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Abstract 

 

In this work we propose to use an approach based on genetic algorithms to obtain 

analytical redundancy relations to study the diagnosability property on a given con-

tinuous system, and if this not fulfill, our approach allows studying the sensor place-

ment problem in order to fulfill it. The redundancy relations are based on the mini-

mal test equation support and in a structural analysis over a bipartite graph. The 

faults analysis is studied using a multi-objective fitness function in two genetic al-

gorithms which describe the different constraints to be covered in order to reach the 

diagnosability property on the system. Additionally, our approach allows studying 

the sensors placement problem on systems that do not fulfill the detectability or 

isolability properties, using another genetic algorithm.  
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1.  Introduction 
 

Basically, fault means any change in the behavior of any of the components of 

the system, so that it cannot longer fulfill the function for which it was designed 

[1]. A diagnosis system consists in the detection and isolation of a set of faults. A 

diagnostic utilizes observations, i.e. measurements from the system under studied, 

to determine if a specific behavioral mode is present in the system or not. 

In general, the diagnosis analysis has been studied in the literature from two 

points of view: the Fault Detection and Isolation (FDI) community, which bases the 

foundations of its solution approaches on engineering disciplines such as control 

theory and statistical decision making; and the Diagnosis community (DX), which 

bases the foundations of its solution approaches on the fields of computer science 

and artificial intelligence. Each community has developed its own terminology, 

tools, techniques, and approaches to solve diagnosis problems [2]. Our approach is 

a mixed between the two communities’ theories, using a mathematical model and 

intelligent techniques to solve the problems. 

Particularly, when a system has the diagnosability property it can detect and iso-

late all considered faults. It is a very important property that a given system should 

meet. The problem of the analysis of diagnosability in the area of continuous pro-

cesses is very hard, and there are not a lot of works [3, 4]. Another problem linked 

to this one is the sensor placement problem, which consists in to determine where 

place the sensors to reach the diagnosability property on the system. There are sev-

eral works to solve this problem [5, 6, 7], but there are not works which study both 

problems together. 

This paper addresses these problems together. We propose an approach for the 

analysis of diagnosability, based on a hybrid approach between structural models 

and intelligent techniques. For that, we identify the different structural models of 

diagnosis for a diagnosability analysis in the area of continuous processes. Addi-

tionally, we use a Genetic Algorithm (GA) to find the set of analytical redundancy 

relations. In this way, in this paper we propose an analysis of diagnosability based 

on the residual generation, applying GA to find a set of redundancy relations. In 

addition, we also propose a sensors placement for fulfill diagnosability using an 

evolutionary approach. In this case, different combinations of sensors placement 

are studied with the GA in order to find the most advantageous in terms of diagnos-

ability. 

This paper is organized in the following way. The next section presents some 

concepts about the fault diagnosis problem. Section three presents our hybrid ap-

proach of analysis of diagnosability and localization of sensors for continuous pro-

cesses. Finally, the last section presents some experiments and analyzes the results. 
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2.  Structural analysis based on residuals for diagnosability 
 

In a fault diagnosis system there are three key concepts: The fault detectability is 

the ability to detect certain faults. The diagnosis must be able to decide if there is a 

fault or not, as well as determine the instant of the apparition, from observations of 

the process. For that, it needs to compare the current behavior with the expected 

behavior of the system. The fault isolation is the ability to isolate a fault that has 

occurred, from the faults that are detectable. The fault identification studies the dif-

ferences between the normal behavior and the current behavior in the system, in 

order to determine the depth and magnitude of the faults. 

The fundamental concept in our work is the diagnosability. We start with its def-

inition and the definition of the others close concepts. 

 

Definition 1: Diagnosability. A system has this property if it can detect and isolate 

all considered faults [4, 8]. The faults that are isolate in a process are often referred 

as monitored faults, whereas the faults that not isolate are called non-monitored 

faults. 

 

A typical approach for diagnosability in dynamic systems is the model based di-

agnosis (MBD) [9]. In the MBD, the fundamental aspects are the definition of a 

process model, the comparison of the functioning of the process with the model, 

and the analysis of the behavior of them. A possible MBD technique is based on 

the generation of residue [9]. 

There are several technics for the generation of residuals, but all consist in meas-

urements. This paper is based on the analytical redundancy relations approach 

(ARR) [2]. It uses analytical mathematical models that characterize the system, to 

reproduce the behavior of the components of the system under studied. The ap-

proach for generating ARRs is a finite sequence of calculations that ends with the 

definitions of analytically redundant equations, which only contains measured or 

known variables, and is composed of a subset of equations from the model. A resi-

due is a signal ideally zero in the non-faulty case and non-zero else. 

The residue generation approaches have in common that the systems should be 

over-determined [2]. Several algorithms for calculating ARR from over-determined 

systems have been proposed [8, 10]. 

2.1. Structural analysis based on residuals for diagnosability. 

The structural analysis is a set of tools to explore the fundamental properties of a 

system using a structural model, either in the form of a bipartite graph or incidence 

matrix [3]. In our work, a structural analysis of the system is used for the faults 

detection and isolation, following the approaches used by the community of Fault 

Detection and Isolation (FDI) [1].  

Previous works has modeled the diagnosability based on FDI approaches for con-

tinuous processes [9, 11]. At the following we present a resume about the theoretical 

aspects used by our approach. 
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2.2 Structural model 

 

A structural model is a representation of a system in which only couplings be-

tween variables and equations are retained [12]. The structural model contains only 

the information of which variable belongs to which equation, regardless of the value 

of the parameters and the detailed form of the mathematical expression [8]. The 

structural model can be represented in different way: like bipartite graph, incidence 

matrix, etc. 

