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aLAAS-CNRS, Université de Toulouse, CNRS, UPS, 7 avenue du Colonel Roche, 31400 Toulouse, France
email: cjaubert,louise@laas.fr

bNormandie Univ, UNIHAVRE, LMAH, FR-CNRS-3335, ISCN, 76600 Le Havre, France
email: verdiern@univ-lehavre.fr †

Identifiability guarantees that the mathematical model of a dynamic system is well-defined in the sense that it maps unam-
biguously its parameters to the output trajectories. This paper casts identifiability in a set-membership (SM) framework
and relates recently introduced properties, namely SM-identifiability, µ-SM- identifiability, and ε-SM-identifiability, to the
properties of parameter estimation problems. Soundness and ε-consistency are proposed to characterize these problems
and the solution returned by the algorithm used to solve them. This paper also contributes by carefully motivating and
comparing SM-identifiability, µ-SM- identifiability and ε-SM-identifiability to related properties found in the literature and
by providing a method based on Differential Algebra to check these properties.
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1. Introduction

Identifiability is an important concept that decides to what
extent the parameter values of a mathematical model can
be uniquely inferred from input-output measurements,
assuming that the model has the same structure as the
system (Nelles, 2002).

Mathematically, this means that there exists an
unambiguous mapping between the model parameters
and the output trajectories. Identifiability is hence a
pre-condition for safely running a parameter estimation
algorithm and obtaining reliable results.

In the last years, there has been quite a lot
of emphasis on bounded-error models as opposed to
stochastic models for achieving several tasks, e.g. fault
diagnosis and fault tolerant control (Puig, 2010; Seybold
et al., 2015), robut robot localization (Kieffer et al.,
2000), reachability analysis (Auer et al., 2013; Maiga
et al., 2016). This has been stressed by the success of
operational estimation methods aiming at computing sets
guaranteed to contain the feasible parameter/state set,
i.e. the set of all the parameter/state vectors consistent

∗Corresponding author
†Authors are listed in alphabetical order.

with the specified bounds. This is why bounded or also
called set-membership estimation is qualified as guaran-
teed (Kieffer et al., 2002). In this paper, we use the
term set-membership, abbreviated as SM, having in mind
that the type of sets can be of different kinds, such as
ellipsoids (Kurzhanski and Valyi, 1997), boxes (Kieffer
and Walter, 2011), parallelotopes (Chiscii et al., 1996),
zonotopes (Alamo et al., 2005) or other polytopes.

Interval Analysis has brought a set of tools that
indifferently apply to linear and nonlinear systems (Jaulin
et al., 2001) as opposed to ellipsoidal and zonotope-based
estimation methods. Furthermore, its efficiency has been
considerably enhanced by recent constraint propagation
techniques ((Chabert and Jaulin, 2009), (Kieffer and
Walter, 2011) or (Maiga et al., 2013)) resulting in the most
appropriate paradigm to deal with nonlinearities.

Identifiability of SM nonlinear models has been
shown to give rise to three concepts: SM-identifiability,
µ-SM-identifiability, and ε-SM-identifiability that the
authors introduced in (Jauberthie et al., 2011), (Jauberthie
et al., 2013). In this paper, we are interested in the
way these properties impact the SM parameter estimation
(SM-PE) problem. This problem is characterized by two
new properties. Soundness guarantees that the feasible
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parameter set (FPS) is reduced to one single bounded
connected set. On the other hand, ε-consistency is a
numerical property that guarantees that the FPS and the
solution set returned by a parameter estimation algorithm
with precision ε are composed of an equal number of
mutually disjoint connected sets. Whereas abundant
literature exists about SM-PE (Jaulin et al., 2001; Raı̈ssi
et al., 2004; Kieffer and Walter, 2011; Milanese et al.,
2013; Herrero et al., 2016) these problems have never
been discussed in relation with SM-identifiability.

The paper is organized as follows. After the
introduction, Section 2 reminds the definitions
of SM-identifiability, µ-SM-identifiability, and
ε-SM-identifiability and a method for checking these
properties. Section 3 brings a first contribution with a
thorough analysis of the links between these properties
and related properties existing in the literature. Section
4 introduces the properties of SM-PE problems, namely
soundness and ε-consistency, as Sections 5 and 6 derive
the conditions that guaranty these properties. Finally,
section 7 concludes the paper and discusses perspectives
of the work.

