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Abstract - In this work we propose to use an approach based on genetic algorithms to obtain analytical redundancy 

relations to study the diagnosability property on a given continuous production system. Diagnosability analysis for 

production systems examines the detectability property (the faults are discriminable from the normal behavior of the 

system) and the isolability property (the faults are discriminable between them). The redundancy relations are based on 

the minimal test equation support and in a structural analysis over a bipartite graph. The faults analysis is studied using a 

multi-objective fitness function in a genetic algorithm, which describes the different constraints to be covered in order to 

reach the diagnosability property on the system. Our approach is tested in a theoretical example and in a real continuous 

system, a process of extraction of oil by gas injection.  

 

Index Terms - Genetic Algorithm, Diagnosability, Structural Analysis, Analytical Redundancy Relations, Gas Lift Well. 
________________________________________________________________________________________________________ 

I. INTRODUCTION  

Most production processes require constant supervision and control of the facilities associated. Particularly, it is necessary the 

diagnosis and early detection of faults, in order to have enough time to counteract the consequences that could bring faults. Some of 

the possible operations to counteract are reconfiguration, maintenance or reparation actions. Early detection can be achieved by 

acquiring information, mainly using mathematical models based on measured or calculated values from the processes studied. 

Moreover, for fault diagnosis is important to use cause-effect relationship of each state [2, 3].  

Basically, fault means any change in the behavior of any of the components of the system, so that it cannot longer fulfill the 

function for which it was designed [1]. Normally, a typical diagnosis system consists in detection and isolation of a set of faults. A 

diagnostic utilizes observations, i.e. measurements from the system under studied, to determine if a specific behavioral mode is 

present in the system or not. 

In general, the diagnosis analysis has been studied in the literature from two points of view. The Fault Detection and Isolation 

(FDI) community, which bases the foundations of its solution approaches on engineering disciplines such as control theory and 

statistical decision making, and the Diagnosis Community (DX), which bases the foundations of its solution approaches on the 

fields of computer science and artificial intelligence. Each community has developed its own terminology, tools, techniques, and 

approaches to solve diagnosis problems. Our approach is a mixed between the two communities’ theories, using a mathematical 

model and intelligent techniques to solve the problems.    

On the other hand, when a system has the diagnosability property it can detect and isolate all considered faults. It is a very 

important property that a given system should meet. The problem of the analysis of diagnosability in the area of continuous 

processes is very hard, and there are not a lot of works [8, 12].  

This paper addresses this problem. We propose an approach for the analysis of diagnosability, based on a hybrid approach 

between structural models and intelligent techniques. For that, we identify the different structural models of diagnosis for a 

diagnosability analysis in the area of continuous processes. Additionally, we use a Genetic Algorithm (GA) to find the set of 

analytical redundancy relations. In this way, in this paper we propose an analysis of diagnosability based on the residual generation, 

applying GA to find a set of redundancy relations.  

We test our approach in two cases, in a theoretical example and in a real-world process of extraction of oil by gas injection. 

Particularly, in the oil extraction industry is essential to achieve maximal production, for which the diagnostic process must be 

improves and streamlined. This study considers one of the most used methods for the artificial extraction of oil, which relies on 

wells with gas injection [18]. Oil wells based on gas injection with highly oscillatory flow, are a major problem in the oil industry. 

The efforts to find low-cost solutions based on automatic control and fault diagnosis have been carried out in both the academic and 

the industrial communities for a long time, [17, 19, 20]. In the literature, there are several diagnostic studies related to pipelines, 

storage tanks and wells, but previous works do not include diagnosability analysis in gas lift wells. 

This paper is organized in the following way. The next section presents some concepts about the fault diagnosis problem. The 

section three introduces the theoretical bases of the diagnosability problem based on residuals. The section four presents our general 

algorithm for the diagnosability. The section five describes our approach based on residuals and GAs for the case of diagnosability 

problem. Finally, the last section presents some experiments: an application to a theoretical example, and another application to a 

real-world process of extraction of oil by gas injection, and analyzes the results. 
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II. THEORETICAL FOUNDATION 

In a fault diagnosis system there are three key concepts: The fault detectability is the ability to detect certain faults. The 

diagnosis must be able to decide if there is a fault or not, as well as determine the instant of the apparition, from observations of 

the process. For that, it needs to compare the current behavior with the expected behavior of the system. The fault isolation is the 

ability to isolate a fault that has occurred, from the faults that are detectable. The fault identification studies the differences 

between the normal behavior and the current behavior in the system, in order to determine the depth and magnitude of the faults. 

The fundamental concept in our work is the diagnosability. We start with its definition and the definition of the others close 

concepts.  

Definition 1: Diagnosability. A system has this property if it can detect and isolate all considered faults [7, 8]. The faults that 

are isolate in a process are often referred as monitored faults, whereas the faults that not isolate are called non-monitored faults. 

A typical approach for diagnosability in dynamic systems is the model based diagnosis (MBD) [9]. In the MBD, the 

fundamental aspects are the definition of a process model, the comparison of the functioning of the process with the model, and 

the analysis of the behavior of them. A possible MBD technique is based on the generation of residue [9]. 

