5.22532018808709 × 10−2 6.37792234728574 × 10−2

3 1.53966793063646 × 10−2 1.87515784083158 × 10−2

4 4.54569618004597 × 10−3 5.62759706637171 × 10−3

5 9.68524210724988 × 10−4 1.40683422528016 × 10−4

the relaxed elastic modulus

Mrel = M0 Re


 1

N

N∑
`=1

1 + iωrefτε`
1 + iωrefτσ`

−1/2
2

(A.1)

is deduced from the expression of the wavenumber k at the angular frequencyωref . The reciprocal
of the quality factor is given by [10, 20]

Q−1 = ω

 N∑
`=1

τε` − τσ`
1 + ω2τσ`2

 /  N∑
`=1

1 + ω2τε`τσ`

1 + ω2τσ`2

 . (A.2)

The method to obtain the coefficients τσ`, τε` is described hereinafter.
One can note that the quality factor of the Zener model (A.2) depends only on the angular

frequency ω, the number of relaxation mechanisms N, and the relaxation times τσ`, τε`. If a
reference frequency-dependent quality factor is known and a number N of relaxation mechanisms
is chosen, then the distance between the quality factor in (A.2) and the reference quality factor
can be minimized with respect to the parameters τσ`, τε`. In practice, the distance is minimized
over a set of 4N frequencies, which are logarithmically distributed over a frequency range of
interest [ fmin, fmax]. Optimization constraints are imposed to ensure that τε` > τσ` > 0, which is
necessary for positive spring and dashpot constants

M` =
τε`
τσ`

Mrel

N
, K` =

τε`
τε` − τσ`

Mrel

N
, η` =

τε`
2

τε` − τσ`
Mrel

N
(A.3)

in the rheological model (figure 1). If the relaxation times τσ` are sorted in descending order,
then the constraint 1/τσN < fmax is added to the optimization procedure. The reader is referred
to [22] for details about such an optimization.

The frequency evolution of the quality factor’s inverse Q−1 so-obtained is represented in
figure A.6-(b), where a constant reference quality factor Q = 20 is chosen, and N = 5 Zener
mechanisms are considered. The corresponding optimized coefficients are given in table A.3.
In the figure A.6-(b), the reference quality factor is reached by the optimized Zener model over
the frequency range [1, 100] kHz of the optimization procedure. The frequency evolution of the
phase velocity ω/Re k deduced from the dispersion relation (49) is represented in figure A.6-(a)
as well as the attenuation −Im k. It can be verified that the phase velocity is equal to cref at the
angular frequency ωref .
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Figure A.6: (a) Phase velocity (top) and attenuation (bottom) of the generalized Zener model, as a function of the
angular frequency. (b) Quality factor of the generalized Zener model (A.2) compared to the reference Q = 20. The
vertical dashed line marks ωref = 2π × 104 rad/s, whereas the vertical dotted lines mark the bounds 2π fmin = 0.1ωref
and 2π fmax = 10ωref of the frequency range of optimization.

Appendix B. Spectrum of the matrix Ai+1/2 in (41)

The eigenvalues of the matrix Ai+1/2 are {−ci+1/2, 0, . . . , 0,+ci+1/2}, where ci+1/2 is given in
(44). In order to show that ci+1/2 is real, one must show that the sum of the coefficients (a`)1≤`≤N is
positive. The proof is based on the fact that the variables ξ1, . . . , ξN and g satisfy the hyperbolicity
condition, i.e. the strain energy ξ` 7→ W`(ξ`) is restricted to a domain where it is convex, and g is
bounded by 1 (cf. section 2.3).

If (ξ`? )n
i = (ξ`? )n

i+1 for some `? between 1 and N, then the convexity of W`? and the bound
g < 1 imply that a`? is positive (43). Otherwise, the coefficient a` in (42) is rewritten as

a` =
W ′`

(
(ξ`)n

i+1

)
−W ′`

(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)
− gn

i

W`

(
(ξ`)n

i+1

)
−W`

(
(ξ`)n

i

)
−W ′`

(
(ξ`)n

i

) (
(ξ`)n

i+1 − (ξ`)n
i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)2

− gn
i+1

W`

(
(ξ`)n

i

)
−W`

(
(ξ`)n

i+1

)
−W ′`

(
(ξ`)n

i+1

) (
(ξ`)n

i − (ξ`)n
i+1

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)2 .

(B.1)

Due to the convexity of W`, the first right-hand side term is positive, as well as the ratios multi-
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plied by −gn
i and −gn

i+1. The bound g < 1 implies

a` ≥
W ′`

(
(ξ`)n

i+1

)
−W ′

`

(
(ξ`)n

i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)
−

W`

(
(ξ`)n

i+1

)
−W`

(
(ξ`)n

i

)
−W ′`

(
(ξ`)n

i

) (
(ξ`)n

i+1 − (ξ`)n
i

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)2

−
W`

(
(ξ`)n

i

)
−W`

(
(ξ`)n

i+1

)
−W ′`

(
(ξ`)n

i+1

) (
(ξ`)n

i − (ξ`)n
i+1

)
ρ0

(
(ξ`)n

i+1 − (ξ`)n
i

)2 ,

(B.2)

and hence, a` ≥ 0. This ends the proof: Ai+1/2 is a Roe matrix. Equation (B.1) is also useful to
obtain (43) by taking the limit as (ξ`)n

i+1 → (ξ`)n
i .
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