2. Set-membership identifiability

This section resumes the framework proposed in
(Jauberthie et al., 2013) for SM-identifiability for the class
of systems formalized below.

2.1. Class of systems. The models considered in
this paper are bounded-error uncertain nonlinear models,
controlled or uncontrolled, of the following form:

Γ =


ẋ(t, p) = f(x(t, p), u(t), p),
y(t, p) = h(x(t, p), p),
x(t0, p) = x0 ∈ X0,
p ∈ P ⊂ UP , t0 ≤ t ≤ T,

(1)

where :

• x(t, p) ∈ Rn and y(t, p) ∈ Rm denote the state
variables and the outputs at time t respectively,

• u(t) ∈ Rr is the input vector at time t; in the case of
uncontrolled models, u(t) is equal to 0,

• the initial conditions x0, if any, are assumed to
belong to a bounded set X0 and one assumes that X0

does not contain equilibrium points of the system,

• the parameter vector p belongs to a connected set P
assumed to be included in UP , where UP ⊆ Rp is
an a priori known set of admissible parameters; the
components of p are denoted pi.

• the functions f and h are real and analytic 1 on M ,
where M is an open set of Rn such that x(t, p) ∈M
for every t ∈ [t0, T ] and p ∈ P , T is a finite or
infinite time bound.

In the following, Y (P ) denotes the set of output
trajectories, solution of Γ for any p ∈ P and is also
called the output of Γ arising from P . P c denotes the
complementary of P in UP .

2.2. Useful concepts. Let us consider a non empty
connected set Π of Rp, ‖.‖ a classical norm on Rp and
d its associated distance.

The distance2 between two sets Π1 and Π2 of Rp is
defined by:

d(Π1,Π2) = min
π1∈Π1,π2∈Π2

d(π1, π2).

Let us define δ(Π) as the diameter of Π. δ(Π) is
given by the least upper bound of {d(π1, π2), π1, π2 ∈
Π}. If Π is not bounded, we define δ(Π) = +∞
((Bourbaki, 1989)). On the metric space (Π, d), let µ be
a continuous map from Π to Π. As an extension of the
definition of contraction from (Munkres, 1975), we define
µ as a set contraction if there is a nonnegative number
k < 1 such that for all Π1, Π2 ⊆ Π, d(µ(Π1), µ(Π2)) <
kd(Π1,Π2). In the following, ‖.‖ denotes the Euclidean
norm, ‖.‖∞ the maximum norm, and ‖.‖1 the norm 1.
These may be defined on Rα, where α ∈ {n, p,m} ,
depending on the case.

2.3. Definitions. The proposed definitions are given
for controlled systems but they can be formulated in a
similar manner for uncontrolled systems assuming that
u(t) = 0.

Definition 1. Given the model Γ given by (1), consider a
non empty connected set P ∗ ⊆ UP and another set P̄ ⊆
UP , then P ∗ is globally SM-identifiable if there exists an
input u such that Y (P ∗) 6= ∅ and Y (P ∗)∩Y (P̄ ) 6= ∅ =⇒
P ∗ ∩ P̄ 6= ∅.

Definition 1 states that a connected set P ∗ is globally
SM-identifiable if the output of Γ arising from P ∗ does
not share any trajectory with the output of Γ arising from
any set P̄ ⊆ P ∗c. As an example, consider the following
nonlinear system of the form (1):

ẋ = x+ t cos(p), x(t0) = x0, (2)
1The assumption that f and h are analytic onM , and hence infinitely

differentiable, is needed in section 3.3 for the use of differential algebra.
In particular, proving the reciprocity part of Theorem 1 requires y(t, p)
to be expressed as a Taylor series. This proof is provided in (Jauberthie
et al., 2013).