Consider a model M (X,Y,E,F), where E is a set of equations, E = {e1,..., em}, X is 

a set of unknown variables, X={x1,...,xn}, Y is a set of known variables, Y={y1,...,yp, 

u1,...,ug}, and F is a set of faults on the system, F={f1,...,fo}, all considered as known 

variables. Additionally, Z = X ∪Y  is a set of variables of the system. In the case 

where there are differential or integral variables in the model, it is necessary a fourth 

set, 𝐷 = {𝑥̇1, … , 𝑥̇𝑛}, which contains the derivatives of the variables of X.  

Example 1: consider 

𝑒1: 𝑥̇1 = −𝑥1 + 𝑢 + 𝑓1 

𝑒2: 𝑥̇2 = 𝑥1 − 2𝑥2 + 𝑥3 + 𝑓2 

𝑒3: 𝑥̇3 = 𝑥2 − 3𝑥3                                                                                                  (1)         

𝑒4: 𝑦1 = 𝑥2 + 𝑓3 

𝑒5: 𝑦2 = 𝑥2 + 𝑓4 

𝑒6: 𝑦3 = 𝑥3 + 𝑓5                                                  

 

  

Fig. 1. Bipartite Graphs of the example. 

This structure of the system is a representation as it is shown in Figure 1, with the 

variables involved in the different equations. This abstraction allows us to study the 

diagnosability properties, independently of the linear or nonlinear nature of the sys-

tems. However, it must be kept in mind that results obtained with such a structural 

representation are a best case scenario. Now, we present some definitions to use the 

structural analysis for diagnosis purposes. 

 

Definition 2: ARR for M (X,Y,E,F). Let M(X,Y,E,F) be a model, then an equation 

𝑟𝑖: ℎ(𝑦, 𝑦̇, 𝑦̈, … ) = 0  is an ARR for M(E,X,Z,F),if for each y consistent with 

M(E,X,Y,F), the equation is fulfilled [2]. 

 

These relationships can be derived only if the model has more equations than 

unknown variables, i.e. if the system is structurally over-determined (SO) [13]. 
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Example 2: According to example 1, an ARR would be: 

 

r1  =  y1 – y2 = f3 – f4                                                                                            (2) 

It is determines by the substitution of all unknown variables by known variables 

in a single analytical equation. For example, with the equations 4 and 5 we obtain 

r1. In this example, the residual r1 is influenced by the faults {f3, f4}. An ARR can 

be used to check if the observed variables z are consistent with M (E,X,Z,F), and 

can be used as the basis of a residual generator. 

Each ri should be evaluated in order to decide if it can be used or not. Finally, the 

evaluation of each detection test constitutes the fault signature vector (S = {S1,…, 

Sn}), that is a set of vectors in order to isolate the fault, where each Si is the set of 

residues that are activated by a failure. 

Given a set of vector (S = {S1,…, Sn}), and a set of faults F={f1, …, fo} the theo-

retical fault signature matrix can be defined codifying the effect of every fault in a 

residual [12]. 

 

 

Definition 3: The fault signature matrix of M.  It is a table obtained by the con-

catenation of all possible signatures of faults. Each row corresponds to an ARR and 

each column to a failure mode. A "1" in position (ij), indicates that the fault j is 

detected by the ARR i [1]. 

 

F (M) is the set of faults that affect either equation in M, then the diagnosability 

ability is achieved if the system complies with the following definitions. 

 

Definition 4: Detectability for M (E,X,Z,F). A fault Fo, where o = 1,…,n  which 

belongs to F(M) in the diagnosis system of M, is detectable if there is a residue 

different from zero in the residual generator, i.e  ri ≠ 0. 

 

Definition 5: Isolability for M (E,X,Y,F). When two signatures are identical, the 

related faults are considered non-decoupled, that mean they cannot be isolated [14]. 

Therefore, all signatures must be different from each other S(fo) ≠ S(ft),∀o,t ∈ 

{1,…,n}, o ≠ t. The fault isolation will consist in looking for the theoretical fault 

signature in the fault matrix that matches with the observed signature, to distinguish 

between all the possible faults. 

 

 

Example 3: Consider a diagnosis system containing a set of residuals {Arr1, Arr2, 

Arr3, Arr4, Arr5, Arr6}, constructed to detect and isolate five faults {f1, f2, f3, f4, f5}. The 

following fault signature matrix shows the sensitivity of ARRs to faults even in the 

system in normal behaviour (N). Arr1 is sensitive to faults f1, f2, and f5 and so on. 

Additionally S (f1) = {Arr1, Arr2, Arr4}, as is shown in Table 1. 
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Table 1.  Fault signature matrix 

 

Ar

r 

Signature Matrix 

N f1 f2 f3 f4 f5 

Ar

r1 
0 1 1 0 0 1 

Ar

r2 
0 1 1 0 1 0 

Ar

r3 
0 0 0 0 1 1 

Ar

r4 
0 1 0 1 0 1 

 

 

We adopt the design method of minimal structurally over determined (MSO) sets 

based on ARR like in [10], where provides an algorithm that identifies the MSO, 

enabling the construction of more efficient ARRs. Each ARR correspond to an 

MSO. 

 In [8] introduced an algorithm and the notion of TES (Test Equation Support) 

which are sets of equations which express redundancy specific to a set of considered 

faults. Each TES corresponds to a set of faults which influence the residual genera-

tor constructed from the TES. The corresponding quantities expressing minimal re-

dundancies are denoted minimal TES (MTES), and the set of MTES can be seen as 

a subset of the set of MSOs for the set of faults of interest of the system. 

Since there is a one-to-one correspondence between MTESs and ARR, we will 

only focus on MTES’s in this paper, to generate residues of a process based on the 

FDI approach, in order to study the diagnosability property in a system [11]. With 

that, we will be able build a signature matrix. 