There are several technics for the generation of residuals, but all consist in the measurements. If the observed situation does not 

meet the estimate made by the model for a given situation, then it is concluded that there is a fault, and further analysis of the 

differences are carried out to identify the specific component of the fault. A way to generate residuals, which is used in this paper, 

is based on analytical redundancy relations (ARR) [4]. It uses analytical mathematical models that characterize the system, to 

reproduce the behavior of the system under evaluation.  

The approach for generating a residual is based on a finite sequence of calculations that ends with the evaluation of an 

analytically redundant equation. Similar approaches have been described and exploited in [1]. The ARR only contains measure of 

known variables, and is composed of a subset of equations from the model. ARR allows us to check whether the measured 

variables are consistent with the model. 

A residual is a signal ideally zero in the non-faulty case and non-zero otherwise. A residual generator takes measured variables 

from the system as input, and produces a residue as output. The method for residual generation presented in this paper relies on 

structural analysis and sequential generation [2, 4, 6]. 

The residual generation approaches have in common that the sub-systems should be over-determined to include the required 

redundancy. Several algorithms for calculating ARRs from over-determined systems have been proposed in [2, 7, 8]. Particularly 

in [2] is proposed an algorithm that analyzes the structure of a system to detecting redundancy using the ARR approach and is 

developed in detail in [7, 8]. In [6] is proposed a sequence to generate the residuals like a post-processing [6]. 

In general, the diagnosability depends on the residuals that can be generated, as it depends on the redundancy embedded in the 

system. Decoupling of faults in a set of tests based on residuals, means that the residuals must be sensitive to, or respond to 

different subsets of faults. Thus, decoupling of faults is a fundamental problem in residual generation for fault isolation, if the 

diagnosability wants to be reached. 

Structural Analysis Based On Residuals  

The structural analysis is a set of tools to explore the fundamental properties of a system using a structural model, either in the 

form of a structural graph or incidence matrix [6]. In our work, a structural analysis of the system is used for the faults detection 

and isolation, following the approaches used by the community of Fault Detection and Isolation (FDI) [1]. At the following we 

present a resume about the theoretical aspects used by our approach. 

A structural model is a representation of a system in which only couplings between variables and equations are retained [10, 

11]. The structural model contains only the information of which variable belongs to which equation, regardless of the value of the 

parameters and the detailed form of the mathematical expression [4]. A structural model can be represented by a bipartite graph or 

an incidence matrix. Let’s call this model is M(X,Z,E,F), where E is a set of equations E = {e1,..., em}, X is a set of unknown 

variables   *       +, Z is a set of known variables Z={z1,...,zp}. and F={f1,...,fo} is a set of fault parameters which modify the 

normal behaviour of the system (they are considered as unknown variables). In the case of a differential model, it is necessary to 

add a fifth set,   * ̇     ̇ +, which contains the derivatives of the variables of X. 

We assume that the equations in the set E have the form. 

      ( ̇      )           

Where,  ̇  x, f and y are vectors of the sets D, X, F and Y, respectively. 

Example 1: consider. 

     ̇           

                                                                ̇               

                        ̇         

                    

                   

                   

 

The structural model of the system is as follows:   {              }   *    ̇      ̇      ̇ +,   * ̇   ̇   ̇ +,   

*          +   *              +. 
This structure of the system is a representation as it shown in Figure 1 of which variables are involved in the different 
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equations. This abstraction allows us to study the diagnosability properties, independently of the linear or nonlinear nature of the 

systems. However, it must be kept in mind that results obtained with such a structural representation are a best case scenario. 

 

 
 Figure 1 Bipartite Graphs of the example. 

 

Now, we present some definitions to use the structural analysis for diagnosis purposes. 

Definition 2: ARR for M(X,Y,E,F). Let M(X,Y,E,F) be a model, then an equation     (   ̇  ̈  )    is an ARR for 

M(E,X,Z,F),if for each y consistent with M(E,X,Y,F), the equation is fulfilled [3]. 

These relationships can be derived only if the model has more equations than unknown variables, i.e. if the system is 

structurally over-determined (SO) [10].  

Example 2: According to example 1, an ARR would be. 

                   

An ARR can be used to check if the observed variables z are consistent with M(E,X,Z,F), and can be used as the basis of a 

residual generator. 

Definition 3: Residual Generator for M(E,X,Y,F). A system taking a subset of the variables z as input, and generating a scalar 

signal ri as output, is a residual generator for the model M(E,X,Y,F), if for all y consistent with M(E,X,Y,F), it hold that 

        ( )    in normal behavior otherwise   ( )    [11]. 

The structure of the system can be abstracted as a representation of which variables are involved in the different equations 

which make up the model of the system. The structural model of a system is an abstraction that allows one to study the 

diagnosability properties, independently of the linear or nonlinear nature of the systems. However, it must be kept in mind that 

results obtained with such a structural representation are a best case scenario. Causality considerations and the presence of 

algebraic and differential loops, determine which structural redundancies can be exploited for the design of residual generators. 

Each    should be evaluated in order to decide if it can be used or not. Finally, the evaluation of each detection test constitutes 

the fault signature vector (  *         +), that is a set of vector in order to isolate the fault. 

Given a set of vector   *         + and a set of faults F={f1,...,fo}, the theoretical fault signature matrix can be defined 

codifying the effect of every fault in a residual [12]. 

Definition 4: The fault signature matrix of M.  It is a table obtained by the concatenation of all possible signatures of faults. 