2To keep the concept intuitive, it is a deliberate abuse of language to
call d(Π1,Π2) a distance between the two sets Π1 and Π2 of Rp even-
though it does not verify all the assumptions of a distance, in particular
the triangular inequality.
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where p is an bounded-error parameter for which the
admissible set is UP = [0, 2π]. The solution of (2) is
x(t) = x0e

t + (−1 − t + et) cos(p). It is clear that
this system is not globally identifiable. It is enough
to notice that any pair (p1 = π − α, p2 = π + α),
with α ∈ [0, π], results in the same trajectory, since
cos(π − α) = cos(π + α) for α ∈ [0, π]. However,
the trajectories arising from any set P ∗ = [π − α, π + α]
with α ∈ [0, π] are different from any trajectory arising
from other regions of the parameter space. P ∗ is then said
globally SM-identifiable.

The definition of µ-SM-identifiability has been
proposed to ensure that the set P ∗ may be contracted as
small as desired while still retaining the SM-identifiability
property. For this purpose, a contraction µ is applied to P ∗

and, by the Banach fixed-point theorem, it implies that the
diameter of µ(P ∗) tends to zero (Munkres, 1975).

Definition 2. A non empty connected set P ∗ ⊆
UP is globally µ-SM-identifiable if µ(P ∗) is globally
SM-identifiable for any contraction µ from P ∗ to P ∗.

This implies the following proposition:

Proposition 1. If the nonempty connected set P ∗ ⊆
UP is globally µ-SM-identifiable then it is globally SM-
identifiable. The reciprocal is not true.

Proof. For the reciprocal, consider the system (2)
and the set P ∗ = [π − α, π + α] with α ∈ [0, π] as
before. P ∗ has been shown to be globally SM-identifiable
but it is not µ-SM-identifiable since, assuming α1, α2 ∈
]0, π[ , α1 ≥ α2, any set P ∗1 = [π − α1, π − α2] ⊆ P ∗

shares trajectories with its complementary set P ∗c1 that
contains [π + α2, π + α1]. �

If the diameter of µ(P ∗), δ(µ(P ∗)), cannot be lower
than ε without loosing SM-identifiability, we refer to ε-
SM-identifiability (Jauberthie et al., 2013).

Definition 3. Consider an SM-identifiable nonempty
connected set P ∗ ⊆ UP , then P ∗ is globally ε-SM-
identifiable if there exists a set contraction µ from P ∗

to P ∗ such that δ(µ(P ∗)) = ε and µ(P ∗)) is globally
SM-identifiable and for all µ̃ such that µ̃(P ∗) ⊂ µ(P ∗),
µ̃(P ∗) is not globally SM-identifiable.

To summarize, interpreting identifiability in the SM
framework leads to two definitions depending on whether
one considers a set as a whole (SM-identifiability) or
also cares about the properties of its proper subsets
(µ-SM-identifiability). µ-SM-identifiability can be seen
as subsuming classical identifiability in the sense that
if P ∗ is µ-SM-identifiable, it implies that any p ∈
P ∗ is identifiable in the classical sense (Ljung and
Glad, 1994). ε-SM-identifiability is a kind of structural
µ-SM-identifiability since subsets of delimited diameter
ε that are SM-identifiable although not µ-SM-identifiable
are accepted. The reader is referred to (Jauberthie et al.,

2011) for the extension to structural and local counterparts
of these properties.

3. SM-identifiability and related concepts
The links between (µ)-SM-identifiability and classical
and interval identifiability were provided in (Jauberthie
et al., 2011; Jauberthie et al., 2013). In this section, we are
interested in the links with ε-global identifiability (Braems
et al., 2001) and partial injectivity (Lagrange et al., 2008).
These links allow us to propose a method for checking
(µ)-SM-identifiability.

3.1. Links with ε-global identifiability. Global
identifiability in P ∗ ⊂ UP (g.i.i.P ∗) was proposed by
(Braems et al., 2001) as a mean to provide a stronger
conclusion than structural identifiability, guaranteeing that
atypical regions of non identifiability do not exist in the
parameter space.