Many practical problems are modeled like the interaction between two different 

types of objects, i.e. between equations and variables, and can be expressed like a 

bipartite graph problem. For that we give the following definitions. 

 

Definition 6: Bipartite Graph. is an ordered triple G=(Z,E,Γ) such that Z and E 

are sets of vertices,  Z ∩ E = 0, Z = Y ∪X ∪F, and Γ are the set of arcs in G. 

 

Definition 7: Matching. is a set of edges from graph G, where each arc has a node 

from Z an E. 

 

These definitions will help us solve the problem defined in the previous section 

of search of MTES's, and thus ARR. All the definitions made in this part will be 

used to apply intelligent techniques in the optimizing of search of paths in a bipartite 

graph, unlike [4, 8]. 
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3. Our algorithm of diagnosability 
 

In a previous work we implement GAs for the redundancy analysis [11]. This 

paper attempts to incorporate another GA to reach the full criteria of diagnosability 

when it is not the case on the system [11].  For that, our new GA solves the sensors 

allocation problem on the system. Previous GA-based approaches for the sensors 

placement problem [5, 6, 7] has been proposed. But our algorithm solves both prob-

lems together, the analyses of the diagnosability property and then, if it is not fulfill, 

it solves the sensors placement problem to reach it.  

 

3.1 General Algorithm 

 

In order to fulfill this criterion we developed three algorithms which during their 

executions invoke several GAs. The first algorithm (called the MAIN) simply calls 

the others two algorithms (Detection and Placement). The aim of the Detection al-

gorithm is to check whether all the faults in study are detected, (see lines 1-2, of the 

main algorithm). In the line 2, if the detectability property is not satisfied (MTES 

(f) = 0 ∀ f =1, #faults), or the isolability property is not satisfied (ind_opt ≠ 0), where 

ind_opt ≠ 0 is a control variable of the second algorithm), the third algorithm 

(Placement) is invoked in order to assign new sensors in unknown variables to in-

crease system redundancy. 

 

Algorithm 1 Main(G) 

1 MTES=Detection(G);                                 

% It determines detectability and isolability of  

% the system 

2      If MTES(f) = 0 ∀ f = 1,#faults or ind_opt ≠ 0 

3         Placement (G);       

% It tries to introduce the diagnosability  % property in  a system. 

         % to placing sensors in unknown variables 

4      end 

5 end 

 

The second algorithm (called Detection) searches an alternative matching in the 

model (a matching represent a redundancy), based on the theory of MTES. This 

algorithm has been developed in [11]. The algorithm finds the possible connections 

between variables and equations in order to eliminate the unobserved variables to 

fulfill the specific requirements of an ARR. Particularly; it will find populations of 

MTES invoking the first GA, called GA1. This algorithm also determines the de-

tectability and the isolability (for the last case uses a second GA, called GA2, which 

uses the best MTES generated by GA1 to build the fault signature matrix).  

In the line 2 of the second algorithm is called GA1 to determine all the possible 

MTES for each fault (see line1), the lines 4 to 6 guarantee that at least one MTES 

has been defined for each fault. The line 6 calls det, which determines the set of  
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faults cover by each MTES and includes them in the set S. With this information, 

the algorithm verifies in line 8 if all the faults are covered, using the procedure 

verify(S). In this way, it determines the detectability of the model (all the faults can 

be detected). Then, in line 9 it constructs the fault signature matrix (for that, it calls 

the procedure iso). In order to verify the isolability of the system, the procedure 

calls a second GA (line 10), called GA2, with the fault signature matrix as parame-

ter. If the system is isolable, the best individual of GA2 fulfills the isolability pro-

priety (the system has the diagnosability property). If this property cannot be 

reached, then it defines ind_opt ≠ 0 in order to call in the main algorithm the third 

algorithm, called Placement, which is used when there are faults not detected or 

isolated. 

 

Algorithm 2  Detection (G) 

1 for k = 1, k = #faults | f ∈ F  

2      MTES (fk) = GA1 (fk, G);  

     % It determines the MTES’s for each fault 

3 end  

4 if at least ∃ MTES (f) ≠ 0 | ∀ f ∈ F  

5      for i = 1, i = # faults | f ∈ F;  

6          S(i) = det (i, MTES (fi));  

% It determines the set of faults cover by                                % the MTES’s 

of each fault 

7 end 
8   if verify (S) = True 

   % It determines the detectability of the model 

9       Sm = iso(fi, S);  

      % It constructs the fault signature matrix  

10       ind_opt = GA2(Sm); 

  % It determines the isolability of the faults   % (ind_opt = 0) 

11   end  

12 end 
 

The placement algorithm uses another GA, called GA3, to find a set of possible 

sensors placement (each individual is a possible sensor placement) based on the 

failures to detect (unknown variable) and the cost of the sensors, in order to choose 

the lowest value to save money at the time of implantation (see line 5). The new 

bipartite graph proposed by GA3, that represents the structural model of the system, 

is G´(see lines 1 and 5). If GA3 converges due to the number of generation, then 

means that there are not individuals (G´) that reach the diagnosilability property 

(see next section where is explained GA3), that is, this property cannot be reached 

by the real system (see line 3). Else, the individual G’ is the new bipartite graph of 

the system, and the placement of the new sensors has a cost according to the fitness 

function of this individual (line 5). 
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Algorithm 3 Placement(G) 

% propose some sensors for unknown variables 

1 cost = GA3 (G,G´, cost)  

2 If GA3 has converged due to Nb_generation then 

3      print “This system has not the diagnosability property”                                                                                                                  

4 else 
5     print “The cost of the sensors is” cost, “and the configuration is” G´ 

6 End 
 

3.2 The GAs in our diagnosability analysis approach 

GA is one of the most powerful heuristics tools for solving optimization prob-

lems, based on natural selection and the process of biological evolution [5]. A GA 

repeatedly modifies a population of individual solutions. At each step, the GA se-

lects individuals randomly from the current population to be parents, and uses them 

to produce the descent for the next generation. Over successive generations, the 

population "evolves" towards an optimal solution. GAs can be applied to solve a 

variety of optimization problems that are not well suited for standard optimization 

algorithms, including problems in which the objective function is discontinuous, 

non-differentiable, stochastic, or highly nonlinear. In the next subsection we are 

going to describe our GAs. 