Each row corresponds to an ARR and each column to a failure mode. A "1" in position (ij), indicates that the fault j is detected by 

the ARR i [1].  

F(M) is the set of faults that affect either equation in M, then the diagnosability ability is achieved if the system complies with 

the following definitions. 

Definition 5: Detectability for M(E,X,Z,F). A fault Fo, where o = 1,…,n  which belongs to F(M) in the diagnosis system of M, 

is detectable if there is a residue different from zero in the residual generator, i.e.     . 

Definition 6: Isolability for M(E,X,Y,F). When two signatures are identical, the related faults are considered non-decoupled, 

that mean they cannot be isolated [13]. Therefore, all signatures must be different from each other  (  )   (  )       
*      +    . The fault isolation will consist in looking for the theoretical fault signature in the fault matrix that matches with 

the observed signature, to distinguish between all the possible faults. 

Example 3: Consider a diagnosis system containing a set of residuals *              +constructed to detect and isolate 

three faults *        +. The following fault signature matrix shows the sensitivity of ARRs to faults even in the system in normal 

behaviour N.      is sensitive to faults f2 and f3, and so on. Each fault has a different signature, so we can isolate all considered 

faults. 

Table 1 Fault Signature Matrix 

 N f1 f2 f3 

Arr1 0 0 1 1 

Arr2 0 1 0 1 

Arr3 0 1 1 0 

 

We adopt the design method of minimal structurally over determined (MSO) sets based on ARR [2]. Unobserved variables can 

be eliminated for the subset of equations [7].   

Definition 7: Over-determined System (SO). M is an SO if the cardinality in E is greater that the cardinality in X i.e.| |  | |  
If the cardinality of   is | |  | | then it is a Just-determined system, and if the cardinality of M is | |  | | then is an Under-

determined system. A condition that must be satisfied is that must be at least one more equation than unknown variables, which 

means that the system is over-determined. 
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Definition 8: Minimal Structurally Over-determined (MSO). A MSO contains only one equation more than unknown variables, 

and each MSO is equivalent to an ARR [7].  

In [2] provides an algorithm that identifies the MSO, enabling the construction of more efficient ARRs. Each ARR correspond 

to an MSO. 

 In [7] introduced an algorithm and the notion of TES (Test Equation Support) which are sets of equations which express 

redundancy specific to a set of considered faults. Each TES corresponds to a set of faults which influence the residual generator 

constructed from the TES. The corresponding quantities expressing minimal redundancies are denoted minimal TES (MTES), and 

the set of MTES can be seen as a subset of the set of MSOs for the set of faults of interest of the system. 

Definition 9: Test Equation Support (TES). Given a model   and a set of faults F(M), an equations set   is a test equation 

support if M is a SO set, and if  (  ) correspond a part of the model, being F(M)≠0 for any       where    is a SO set it holds 

that  (  )   ( ), -. 
Definition 10: Minimal Test Equation Support (MTES). A TES of M is a minimal TES if is the smaller subset sensitive to a 

fault with the degree of redundancy equal to one, i.e. one equation more than unknown variables. 

Since there is a one-to-one correspondence between MTESs and ARR, we will only focus on MTESs in this paper, to generate 

residuals of the process. With that, we will be able build a signature matrix. A MTES set could be used to develop a consistency 

check for a part of the system, and a set of  ( ) can be detected with this consistency check [17]. With that, we will be able 

build a signature matrix. 

A MTES set could be used to analyze a part of the system, and a set of  ( ) can be detected in this analyze. In our work, we 

have used residuals generation method based on, a sequence of step to successively solve the unknown variables involved in the 

equations set (see [8, 17]). In this way, it solves the system of equations, deleting the unknown variables one at a time. Then, the 

residual generator is created. 

Many practical problems are modeled like the interaction between two different types of objects, i.e. between equations and 

variables, and can be expressed like a bipartite graph problem. Unlike [7, 8] we will use a matching in a bipartite graph to solve 

the problem of find the possible MTES's in a system model. For that we give the following definitions: 

Definition 11: Bipartite Graph. is an ordered triple    (     ) such that Z and E are sets of vertices,      , where 

       , and   are the set of arcs in G. 

Definition 12: Matching. is a set of edges from graph G, where each arc has a node from Z an E. 

Definition 13:  Maximal Matching. is a matching M of a graph G with the property that it is not a subset of any other matching 

in graph G. In other words, a matching M of a graph G is maximal if every edge in G (Z and E) has a non-empty intersection with 

at least one edge in M. 

Definition 14: Perfect Matching P. is a matching in a graph G that covers all its vertices    .  

Definition 15: Alternative Path.    (          ) in a graph G, determines the subset of redundancy equations. It studies the 

path to eliminate the unknown variables from a TES. 

The above definitions will help us solve the problem defined in the previous section of search of MTES's, and thus ARR. All 

the definitions made in this part will be used to apply intelligent techniques in the optimizing of search of alternative paths in a 

bipartite graph, unlike [7, 8]. 

III. THE GENETIC ALGORITHMS OF OUR DIAGNOSABILITY ANALYSIS APPROACH 

Several researchers have successfully implemented GA for the redundancy analysis specifically GA-based approaches for the 

sensors placement problem [14, 15, 16]. This paper attempts to incorporate the GA optimization features to reach the full criteria 

of diagnosability. That is, our approach analyses the diagnosability property and then, if it is not fulfill, it solves the sensors 

placement problem to reach it. 