Definition 4. Given (u, x0) ∈ Rr ×X0, the parameter pi
is globally identifiable in P ∗ (g.i.i.P ∗) if:

∀(p, p̄) ∈ P ∗, y(., p) ≡ y(., p̄)⇒ pi = p̄i, (3)

and the parameter vector p is g.i.i.P ∗ if all its components
are g.i.i.P ∗.
The originality of (Braems et al., 2001) is to propose a
practical way to formulate the condition of Definition 4,
which is to check the condition :

@(p, p̄) ∈ P ∗×P ∗such that y(., p) ≡ y(., p̄), ‖ p̄−p ‖∞> 0.
(4)

This is a constraint satisfaction problem (CSP) that can be
solved in a guaranteed way by interval constraint propa-
gation (ICP). In practice, (Braems et al., 2001) states that
checking condition (4) comes back to checking :

@(p, p̄) ∈ P ∗×P ∗such that y(., p) ≡ y(., p̄), ‖ p̄−p ‖∞> ε,
(5)

which is defined as ε-g.i.i.P ∗. We have the following
results:

Proposition 2. P ∗ is globally µ-SM-identifiable with re-
spect to P ∗ (in the sense that UP is reduced to P ∗) if and
only if (4) is satisfied.

Proof. (Jauberthie et al., 2013) provided the proof that
if P ∗ is globally µ-SM-identifiable, equivalently any p
in P ∗ is globally identifiable with respect to P ∗, hence
satisfying condition (3) and condition (4). �

Proposition 3. If P ∗ is globally ε-SM-identifiable with
respect to P ∗, then condition (5) is satisfied.

Proof. P ∗ is globally ε-SM-identifiability (cf. Definition
3) with respect to P ∗ if and only if there exists some
subset P̃ ⊂ P ∗ such that δ(P̃ ) = ε and the interior of
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P̃ , denoted int(P̃ ), as well as any P̃ ′ ⊆ P̃ is not globally
SM-identifiable, hence not globally identifiable. In such
case, for all p, p̄ ∈ P ∗\int(P̃ ) satisfies condition (5). The
inverse is not true because when condition (5) is satisfied,
it does not provide any information about subsets P̃ ′ ⊆ P̃
such that δ(P̃ ) ≤ ε. �

From the above propositions, condition (5) does
not allow one to decide between µ-SM-identifiability
and ε-SM-identifiability. It can be considered to check
µ-SM-identifiability accepting a numerical precision of ε.

3.2. Links with partial injectivity. The definition
of partial injectivity of a function was introduced
in (Lagrange et al., 2008). This notion perfectly
characterizes µ-SM-identifiability. A second definition
named restricted-partial injectivity is proposed in this
paper in order to characterize global SM-identifiability.

Definition 5. Consider a function f : A → B and any set
A1 ⊆ A. The function f is said to be a partial injection of
A1 over A, or (A1,A)-injective, if ∀a1 ∈ A1, ∀a ∈ A,

a1 6= a⇒ f(a1) 6= f(a).

f is said to be A-injective if it is (A,A)-injective.
In (Lagrange et al., 2008), an algorithm based on

interval analysis for testing the injectivity of a given
differentiable function is presented and a solver called
IAVIA (Injectivity Analysis using Interval Analysis)
implemented in C++ is mentioned 3. For a given function,
the solver partitions a given box in two domains: a
domain on which the function is partially injective and an
indeterminate domain on which the function may or may
not be injective.

In order to characterize global SM-identifiability, the
notion of restricted-partial injectivity is introduced.

Definition 6. Consider a function f : A → B and any set
A1 ⊆ A. The function f is said to be a restricted-partial
injection of A1 over A, or (A1,A)-R-injective, if:

∀a1 ∈ A1, ∀a ∈ Ac1, f(a1) 6= f(a).
In the following proposition, partial injectivity and

restricted partial injectivity are interpreted in terms of
trajectories and this formulation makes it possible the
direct link with the definition of SM-identifiability and
µ-SM-identifiability.
Consider the set of outputs Su arising from UP for a given
input u.

Proposition 4. Given the model Γ, P ∗ is globally SM-
identifiable (resp. µ-SM-identifiable) for an input u if
and only if the function ϕ : UP → Su : p → y(., p) is
(P ∗,UP)-R-injective (resp. (P ∗,UP)-injective).