 

3.2.1 GA1 

Given a model M, its diagnosability property can be analyzed using a structural 

model of the system as bipartite graph (G), and is represented by the union of all 

the faults and all the unknown variables G = GX ⋃ GF. From GF, the fault fk is 

extracted, GA1 will generate a population of individuals with random combinations 

of active arcs in the model (an active arc is when the relation between this equation 

and the variable is selected to compose the possible MTES defined by this individ-

ual for this fault fk, see below for more details). That is, each individual is going to 

define a possible MTES. The objective function measures if (possible MTES) 

reaches the detectability proprieties. The best individuals will be the input of the 

GA2, in order to study the isolability property. 

An individual in GA1 is represented by a bits-string, where each bit is used to 

represent the arcs connecting the vertices in the bipartite graph, aij, a is the arc be-

tween vertices, 𝑖 (the unknown variables x and f in the bipartite graph) and 𝑗 (the 

equation e in the bipartite graph). If an arc is selected (active arc) aij = 1, else aij = 
0 (it represents that this arc does not exist in the bipartite graph or is not an active 

arc). For our example in the section 2, an individual is shown in Figure 2. 

 

 

Fig. 2. Bits string representation of an the individual in GA1 
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Hence, for every possible MTES for this fault f there is a unique bits-string se-

quence. The MTES (individual) is evaluated using fitness function which includes 

all the important design criteria of a MTES. The general algorithm of GA1is: 

 

Genetic Algorithm 1 fk      

1 begin GA1                           

2      pop=generate_pop(G);       

     % Generate initial population 

3      Evaluation(FF1, pop);                       

% compute the fitness function to each  

%  individual 

4      while not FF1 = 0 or Nb_generation do 

5           begin   
          % reproductive cycle begins 

6                Reproduction (pop) 

7                Evaluation (FF1, pop) 

8                selection (pop) 

9           end 

10      end 

11 end 
 

The details of this algorithm are in [11]. This evolutionary process is stopped 

when is reached a number of generations, or when an individual reaches a value of 

FF1 = 0 (this MTES represents a residue of the fault fk). 

FF1 is a multi-objective function in order to find the MTES for the fault f. A 

weighted sum approach has been used to aggregate all the optimization criteria ac-

cording to the equation (4), gives a numerical value of the quality of each possible 

solution (MTES) of the optimization problem. 

 

𝐹𝐹1 = 𝑀𝑖𝑛 {∑ 𝑤𝑛𝑃𝑛

3

𝑛=1

}                                                                                                     (3) 

Where, wn is the corresponding weight and Pn is the criterion to be optimized. 

The different criteria to be optimized are in Table 2. 

 

Table 2. Optimization criteria 

 

Objective Optimization crite-

ria 

P1 Number of Fail-

ures 

P2 Studied Fault 

P3 System Redun-

dancy  
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P1 ensures that only is studied one fault fk at a given time: It is described by the 

sum of the active arcs of the faults that are in the individual, different of the failure 

to study. If this sum is different from zero is penalized the equation 3 with a weight 

w1. 

 

𝑃1 = ∑ ∑ 𝑎𝑘𝑗

𝑚

𝑗=1𝑓𝑖∈𝐹
𝑓𝑖≠𝑓𝑘

                                                                                                             (4) 

                                                   
Where: 

  akj are the arcs between the faults and the equations  

  fk Select fault 

 m Number of equation 

 

P2 ensures that the fault studied fk is considered by the individual: it will make a 

sum of the active arcs from the studied fault presents in the individual. Normally, 

only one active arc from the studied fault must exist to guarantee a TES, otherwise 

this value is different from zero and the individual must be penalized by a weig.t 

w2. 

 

𝑃2 = |∑ 𝑎𝑓𝑘𝑗 − 1

𝑚

𝑗=1

|                                                                                                           (5) 

where 

    afkj are the arcs from the studied fault 

 

P3 verifies that the degree of redundancy of the model is equal to one, that is, 

there is one equation more than unknown variables. For that, it checks the cardinal-

ity of the active arcs for the case of the variables and equations, and this difference 

must be one to ensure the propriety of MSO and MTES. This function must also 

shed as a result the value of zero, otherwise the individual must penalized by weight 

w3. 

 

𝑃3 = |(𝐶𝑎𝑟𝑑(𝐽∗) − 𝐶𝑎𝑟𝑑(𝐼∗)) − 1|𝐼∗={𝑖|∃𝑎𝑖𝑗=1 ∀ 𝑗=1, 𝑚}

𝐽∗={𝑗|∃𝑎𝑖𝑗=1 ∀ 𝑖=1, 𝑛}

                                       (6) 

where 

    I* are the active arcs in unknowns variables 

        J* are the active arcs in equations 

 

Having described the design criteria we formalize our fitness function as: 

 

FF1 = w1P1+ w2P2 + w3P3                                                                                            (7) 

 

In this fitness function the importance of each criterion is defined by the weight  
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𝑤𝑛. The values are determined according to the design requirements and experi-

mentation (see table 3). 