In order to fulfill this criterion we developed two algorithms which during their executions invoke several GAs. The first 

algorithm (called the MAIN) simply calls the GA call Detection. The aim of the Detection algorithm is to check whether all the 

faults in study are detected, (see lines 1-2, of the main algorithm). In the line 2, if the detectability property is not satisfied 

(    ( )                 ), or the isolability property is not satisfied (         , where           is a control variable 

of the second algorithm). 

The second algorithm (called Detection) searches an alternative matching in the model (a matching represent a redundancy), 

based on the theory of MTES. The algorithm finds the possible connections between variables and equations in order to eliminate 

the unobserved variables to fulfill the specific requirements of an ARR. Particularly; it will find populations of MTES invoking the 

first GA, called GA1. This algorithm also determines the detectability and the isolability (for the last case uses a second GA, called 

GA2, which uses the best MTES generated by GA1 to build the fault signature matrix). 

 

Algorithm 1: Main(G) 

1 MTES=Detection(G);                                 

% It determines detectability and isolability of the system 

2      if     ( )                  or            

3         Print: “there is not enough redundancy”     

4      end 

5 end 
 

In the line 2 of the second algorithm is called GA1 to determine all the possible MTES for each fault (see line1), the lines 4 to 6 

guarantee that at least one MTES has been defined for each fault. The line 6 calls det, which determines the set of faults cover by 



© 2014 IJEDR | Volume 2, Issue 4 | ISSN: 2321-9939 

IJEDR1404067 International Journal of Engineering Development and Research (www.ijedr.org) 3790 

 

each MTES and includes them in the set S. With this information, the algorithm verifies in line 8 if all the faults are covered, using 

the procedure verify(S).  In this way, it determines the detectability of the model (all the faults can be detected). Then, in line 9 it 

constructs the fault signature matrix (for that, it calls the procedure iso). In order to verify the isolability of the system, the 

procedure calls a second GA (line 10), called GA2, with the fault signature matrix as parameter. If the system is isolable, the best 

individual of GA2 fulfills the isolability propriety (the system has the diagnosability property). If this property cannot be reached, 

then it defines            in order to call in the main algorithm the third algorithm, called Placement, which is used when there 

are faults not detected or isolated. 

 

Algorithm 2:  Detection (G) 

1 for              |     

2          (  )     (    );         
     % Determines the MTES’s for each fault 

3 end  

4 if at least       ( )    |      

5      for              |     

6             ( )     (       (  ))   
         % It determines the set of faults cover by the  

         % MTES’s of each fault 

7     end 

8     if       ( )       
      % Determines the detectability in the model 

9              (    )   
       % Constructs the fault signature matrix  

10                  (  ) 
% Determines the isolability in the faults (         ) 

11    end  

12 end 
 

GA is one of the most powerful heuristics tools for solving optimization problems, based on natural selection and the process of 

biological evolution [14]. A GA repeatedly modifies a population of individual solutions. At each step, the GA selects individuals 

randomly from the current population to be parents, and uses them to produce the descent for the next generation. Over successive 

generations, the population "evolves" towards an optimal solution. GAs can be applied to solve a variety of optimization problems 

that are not well suited for standard optimization algorithms, including problems in which the objective function is discontinuous, 

non-differentiable, stochastic, or highly nonlinear. In the next subsection we are going to describe our Gas. 

GA1 

Given a model M, its diagnosability property can be analyzed using a structural model of the system as bipartite graph (G), and 

is represented by the union of all the faults and all the unknown variables G = GX ⋃ GF. From GF, the fault    is extracted, GA1 

will generate a population of individuals with random combinations of active arcs in the model (an active arc is when the relation 

between this equation and the variable is selected to compose the possible MTES defined by this individual for this fault   , see 

below for more details). That is, each individual is going to define a possible MTES. The objective function measures if (possible 

MTES) reaches the detectability proprieties, the best individuals will be the input of the GA2, in order to study the isolability 

property. 

An individual in GA1 is represented by a bits-string, where each bit is used to represent the arcs connecting the vertices in the 

bipartite graph,    ,   is the arc between vertices,   (the unknown variables x and f in the bipartite graph) and   (the equation e in the 

bipartite graph). If an arc is selected (active arc)      , else       (it represents that this arc does not exist in the bipartite graph 

or is not an active arc). For our example in the section I, an individual is shown in Fig 2. 

 

 
Figure 2. Bits string representation of an the individual in GA1 

 

Hence, for every possible MTES for this fault f there is a unique bits-string sequence. The MTES (individual) is evaluated using 

fitness function which includes all the important design criteria of a MTES. The general algorithm of GA1is: 
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Genetic Algorithm 1: GA1(  , G)     

1 begin                           
2      pop=generate_pop(G);       

     % Generate initial population 

3      Evaluation(   ,pop);                       

     % compute the fitness function to each individual 

4      while not      or Nb_generation do 

5           begin   
          % reproductive cycle begins 

6                Reproduction (pop) 

7                Evaluation (FF1, pop) 

8                selection (pop) 

9           end 

10      end 

11 end 
 

Line 2 generates the initial population and line 3 evaluates this population using the fitness function    . Then, between lines 4 

and 11 there is a classical evolutionary process (reproduction and selection of individuals). This evolutionary process is stopped 

when is reached a number of generation, or when an individual reaches a value of       (this MTES represents a residue of the 

fault   ). 

   is a multi-objective function fitness in order to find the MTES for the fault f. A weighted sum approach has been used to 

aggregate all the optimization criteria according to the equation below, gives a numerical value of the quality of each possible 

solution (MTES) of the optimization problem. 