3Let us notice that the solver IAVIA has been implemented for func-
tions f : R → R2 and f : R2 → R2.

Proof. Necessity From the definition of global
SM-identifiability, P ∗ and its complementary do not share
trajectories, hence there do not exist common trajectories
arising from these two sets which implies that ϕ is
(P ∗,UP)-R-injective.
If P ∗ is µ-SM-identifiable, then the property of global
SM-identifiability is verified for any µ(P ∗), µ being a
contraction from P ∗ to P ∗, that implies that for any P̄
included in the complementary of µ(P ∗), Y (µ(P ∗)) and
Y (P̄ ) have no common trajectories. In other words, from
the Banach fixed-point theorem, the trajectory arising
from p ∈ P ∗ is different from any trajectory arising from
UP \ {p} hence ϕ is (P ∗,UP)-injective.

Sufficiency If P̄ is such that P ∗ ∩ P̄ = ∅, P̄ is
included in the complementary of P ∗ and since ϕ is
(P ∗,UP)-R-injective there exist no common trajectories
arising from these two sets, hence P ∗ is globally
SM-identifiable.
Assume now that ϕ is (P ∗,UP)-injective and that for
a contraction µ, Y (µ(P ∗)) and Y (P̄ ) have common
trajectories, then these trajectories arise from the same
parameter. This implies that µ(P ∗) and P̄ have
a non empty intersection and that P ∗ is globally
µ-SM-identifiable. �

Corollary 1. The following properties are equivalent:

• P ∗ is globally µ-SM-identifiable,

• the function ϕ : UP → Su : p→ y(., p) is (P ∗,UP)-
injective,

• Condition (4) is satisfied.

Proof. The proof directly comes from propositions 2 and
4. �

Corollary 2. P ∗ is globally ε-SM-identifiable implies
that ϕ is (P̃ ,UP)-R-injective, with P̃ ⊆ P ∗ and δ(P̃ ) ≥
ε. The inverse is not true.

Proof. The necessity part of proof 3.2 applies and the
inverse is not true for the same reasons as in proof 3.1.

�

Testing (P ∗,UP)-injectivity or (P ∗,UP)-
R-injectivity numerically can be done with an
adaptation of IAVIA (Lagrange et al., 2008) but it
does not allow to decide between µ-SM-identifiability
and ε-SM-identifiability or SM-identifiability and
ε-SM-identifiability.

3.3. A Differential Algebra Method to perform
SM-identifiability analysis. Proposition 4 points at an
operational method to check SM and µ-SM-identifiability
provided that the function ϕ : UP → Su : p→ y(., p) that
maps parameters and trajectories is known. Differential
algebra (Kolchin, 1973) was shown to provide a way
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to derive an implicit form of this function (Jauberthie
et al., 2011) 4.

This method, whose main result is given by
Theorem 1 below, is based on the use of relations linking
outputs, inputs and parameters of the model. These
relations are more precisely differential polynomials
whose indeterminates are the variables y and u and
coefficients are rational expressions in p. For obtaining
such polynomials, the Rosenfeld-Groebner algorithm,
which is an elimination algorithm (Boulier, 1994),
implemented in the package DifferentialAlgebra of Maple
is an efficient tool. The Rosenfeld-Groebner algorithm is
used to eliminate state variables with the aim to obtain
the relations linking only outputs, inputs and parameters.
With the elimination order {p} < {y, u} < {x}
(Kolchin, 1973)(Denis-Vidal, Joly-Blanchard, Noiret and
Petitot, 2001), several solutions are delivered by the
algorithm. One is called the characteristic presentation
because it corresponds to the general solution, the others
being particular solutions. The characteristic presentation
contains differential polynomials linking outputs, inputs
and parameters of the form:

Ri(y, u, p) = mi
0(y, u)

+
∑ni

k=1 θ
i
k(p)mi

k(y, u), i = 1, . . . ,m,
(6)

where (θik(p))1≤k≤ni
are rational in p, θiu 6= θiv (u 6=

v), mi
k(y, u))0≤k≤ni

are differential polynomials with
respect to y, u andmi

0(y, u) 6= 0. {θik(p)}1≤k≤ni is called
the exhaustive summary of Ri.