 

Table 3. Weighting coefficients 

Ob-

jec-

tive 

Optimization 

criteria 

Optimized 

Value 

w1 Number of 

Failures 

100 

w2 Failure in 

study 

1000 

w3 System Redun-

dancy 

10000 

 

Particularly, in GA1 three elite individuals (individuals with the best fitness val-

ues) of each generation are chosen in order to ensure that the current best individu-

als always survived in the next generation.  

 

Theorem 1: GA1 ensures that if there is an individual with FF1 = 0 then it is a 

MTES of fk , and the set of individuals with FF1 = 0 will be the set of MTES of the 

studied fault fk. 

 

Proof of theorem 1; C represents one individual in G with FF1 = 0, that is a MTES 

sensitive a fi. 

 

3.2.2 GA2 

The resulting population from GA1 involves perhaps a large number of MTES. 

As there is a one to one relationship among the ARRs and MTESs, and if the de-

tectability property is reached in the system, the detection algorithm builds the sig-

nature matrix and calls GA2, in order to determine a set of ARRs that guaranteeing 

the isolability property of the system, if there exist. 

The individual in the GA2 is also represented by a bits string. In this case, each 

bit represents each MTES (ARR) found by GA1 for all the faults, GA2 randomly 

defines individuals to be subsequently evaluated by the objective function, where a 

bit with value of "1 " means that a MTES is chosen in the fault signature matrix, 

otherwise its value is "0". GA2 studies the sensitivity of the faults for the MTES's 

selected in a given individual, and observes if in this individual the isolability prop-

erty is reached. 

The objective function of GA2 ensures that its value is zero because the individ-

ual has isolability property. Otherwise, this individual cannot isolate the faults (iso-

lability property). There are two conditions in the objective function. 

 

𝐹𝐹2 = ∑ ∑ 𝑂𝑖𝑗
1

#𝑓

𝑘=𝑖+1

#𝑓

𝑖=1

+ ∑ 𝑂𝑖
2

#𝑓

𝑖=1

                                                                                         (8) 



An approach for diagnosability analysis and sensor placement                       2137 

 

 

Where 𝑂𝑖𝑗
1  y 𝑂𝑖

2 

𝑂𝑖𝑘
1 = {

0 if ∀𝑗 = 1, #𝐴𝑅𝑅𝑠  ∃ 𝑉𝑖𝑗 ≠ 𝑉𝑘𝑗

10 𝑒𝑙𝑠𝑒
                                                                (9) 

 

𝑂𝑖
2 = {

0 ∑ 𝑉𝑖𝑘 ≠ ∅

# 𝐴𝑅𝑅𝑠

𝑗=1

10000 𝑒𝑙𝑠𝑒

                                                                                   (10) 

 

The first condition O1ensures that the fault signature vector fi in the matrix con-

structed by the individual is different than the fault signature vector fj, otherwise it 

penalizes with a low value, interpreting than fi cannot be isolated of fj. O
2 condition 

ensures that the sum of each vector in the fault signature matrix is non-zero, other-

wise it cannot distinguish the behavior of a system with fault of a normal behavior, 

penalizing the individual with a high value. 

 

Genetic Algorithm 2 (Sm)  

1 begin GA2                           

2     pop=generate_pop (Sm);     

% Generate initial population chosen some   % ARR from (Sm)                 

3     Evaluation (FF2, pop);   

% compute the fitness function to each  

% individual 

4     while not FF2  = 0 or Nb_generation do 

5           begin   
          % reproductive cycle begins 

6                Reproduction(pop) 

7                Evaluation (FF2, pop) 

8                selection (pop) 

9           end 

10      end 

11 end 
 

This GA2 generates the initial individuals using Sm, and the rest of the procedure 

is a classical GA. In general, each individual selects a set of MTES (e.g. MTES1, 

MTES2, MTES4 and MTES6), and the GA2 will check the signatures of each fault 

in the set of MTES selected using the objective function FF2.  

 

Theorem 2: GA2 ensures that if there is an individual with FF2 = 0, it will get a 

set of MTES which accomplish with the isolability propriety. 

 

Proof of Theorem 2: For a full diagnosability, the value of FF2 must be equal to 

0, all values more than 0 means that at least one fault is not isolable from other 

faults, and all the values more than 10000 means that there is a signature equal to 

the model in normal behavior, making not detectable the fault. 
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3.2.3 GA3 

In the case that the system does not fulfill with the diagnosability property (de-

tectability or isolability properties), GA3 proposes a new bipartite graph G´. For 

that, it randomly selects unknown variables and assumes them as known variables 

of the system. These unknowns variables suppose as known variable, involve place 

sensors in the system to make them known (can be measured). The graphs G´ are 

randomly generated (each G´ is an individual, see line 3, and the random_genera-

tion(G) algorithm modifies the graph G including new arcs).  

GA2 checks if with that new sensors configuration proposed by each individual 

then it meets the detectability and isolability properties (for that, GA3 call Detection 

(G´) algorithm, see line 6). Otherwise, it regenerates new G´ during a given number 

of generations. If the GA3 achieve several individuals with this property, then 

choose the individual with the lowest cost of implementation of its sensors config-

uration (see line 16), which is determined based on the costs of implantation of the 

sensors defined in each individual (see line 14). 

GA3 is a new algorithm for the sensor placement problem, and its result will be 

the individual with the lowest cost to reach the diagnosability property. 