       {∑    

 

   

}                                  ( ) 

 

Where,    is the corresponding weight and    is the criterion to be optimized, the different criteria to be optimized are in table 

2. 

Table 2 Optimization criteria 

Objective Optimization criteria 

   Number of Faults 

   Studied Fault 

   System Redundancy  

 

   ensures that only is studied one fault    at a given time: It is described by the sum of the active arcs of the faults that are in 

the individual, different of the faults to study. If this sum is different from zero is penalized the equation with a weight   . 

 

   ∑ ∑   

 

       

     

                                       ( ) 

 

Where,    are the arcs between the faults and the equations,   is a select fault and   is the number of equations. 

   ensures that the fault studied    is considered by the individual: it will make a sum of the active arcs from the studied fault 

presents in the individual. Normally, only one active arc from the studied fault must exist to guarantee a TES, otherwise this value 

is different from zero and the individual must be penalized by a weight   . 

 

   |∑      

 

   

|                                   ( ) 

 

Where,      are the arcs from the studied fault.       

  verifies that the degree of redundancy of the model is equal to one, that is, there is one equation more than unknown 

variables. For that, it checks the cardinality of the active arcs for the case of the variables and equations, and this difference must be 

one to ensure the propriety of MSO and MTES. This function must also shed as a result the value of zero, otherwise the individual 

must penalized by weight   . 

 

   |(    ( 
 )      (  ))   |   * |               +

   * |               +

   ( ) 
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Where,    are the active arcs in unknown’s variables and    are the active arcs in equations.  

In this fitness function the importance of each criterion is defined by weight   . The values are determined according to the 

design requirements and experimentation see table 3. 

Table 3 Optimization criteria 

Objective Optimization criteria Optimized Value 

   Number of Faults 100 

   Faults in study 1000 

   System Redundancy 10000 

 

Particularly, in GA1 three elite individuals (individuals with the best fitness values) of each generation are chosen in order to 

ensure that the current best individuals always survived in the next generation. 

Theorem 1: GA1 ensures that if there is an individual with       it is a MTES of   , and the set of individuals with       

will be the set of MTES of the studied fault     
Proof of theorem 1;    represents one individual in G with        that is a MTES sensitive a    

GA2 

The resulting population from GA1 involves perhaps a large number of MTES. As there is a one to one relationship among the 

ARRs and MTESs, and if the detectability property is reached in the system, the line 10 of the Detection algorithm builds the 

signature matrix and calls GA2, in order to determine a set of ARR that guaranteeing the isolability property of the system, if there 

exist. 

 
 Figure 3. Bits string representation of the individual in GA2 

 

An individual in the GA2 is also represented by a bits string. In this case, each bit represents each MTES (ARR) found by GA1 

for all the faults, GA2 randomly defines individuals to be subsequently evaluated by the objective function, where a bit with value 

of "1 " means that a MTES is chosen in the fault signature matrix otherwise its value is "0" (see figure 3 for the example of the 

section 1). GA2 studies the sensitivity of the faults for the MTES's selected in a given individual, and observes if in this individual 

the isolability property is reached. The objective function of GA2 ensures that its value is zero because the individual has 

isolability property. Otherwise, this individual cannot isolate the faults (isolability property). There are two conditions in the 

objective function. 

    ∑ ∑    
 

  

     

  

   

 ∑  
 

  

   

                              ( ) 

 

Where    
  y   

  

   
  {

                         
      

    ( ) 

  
  {

 ∑      

      

   

         

                          ( ) 

 

The first condition    ensures that the fault signature vector    in the matrix constructed by the individual is different than the 

fault signature vector   , otherwise it penalizes with a low value, interpreting than just    cannot be isolate   .    condition ensures 

that the sum of each vector in the fault signature matrix is non-zero, otherwise it cannot distinguish the behavior of a system with 

fault of a normal behavior, penalizing the individual with a high value. 

 

Genetic Algorithm 2: GA2(  ) 
1 begin                           

2     pop=generate_pop(  );     
    % Generate initial population chosen some ARR from     

3     Evaluation(   ,    );   

    % compute the fitness function to each individual 

4     while not        or Nb_generation do 

5           begin   
          % reproductive cycle begins 

6                Reproduction(pop) 
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7                Evaluation (   , pop) 

8                selection (pop) 

9           end 

10      end 

11 end 
 

This GA generates the initial individuals using Sm, and the rest of the procedure is a classical GA. If we look at the individual 

shown in Figure 3, we can see that this individual selected the MTES1, MTES2, MTES4 and MTES6, the GA2 will check the 

signatures of each fault in the set of MTES selected using the objective function FF2. 

Theorem 2: GA2 ensures that if there is an individual with      , it will get a set of MTES which accomplish with the 

isolability propriety 

IV. EXPERIMENTS 

In this section we are going to prove the different theorems. The Main algorithm invokes the Detection algorithm for the 

location of a population of sensitive MTES for each fault in the system, in order to reach its detectability property. In addition, it 

constructs the failure signature matrix with the minimum set of MTES to meet the isolability property in the system. The 

Detection algorithm invokes to GA1 and GA2 respectively, to perform this task. We are going to studied two problems, a 

theoretical example to describe our approach and a real continuous system. 