The size of the system is the number of outputs. For
the time being, we assume that i = 1, that is, there is
one output and n1 = n, R1 = R, m1

k(y, u) = mk(y, u).
The case of more outputs is considered at the end of this
section.

Consider t+0 the right limit of t05 and l the higher
order derivative of y in (6). ∆R(y, u) denotes the func-
tional determinant formed from the {mk(y, u)}1≤k≤n
and given by the Wronskian (Denis-Vidal, Joly-Blanchard
and Noiret, 2001)

∆R(y, u) =

∣∣∣∣∣∣∣∣∣


m1(y, u) . . . mn(y, u)
m1(y, u)(1) . . . mn(y, u)(1)

. . .
m1(y, u)(n−1) . . . mn(y, u)(n−1)


∣∣∣∣∣∣∣∣∣ .

(7)

Theorem 1. (from (Jauberthie et al., 2011)) Assume
that the functional determinant ∆R(y, u) is not identi-
cally equal to zero6. Consider P ∗ a connected subset
of UP . If the function φ : p = (p1, . . . , pp) 7→

4Another method based on the Power Series Expansion Method in-
spired by (Pohjanpalo, 1978) was also proposed in (Jauberthie et al.,
2011).

5t+0 is considered to ensure the existence of derivatives.
6This assumption consists in verifying the linear independence of the

(θ1(p), . . . , θn(p), y(t+0 , p), . . . , y
(l−1)(t+0 , p)) is

(P ∗,UP)-R-injective (resp. (P ∗,UP)-injective) then
P ∗ is globally SM-identifiable (resp. µ-SM-identifiable).
Furthermore, if for a contraction µ, µ(P ∗) has a diam-
eter equal to ε and φ is (µ(P ∗),UP)-R-injective but not
(µ(P ∗),UP)-injective then P ∗ is ε-SM-identifiable. In
the two cases, if the coefficient of y(l) in (6) is not equal
to 0 at t0, then the reciprocal is valid 7.

Remark – If m ≥ 1, for each of the
m obtained differential polynomials Ri(y, u, p), the
functional determinant is evaluated. If it is not identically
equal to zero, the associated exhaustive summary is
added to the image of the function φ for which (partial)
injectivity has to be studied.

Theorem 1 has been used in (Ravanbod
et al., 2014) to provide an operational method for
analyzing identifiability in an SM framework. First the
µ-SM-identifiable parameter subsets are determined with
IAVIA. Then, determining the maxima and minima of the
function φ allows one to assess SM-identifiable subsets
and subsets that are neither SM nor µ-SM-identifiable.

4. SM parameter estimation and properties
In this section, the SM-PE problem is presented and two
important properties are introduced, namely soundness
and ε-consistency. SM-identifiability is shown to play a
key role in relation with this problem.

Classical parameter estimation considers a time
series of noisy measured output data ym(ti), i = 0, . . . , h,
where ym(.) ∈ Rm, generated by the real system on the
interval [0, T ]. The problem is formulated as finding
the parameter vector p∗ for which the outputs produced
by the model best match the measured data according
to some criterion. Minimal least squares is a common
method, which formulates as:

p∗ = argmin
p∈UP

∑th
t=t0
‖ym(t)− y(t, p)‖2.

The SM-PE problem assumes that measured outputs are
corrupted by bounded-error terms that may originate from
the system parameters varying within specified bounds,
bounded noise, or sensor precision such that ym(ti) ∈
Ym(ti), i = 0, . . . , h, where the Ym(ti)’s are connected
sets of Rm. The SM-PE problem is formulated as finding
the set of parameter vectors P ⊆ Rp such that the arising
trajectories hit all the output data sets, i.e.:

mk(y, u), k = 1, . . . , n. For doing this, it is sufficient to find a time
point at which the Wronskian is non-zero. In the framework of differ-
ential algebra, this condition consists in verifying that this functional
determinant is not in the ideal obtained after eliminating state variables.
In practice, it can be checked with the function Belong To of the package
DifferentialAlgebra of Maple 16.