 

Genetic Algorithm 3 (G, G´, cost)    

1 begin AG3    

2 repeat until  size of the population                 

3    G´ = random_generation (G) 

        % propose some sensors for unknown  

  % variables 

4 pob = pob + G´ 

5 end 

6 while not (Detect (G’i ) ≠ true  G’i ∈ pob or Nb_generation do 

7 begin                               
     % reproductive cycle begins 

8          Reproduction (pob) 

9 end 

10 if ∃ Detec(G´i)= true  G’i ∈ pob then 

11   begin 

12     for  G’i ∈ pob where Detect (G’i ) = true 

13        begin 

14         𝑐𝑜𝑠𝑡𝑖 = ∑ (𝑖𝑛𝑑. 𝐶𝑜𝑠𝑡) ∗ (𝑖𝑛𝑑. 𝑣𝑎𝑙𝑢𝑒)#𝑣𝑑
𝑗   % for each sensor there is a 

cost. Each  

 % value of 1 on the gen of an individual  

  % means a sensor  

15        end 
16        cost = mini (costi);   

 % select the cheaper new configuration of  

 % sensors 

17       G´ = G’i  where mini (costi); 

18    end 
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19    else 
20    cost = 0 

21 end 
 

The individuals for GA3 are structurally similar to the individuals of GA1. The 

algorithm that randomly generates the population of individuals G´ carries out a 

variation of G. 

 

Algorithm random_generation(G) 

1 for k # VD 

% it will place a sensor in a possible un 

% known variable  

% with a sensor for each one that has a  

% cost 

2      Modify (G)  

 % according to the new known variables  

3 end 

 

Theorem 2. GA3 solves the problem of sensor location by randomly proposing a 

modification of G (G´), which represents a new structural model of the system, in 

order to fulfill the property of diagnosability.  

 

Proof of Theorem 3; GA3 solves the sensors placement problem for a system, with 

a population of new G´, in order to reach the diagnosticability propriety. 

 

FF3 = mini(costi)                                                                                                          (11) 

 

GA3 considers the cost of the new sensors configuration (see equation 11). Thus, 

GA3 selects the individual with the minimum cost (see line 16) between the individ-

uals with the diagnosability property (see line 10). 

 

4 Experiment 
 

In this section we are going to prove our hybrid approach to solve the diagnosability 

analysis and the sensors placement problems.  

The Main algorithm invokes the Detection algorithm for the location of a popula-

tion of sensitive MTES for each fault in the system, in order to reach its detectability 

property. In addition, it constructs the failure signature matrix with the minimum set 

of MTES to meet the isolability property in the system. The Detection algorithm in-

vokes to GA1 and GA2 respectively, to perform this task. Finally, if these properties 

are not reached, the Placement algorithm is invoked to find an assignment of new 

sensors in the system to reach the diagnosability property. 

For the experiment, we will evaluate the example that we have been using through 

this paper and structurally defined in section 2. 
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4.2 Detection Problem 

The initial population of GA1 is composed by fifty individuals. These individuals 

are sub-models of the main structural model, which is sufficient to fulfill the initial 

requirements for MTES. These individuals are evaluated using the fitness function 

FF1, and in each generation the two best individuals are selected as parents, to ex-

ecute the crossover operator with probability 0.7, and the mutation operator with 

probability 0.9. The stopping criterion is: if the individual with the best fitness value 

does not improve in 50 iterations AG1 stops. Figure 3 is a representation of an in-

dividual G = GX ⋃ GF. 

 

 
 

Fig. 3. A possible individual of GA1   

 

Graphically, the figure 3 shows an individual (C1) in which the objective function 

FF1 can be evaluated. 

 

C1;010000000010001000100000000000000000000000000000 

 

This individual is defined by the red lines shown in the figure 3, (they are the 

active arcs between the vertices of equations and the vertices of the variables). In 

the string of C1 is represented by a value “1”. If we evaluate equations 4-6. 

 

𝑃1 = ∑ ∑ 𝑎𝑘𝑗

6

𝑗=1

= 0
𝑓𝑖∈𝐹
𝑓𝑖≠𝑓1

                                                                                                   (12) 

 

P1 means that there is only one active arc from the set of vertices belong to F. 

 

𝑃2 = |∑ 1 − 1

6

𝑗=1

| = 0                                                                                                      (13) 

 

P2 ensures that there is only one active arc from the studied fault. System redun-

dancy is evaluated by P3, where in the individual C1 there are 4 equations and 3 

variables with active arcs. 

 

P3 = |( Card(3) – Card(4)) – 1| = 0                                                                      (14) 

 

FF1=100*(0)+1000*(0)+10000*(0)=0                                                               (15) 
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This proof theorem 1, that C1 represents one individual in G with FF1 = 0, and it 

is a MTES sensitive to f1. 

 

4.3 Isolation 

Continuing with the same example, we will evaluate the fault signature matrix 

showed in the table 1, to proof the theorem 2 (isolability of the model).  

GA2 starts with a population of 20 individuals evaluated by the objective function 

FF2. Then, like GA1, the best individuals are chosen as parents in each generation 

to apply the crossover and mutation operators. The process to generate new indi-

viduals is performed carefully, because each individual must contain valid arcs 

among the possible arcs of the original bipartite graph. The stop criterion in this 

case is when the best individual does not improve after 20 iterations.  

As we said before, an individual in GA2 is represented by a bit string. For this 

experiment we will evaluate two individuals Ai, where 1 in an individual means that 

this ARR in the signature matrix is chosen. 

 

A1: 011100000 

A2: 001011010 

 

For example, in the case of A1 are selected Arr2, Arr3, Arr4. In Table 4 we will 

show the fitness function of each individual for the first condition. It will compare 

the signature of each fault. 

The best result en O1 is “0” that is when an individual has the isolability property. 

In this case none of the individual fulfill with this proprieties because the signature 

of f1 and f2 are similar. In Table 5 is studied the second condition. 

 

Table 4. Evaluation of O1of the individuals chosen. 