A theoretical example to test our GA approach 

For the experiment, we evaluate the example 1 that we have been using through this paper and structurally defined in section II. 

Detection Problem: Evaluation of GA1 

The initial population of GA1 is composed by fifty individuals. These individuals are sub-models of the main structural model, 

which is sufficient to fulfill the initial requirements for MTES. These individuals are evaluated using the fitness function FF1, and 

in each generation the two best individuals are selected as parents, to execute the crossover operator with probability 0.7, and the 

mutation operator with probability 0.9. The stopping criterion is: if the individual with the best fitness value does not improve in 

50 iterations AG1 stops. Table 4 and figure 4 are a representation of an individual G = GX ⋃ GF. 

Table 4 Representation of the model in GA1 

 G 

GX [1,0,0;1,1,1;0,1,1;0,1,0;0,1,0;0,0,1]; 

GF [1,0,0,0,0;0,1,0,0,0;0,0,0,0,0;0,0,1,0,0;0,0,0,1,0;0,0,0,0,1]; 

 

  
Figure 4, A possible individual of GA1   

 

Graphically, the figure 4 shows an individual (  ) in which the objective function     can be evaluated.  

  : 010000000010001000100000000000000000000000000000 

This individual has, as shown in the figure 4, red lines (they are the active arcs between the vertices of equations and the 

vertices of the variables). In    is represented by a value “1”. If we evaluate de equations 4, 5 y 6. 
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                              (  ) 

 

   |∑   

 

   

|                                    (  ) 

    |(    ( )      ( ))   |     

        ( )       ( )        ( )                (13) 

 

   means that there is only one active arc from the set of vertices belong to F.    ensures that there is only one active arc from 

the studied fault. Finally the system redundancy is evaluated by   , where in the individual    there are 4 equations and 3 

variables with active arcs. 
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Now, we describe the behavior of our algorithm GA1 for other individuals.    and    are individuals which have two active 

arcs in the same vertex (see figure 5). In   , vertex of variables    has two active arcs, and in       has two active arcs.    in     

will penalize these individuals for this reason. On the other hand,    will penalize    and    because the degree of redundancy of 

the individuals is different to one (cardinality constraint, see Table 5). In   , the active fault from the vertex of faults is not the 

fault in study, in this case the active arc is   .    will penalize that in    . In     there are two active arcs from the vertex of faults 

(   and    are actives),    will penalize this. Also    penalizes the degree of redundancy, see Table 5. 

 

 
  : 100000010000000001000000000000000000000000000000 

 

 
  : 100000000010001000000000010000000000000000000000 

 

 
  : 010000001000000001100000000000000100000000000000 

Figure 5. Individuals of      

Table 5 Evaluation of the fitness function of GA1 

 

Populations  

Evaluation of the fitness function 

         Value of FF1 

1    0 0 0 0 

2    0 0 10000 10000 

3    0 1000 0 1000 

4    100 1000 20000 21100 

 

Finally, GA1 proposes a population of sensitive MTES for all considered faults. The table 6 shows that the algorithm finds nine 

MTES, fulfilling with the theorem 1. 

Table 6 All MTES found by GA1 

MTES for all considered faults 

MTES [3 5 6]   

[3 4 6]  

[4 5] 

[4 6] 

[1 2 4 6] 

[1 2 5 6] 

[1 2 3 6] 

[1 2 3 5] 

[1 2 3 4] 

 

 



© 2014 IJEDR | Volume 2, Issue 4 | ISSN: 2321-9939 

IJEDR1404067 International Journal of Engineering Development and Research (www.ijedr.org) 3795 

 

Detection Problem: Evaluation of GA1 

Continuing with the same example, we will evaluate the fault signature matrix showed in the table 1, to proof the theorem 2 

(isolability of the model).  

GA2 starts with a population of 20 individuals evaluated by the objective function FF2. Then, like GA1, the best individuals 

are chosen as parents in each generation to apply the crossover and mutation operators. The process to generate new individuals is 

performed carefully, because each individual must contain valid arcs among the possible arcs of the original bipartite graph. The 

stop criterion in this case is when the best individual does not improve after 20 iterations. 

As we said before, an individual in GA2 is represented by a bit string. For this experiment we will evaluate tree individuals Ai, 

where 1 in an individual means that this ARR in the signature matrix is chosen.  

 

  : 011100 

  : 111111 

  : 001011 

 

In the case of    only are selected               , different than    where all the      are selected. In table 7 we will show 

the fitness function of each individual for the first condition. It will compare the signature of each fault. 

Table 7 Evaluation of   of the individuals chosen. 

   
Evaluation of the fitness function 

                                                            

1    10 10 0 0 0 0 0 0 0 10 

2    10 0 0 0 0 0 0 0 0 0 

3    10 0 0 0 0 0 0 0 0 0 

 

The best result en    is “0” that is when an individual has the isolability property. In this case none of the individual fulfill with 

this proprieties because the signature of    and    are similar. In Table 8 is studied the second condition. 