 

O
1 

Evaluation of the fitness function 

f1

f2 

f1

f3 

f1

f4 

f1

f5 

f2

f3 

f2

f4 

f2

f5 

f3

f4 

f3

f5 

f4

f5 

A

1 

1

0 

1

0 
0 0 0 0 0 0 0 

1

0 

A

2 

1

0 
0 0 0 0 0 0 0 0 0 

 

Table 5. Evaluation of O2 of the individuals chosen 

 

O2 

Evaluation of the fitness func-

tion 

f1 f2 f3 f4 f5 

1 
A

1 
0 0 0 0 0 

2 
A

2 

100

00 

100

00 
0 0 0 
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We can see that the sum of the values for A1 is equal to 0, means that those indi-

vidual are different of the model of the normal behavior. With respect to A2, it has 

the same model of the normal behavior, which means the value is different to zero. 

Below is the result of the evaluation of the fitness function of GA2. 

 

𝐹𝐹2(𝐴1) = 30 + 0 = 30 

𝐹𝐹2(𝐴2) = 10 + 20000 = 10010 
 

According to theorem 2, for a full diagnosability, the value of FF2 must be equal 

to 0. All values more than 0 means that at least one fault is not isolable from other 

faults, and all the values more than 10000 means that there is a signature equal a 

the model in normal behavior, making no detectable the fault. Table 6 shows the 

final signature matrix proposed by GA2. 

 

Table 6. Result of GA2 

Arr 
Signature Matrix  

N f1 f2 f3 f4 f5 

Arr1 0 1 1 0 0 1 

Arr2 0 1 1 0 1 0 

Arr3 0 0 0 0 1 1 

Arr4 0 0 0 1 0 1 

 

4.4 Sensor placement problem 

 

In the case that the model does not fulfill with the diagnosability, the main algo-

rithm calls the placement algorithm to solve the placement problem. This algorithm 

randomly generates new G´ to search a sensors configuration which will reach the 

diagnosability propriety. Placement algorithm calls GA3 algorithm in order to eval-

uate G´. 

As we said before, an individual in GA3 is like an individual in GA1. For this 

experiment, we will evaluate three individuals which are modification of the origi-

nal G. For example, in Figure 4 is shown a possible G´ placing a sensor in x1, adding 

a new equation  e7: y4 = x1. 

 

 

Fig. 4. A possible G´ placing a sensor in x1  

For this individual from GA3, we define several individuals (a population) for GA1. 

For example, C1'  is one of them (it is composed by the active arcs of the Figure 4, 

red lines). 
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In Table 7, it is shown the evaluation of C1' in GA1, and the signature matrix 

placing a sensor in x1 is shown in the Table 8, as the result of GA2, with the specific 

ARRs: 

 

 

Table 7. Evaluation of G´ in GA1  

 

Popula-

tions  

Evaluation of the fitness func-

tion 

P1 P2 P3 P4 
Value of 

FF1 

1 C1' 0 0 0 0 0 

 

Table 8.  Result of GA3 Placing a new sensor x1 

 

Arr 

Signature Matrix Placing a new sen-

sor x1 

N f1 f2 f3 f4 f5 

Arr1 0 1 1 0 0 1 

Arr2 0 1 1 0 1 0 

Arr3 0 0 0 0 1 1 

Arr4 0 0 0 1 0 1 

 

 

GA3 solves the sensors placement problem for a system, with a population of 

new G´, in order to reach the diagnosability propriety.  

Figure 5 shows another possible individual of GA3 (it is called G2´) placing a 

sensor in x3 (e7: y4 = x3). The signature matrix placing a sensor in x3 is shown in the 

Table 9. 

 

 
 

Fig. 5. Another possible individual of GA3, called G2´ 

 

Similarly, we need to call GA1 and GA2. Particularly, evaluating the best indi-

vidual we can see that does not fully comply with the isolability property because 

f1 and f2 cannot be isolated from each other, which is determined by the evaluation 

of GA2 in Table 10. 

In this way, GA3 can discriminate among good individuals or not, in order to 

propose a new configuration of sensors to reach the diagnosability property on the 

system. 
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Table 9. Result of GA3 placing a sensor in x3 

 

Arr 

Signature Matrix Placing a new sen-

sor x3 

N f1 f2 f3 f4 f5 

Arr1 0 1 1 0 0 0 

Arr2 0 0 0 1 0 1 

Arr3 0 0 0 1 1 1 

Arr4 0 0 0 0 1 1 

 

5 Conclusions 
 

The capability to detect a fault on time in a system provides security, availability 

and reliability. The fault diagnosis mechanisms used in this paper is based on the 

principles of redundancy. This paper analyzed the technique of structural analysis, 

in order to propose a hybrid approach for the diagnosability and sensor placement 

problems for continuous processes. Our hybrid approach is based on a structural 

model and a GA. 

Specifically, we use several GAs to solve our problem. A first GA has a popula-

tion of bipartite graphs, the result is the set of MTES to detect all the faults in the 

system. The second GA allows reach the isolability property, selecting the mini-

mum number of MTES in the fault signature matrix. The last one solves the sensors 

placement problem. 

Our approach is an efficient tool to solve the combinatorial problem behind of the 

determination of MTESs, given a structural model as a bipartite graph. Additionally, 

it determines where new sensors must be placed (again, it is a combinatorial prob-

lem), in order to reach the diagnosability property. That means, our approach carries 

out several studies in an automatic way: determination of the detectability and iso-

lability of the faults of a system (diagnosability property), and according to the re-

sults, assignment of sensors to reach this property. We have shown that GA's is a 

powerful tool for providing the answers to these questions. The execution time of 

the GAs can be controlled with their parameters, in order to obtain good solutions 

in a short computing time. 