Table 8 Evaluation of   of the individuals chosen 

   
Evaluation of the fitness function 

               

1    0 0 0 0 0 

2    0 0 0 0 0 

3    10000 10000 0 0 0 

 

We can see that the sum of the values for   and    are equal to 0, means that those individual are different of the model of the 

normal behavior. With respect to   , it has the same model of the normal behavior, that means the value is different to zero. 

Below is the result of the evaluation of the fitness function of GA2. 

 

   (  )          

   (  )          

   (  )                 

 

According  to theorem 2, for a full diagnosability, the value of    must be equal to 0, all values more than 0 means that at least 

one fault is not isolable from other faults, and all the values more than 10000 means that there is a signature equal a the model in 

normal behavior, making no detectable the fault. Table 9 shows the final signature matrix as the result of GA2. 

Table 8 Signature Matrix as the Result 

 N f1 f2 f3 f4 f5 

Arr1 0 1 1 0 0 1 

Arr2 0 1 1 0 1 0 

Arr3 0 0 0 0 1 1 

Arr4 0 0 0 1 0 1 

 

Analysis Of Diagnosability For A Gas Lift Well 

In this section we present the method of production of oil by gas injection, the structural analysis of the process, and then apply 

our approach for fault diagnosis. 

According to [19], the method of extraction of oil by gas injection is a method using compressed gas as energy source, for 
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carrying the reservoir fluids from downhole to the surface; thus, the main consideration to select a group of oil wells, is the 

availability of a cost-effective source of high pressure gas. 

In [17] indicates that gas lift is one of the primary methods used in the production of fluids from a well, which consists in the 

continuous injection of high pressure gas, to lighten the oil column in the production tubing. In other words, this method involves 

injecting gas at high pressure (through the compressor plant) at a preset rate, to lighten the column of oil, and thus improving the 

production of wells with reservoir pressure lower than the head at different depths. It is considered by experts as the most similar 

to the natural flow [18]. 

Gas from the annulus starts to flow into the tubing, as the gas enters into the tubing the pressure in the tubing falls, accelerating 

the inflow of gas lift. The gas pushes the major part of the liquid out of the tubing, while the pressure in the annulus falls 

dramatically. The annulus is practically empty, and the gas flow into the tubing is blocked by liquid accumulating in the tubing. 

Due to the blockage, the tubing becomes filled with liquid and the annulus with gas. Eventually, the pressure in the annulus 

becomes high enough for gas to penetrate into the tubing, and a new cycle starts. 

In our approach, the diagnosability is developed based in residuals generation schemes derived from ARRs. Firstly, with the 

mathematical analysis described in this section, we identify equations governing the process defined in previous works [18, 19]. 

They are based on three state variables: x1 is the mass of gas in the annulus, x2 is the mass of gas in the tubing, and x3 is the mass of 

oil in the tubing. With them, we can define the first equations set which represents the dynamics of the flow of each variable 

defined previously. 

Example 4: Gas lift well model. 
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   ̇           
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Where wgc is the mass flow rate of gas lift into the annulus, wiv is the mass flow rate of gas lift from the annulus into the tubing, 

wpg is the mass flow rate of gas through the production choke, wr is the oil mass flow rate from the reservoir into the tubing, wpo is 

the mass flow rate of gas through the production choke, and wpc is a mixed mass flow rate produced through the production choke. 

Unlike the model presented in [18, 19] wgc is not considered as constant but rather calculated through the equation of flow by 

orifice plate denote by e4. This way, is checking the consumption of gas in each well. Also we consider two more variables: Pglp 

is the pressure in the system distribution of gas, and Pgldp is the differential pressure of gas through an orifice plate.  

Civ, C and Cr are constants, ρa,inj is the density of gas in the annulus at the injection point, ρm is the density of the oil/gas mixture 

at the top of the tubing, Pa is the pressure in the annulus at the injection point, Pt,inj is the pressure in the tubing at the gas injection 

point, Pt is the pressure at the top of the tubing, Ps is the pressure at the separator, Pr is pressure in the reservoir, and Pt,b is the 

pressure at the bottom of the tubing. The reservoir pressure, Pr, is assumed to be slowly varying, and therefore treated as constant. 

Note that flow rates through the valves are restricted to be positive. Mo is the molar weight of the gas, R is the gas constant, Ta is the 

temperature in the annulus, Tt is the temperature in the tubing, Va is the volume of the annulus, La is the length of the annulus, Lt is 

the length of the tubing, At is the cross-sectional area of the tubing above the injection point, Lr is the length from the reservoir to 

the gas injection point, Ar is the cross-sectional area of the tubing below the injection point, g is the gravity constant, ρo is the 

density of the oil, and, vo is the specific volume of the oil. 