Particularly, our GA1 studies the detectability property based on the structural 

analysis of the studied system. It is a hard optimization problem, because there are 

a lot of alternative paths in a system, which increase according to its number of 

variables and equations. These paths must be evaluated to determine the detectabil-

ity property using our FF1 (it carries out a structural analysis in each path). The 

GA2 studies the isolability property analyzing the fault signature matrix, in order 

to determine the MTES necessary to reach it. This process of selection of MTES is 

another optimization problem solves by GA2. If these properties are not reached, 

the diagnosability property is not reached. In order to reach this property, GA3 stud-

ies the problem of placement of sensors. Again, this is an optimization problem 

because the number and combination of possible new sensors depend on the unob-

served variables. These different optimization problems are very well solved  
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with ours GAs; additionally, theirs execution times can be controlled through theirs 

parameters (number of generations, numbers of individuals, etc.). 

A future work is implement our approach in real continuous processes, like a 

production system of extraction of oil. 

 

Acknowledgments. This work has been supported by Postgraduate Cooperation 

Program (PCP) between Venezuela and France entitled "Supervision and mainte-

nance task in a shared organizational environment", between the University of Los 

Andes, Venezuela with the cooperation of LAAS- CNRS, University of Toulouse,  

France. Dr Aguilar has been partially supported by the Prometeo Project of the 

Ministry of Higher Education, Science, Technology and Innovation of the Republic 

of Ecuador. 

 

References 
 

[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and fault 

tolerant control. Berlin: Springer, 2003.  

http://dx.doi.org/10.1007/978-3-662-05344-7  

 

[2] J. Armengol, A. Bregon, T. Escobet, E. Gelso, M. Krysander, M. Nyberg, 

X. Olive, B. Pulido, and L. Travé-Massuyès, Minimal structurally overdetermined 

sets for residual  generation, A comparison of alternative approaches, In Proceed-

ings of the 7th IFAC Symposium on Fault Detection, Supervision and Safety of 

Technical Processes, pages 1480–1485, 2009. 

http://dx.doi.org/10.3182/20090630-4-es-2003.00241  

 

[3] L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based 

on component supported analytical redundancy. IEEE Trans. on Systems, Man, and 

Cybernetics – Part A: Systems and Humans, 36(6): pages 1146–1160, 2006. 

http://dx.doi.org/10.1109/tsmca.2006.878984  

 

[4] C. Svard and M. Nyberg. Residual generators for fault diagnosis using com-

putation sequences with mixed causality applied to automotive systems, IEEE 

Transactions on Systems, Man, and Cybernetics – Part A, 40(6): pages 1310–1328, 

2010. http://dx.doi.org/10.1109/tsmca.2010.2049993  

 

[5] S. Sen, S. Narasimhan, K. Deb. Sensor network design of linear processes 

using genetic algorithms, Comput. Chem. Eng. 22 (3), pp. 385–390, 1998. 

http://dx.doi.org/10.1016/s0098-1354(97)00242-1   

 

[6] S. Jin, M. Zhou, A.S. Wu. Sensor network optimization using a genetic al-

gorithm, in: 7th World Multiconference on Systemics, Cybernetics, 2003.  

 

[7] A. Bhondekar, R. Vig, M. LalSingla, C. Ghanshyam, P. Kapur. Genetic Al-

gorithm Based Node Placement Methodology for Wireless Sensor Networks, Pro- 

http://dx.doi.org/10.1007/978-3-662-05344-7
http://dx.doi.org/10.3182/20090630-4-es-2003.00241
http://dx.doi.org/10.1109/tsmca.2006.878984
http://dx.doi.org/10.1109/tsmca.2010.2049993
http://dx.doi.org/10.1016/s0098-1354%2897%2900242-1


2146                                                                                                Rubén Leal et al. 

 

 

ceedings of the International Multi Conference of Engineers and Computer Scien-

tists 2009 Vol I IMECS, 2009. 

 

[8] M. Krysander, J. Åslund, and E. Frisk, A structural algorithm for finding 

testable sub-models and multiple fault isolability analysis, In Proceedings of the 

21st International Workshop on Principles of Diagnosis (DX-10), 2010. 

 

[9] L. Travé-Massuyès, T. Escobet, and R. Milne. Model-based diagnosability 

and sensor placement. Application to a frame 6 gas turbine subsystem. In DX01 

twelfth international workshop on principles of diagnosis, pages 205–212, 2001. 

 

[10] M. Krysander, J. Åslund, and M. Nyberg, An efficient algorithm for finding 

minimal over-constrained subsystems for model-based diagnosis, IEEE Transac-

tions on Systems, Man, and Cybernetics – Part A: Systems and Humans, 38(1), 

pages 197-206, 2008. http://dx.doi.org/10.1109/tsmca.2007.909555  

 

[11] R. Leal, J. Aguilar, L. Trave-Massuyes, A. Ríos, E. Camargo."A Genetic 

Algorithm Approach for Diagnosability Analysis", International Journal of Engi-

neering Development and Research, Vol.2, No. 4, pp. 3786-3799, 2014. 

 

[12] M. Krysander, M. Nyberg. Structural analysis utilizing MSS sets with ap-

plication to a paper plant. Proceedings of the Thirteenth International Workshop on 

Principles of Diagnosis, 2002. 

 

[13] M. Nyberg. Automatic design of diagnosis systems with application to an 

automotive engine. Proceedings Control Engineering Practice, 7(8): pages 993–

1005, 1999. http://dx.doi.org/10.1016/s0967-0661(99)00054-4  

 

[14] V. Puig, J. Quevedo, T. Escobet, B. Pulido. On the integration of detection 

and isolation in model based fault diagnosis. Proceeding In DX04, 15th Interna-

tional Workshop on Principles of Diagnosis, 2004. 

 

 

Received: February 25, 2015; Published: March 20, 2015 

 

 

 

 

 

 

 

http://dx.doi.org/10.1109/tsmca.2007.909555
http://dx.doi.org/10.1016/s0967-0661%2899%2900054-4