 Gas lift well analysis with our GA Approach 

To comply with the technique described in the previous section, to detect and isolate faults that are really relevant for us in a 

real-world process of extraction of oil by gas injection, is necessary associate the faults in the equation where occurs. For this 

reason, f1, f2, f3, f4, f5  are added to the equations of the model, f1 which is the fault in the flow of gas injected into the annular, f2 

which is the fault in the mixed flow to the separator in the production line, f3 is the fault in the mixed fluid into the tubing, f4 is the 

fault in pressure at the bottom of the tubing, and f5 is the fault in the tubing at the gas injection point. Table 10 shows the new 

individual composed by GX with a length of 456 bits, and GF with a length of 120 bits. 
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Table 10 Representation of the structural model 

 G 

GX  [1,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0;0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,1,1,0,

0,0,0,0,0,0,0,0,0;0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,1,0;0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,0,0,0,0;0,

0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,1,0,1;0,1,1,1,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0;0,1,1,0,0,0,1,1,0,0,0,

0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0;0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0;0,1,

1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1;1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0;0,1,1,0,0,0,0,0,0,0,0,0,

1,0,0,0,0,0,0;0,1,1,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0;1,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,1,

0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0;0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0;0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,1;0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0] 

GF [0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;1,0,0,0,0;0,0,0,0,0;0,1,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0

,0,0;0,0,0,0,0;0,0,0,0,1;0,0,0,1,0;0,0,0,0,0;0,0,1,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0

,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0;0,0,0,0,0]; 

 

The results of GA1 are shown in Table 11 for a group of 30 runs. GA1 gets a population of sensitive MTES for each considered 

fault. This is a very important result of our proposal, since it allows a wide analysis of diagnosability of a system. Subsequently, the 

GA2 determines a fault signature matrix with the isolability property of the complete system, which is shown in Table 12, choosing 

a MTES for each fault (which cannot be obtained in [12]). 

Table 11 Population MTES achieved by AG1 for the five faults 

  Population of MTES 

MTES for    [1,2,3,4,5,7,8,9,11,14,18,19,20,21] 

[1,2,3,4,5,7,8,10,11,14,19,20,21,23] 

[3,4,5,7,8,9,11,14,16,17,18,19,20,21,22,24] 

[1,2,3,4,5,7,8,9,11,14,16,17,19,20,21,22,23,24] 

MTES for    [1,2,3,5,6,7,8,10,11,14,16,17,18,19,23,24] 

[1,2,3,5,6,7,8,9,10,11,14,16,17,18,19,20,23,24] 

[5,6,10,11, 14,23,24] 

MTES for    [1,2,3,5,7,8,9,10,11,14,15,16,17,18,19,20,21,22,23,24] 

[3,5,9,10,11,15,22,23] 

MTES for    [1,2,5,7,8,9,10,11,13,14,16,17,18,19,21,23,24] 

[1,2,3,5,7,9,10,11,13,14,16,17,18,19,20,21,23] 

MTES for    [1,2,5,7,8,9,11,12,14,16,17,21] 

[1,2,3,5,7,10,12,14,16,17,19,22,23] 

 

In general, we see how our approach is able to generate a wide-sensitive population of MTES, to a fault or combinations of 

them (GA1), enabling better analysis of the property of detectability. Subsequently, based on this population, it is able to perform 

a thorough analysis of the isolability property in the system. Specifically, it determines the optimal set of MTES to verify that 

property (GA2) in the system (when it is available).  

The techniques in the literature do not allow that [7, 8], particularly because obtain MTES is a combinatorial problem that our 

approach can solve very well (see GA1). This new population of MTES gives ample possibilities to build the fault signature matrix 

that reaches the isolability property in the system (see GA2), which does not happen in the others proposed in the literature, by the 

limited number of MTES that they obtained. 

Table 12 Population MTES achieved by AG1 for the five faults 

 N f1 f2 f3 f4 f5 

Arr1 0 1 0 0 0 0 

Arr2 0 0 1 0 0 0 

Arr3 0 0 0 1 0 0 

Arr4 0 0 0 0 1 0 

Arr5 0 0 0 0 0 1 
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V. CONCLUSIONS 

The capability to detect a fault on time in a system provides security, availability and reliability. The fault diagnosis 

mechanisms used in this paper is based on the principles of redundancy. This paper analyzed the technique of structural analysis, in 

order to propose a hybrid approach for the diagnosability and sensor placement problems for continuous processes. Our approach, 

obtains a structural model based on the dynamic process model based in GA.  

In this work, we use several GAs to solve our problem. A first GA has a population of bipartite graphs, the result is the set of 

MTES to detect all the faults in the system. The second GA allows reach the isolability property, selecting the minimum required 

population of MTES in the fault signature matrix. 

Our approach is an efficient tool to solve the combinatorial problem behind of the determination of MTESs, given a structural 

model as a bipartite graph. Additionally, it determines where new sensors must be placed, in order to reach the diagnosability 

property. That means, our approach carries out several studies in an automatic way: determination of the detectability and 

isolability of the faults of a system (diagnosability property). We have shown that GA's is a powerful tool for providing the answers 

to these questions. The execution time of the GAs can be controlled with their parameters, in order to obtain good solutions in a 

short computing time. 

Particularly, our GA1 studies the detectability property based on the structural analysis of the studied system. It is a hard 

optimization problem, because there are a lot of alternative paths in a system, which increase according to its number of variables 

and equations. These paths must be analyzed to determine the detectability property using the structural analysis approach. The 

GA2 studies the isolability property analyzing the fault signature matrix, in order to determine the MTES necessary to reach it. This 

process of selection of MTES is the optimization problem solves by GA2. If these properties are not reached, the diagnosability 

property is not reached. These different optimization problems are very well solved with ours GAs; additionally, theirs execution 

times can be controlled through theirs parameters (number of generations, numbers of individuals, etc.). 

Future work will combine this approach with a sensor placement approach, in order to reach the diagnosability in the cases 

where this property is not reached according to the approach proposed in this work. 
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