7When initial conditions are not considered, the function φ becomes
φ : p = (p1, . . . , pp) 7→ (θ1(p), . . . , θn(p)) and the reciprocal of the
theorem is not valid.
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p∗ ∈ P ⇔ y(ti, p
∗) ∈ Ym(ti),∀i = 0, . . . , h.

P is called the feasible parameter set (FPS). SM-PE
problems are generally solved with a branch and bound
algorithm that enumerates candidate solutions thanks to
a rooted tree and assumes the full parameter space as
the root set. At every node, the set of trajectories
arising from the considered parameter set is checked
for consistency against the measurements and labelled
feasible, unfeasible or undetermined. Unfeasible sets are
rejected while undetermined sets are splited and checked
in turn until the diameter of the candidate solution set
is smaller or equal to a given threshold ε provided by
the user. ε is the precision threshold – or the preci-
sion for short – of the SM-PE algorithm. The SIVIA
(Set Inversion Via Interval Analysis) algorithm (Jaulin
and Walter, 1993) can be cited to exemplify the above
principles (branch and bound (bisection) and interval
analysis). The number of bisections to be performed
is generally prohibitive. Hence, recent algorithms take
advantage of constraint propagation techniques to reduce
the width of the boxes to be checked. In this context,
the model is interpreted as the set of constraints of a
Constraint Satisfaction Problem (CSP ). For solving such
CSP , different types of so-called contractors can be used
(Chabert and Jaulin, 2009).

It should be noticed that such algorithms are anytime
by nature, i.e. they provide a guaranteed solution
independently of the stopping time, which redeems in
some way their exponential complexity. The returned
solution is an overestimation of the FPS given by the
convex union of the candidates that have been labelled
feasible and undetermined. Interestingly, the convex
union may consist of one set or more (cf. (Jaulin et al.,
2001) for several variants). In the following, we refer to
the SM-PE algorithm as to a generic SM-PE algorithm
based on these principles.

When considering an SM-PE problem, one would
like to know beforehand whether P is reduced to one
single connected set or not. Like for classical parameter
estimation, this property indicates whether the problem is
mathematically well-posed.

Definition 7. A SM-PE problem is said to be sound if
P ⊆ UP is reduced to one single connected set. In this
case, P is also said to be sound.

Given an SM-PE algorithm with precision threshold
ε, we denote by Pε the solution set. Then, it is important
to know the properties of Pε in relation to P .

Definition 8. Assume thatP is equal to the union of κ ≥ 1
mutually disjoint connected sets, then the solution set Pε
is said to be ε-consistent if Pε is equal to the union of κε
mutually disjoint connected sets and κε = κ.

Overdetermination and algorithm precision result in
Pε overestimating P , which may imply κε < κ. In this

latter case, at least one of the sets composing Pε includes
several sets composing P . ε-consistency is analyzed in
section 6.

5. Soundness
5.1. Conditions for soundness.

Proposition 5. Consider the system Γ and assume that the
set P ⊆ UP is the FPS of an SM-PE problem for Γ, then
P is sound if and only if P is globally SM-identifiable.

Proof. By definition, if P is a globally SM-identifiable
set, the trajectories of Γ arising from P are different
from the trajectories arising from the complementary set
Pc = UP \ P . In addition, P is connected, hence P
is sound. Reciprocally, if P is sound, by definition it is
globally SM-identifiable. �

In addition to being SM-identifiable, assume that P
is µ-SM-identifiable for Γ. In this case, it is interesting to
notice that P preserves soundness when the bounded error
corrupting the output data is getting smaller and smaller.
In this case, P is said to be µ-sound This is stated by the
following result:

Proposition 6. Given the output data sets Ym(ti), i =
1, . . . , h, assume that P is sound. Then, if P is µ-SM-
identifiable for Γ, the FPS of the same problem with con-
tracted output data sets µi(Ym(ti)), i = 1, . . . , h, where
the µi’s are contractions, is also sound.

Proof. This proof uses Proposition 5. The result simply
comes from the fact that if P is µ-SM-identifiable for Γ,
then P is obviously SM-identifiable and for all P ⊂ P , P
is also SM-identifiable. �

5.2. Example. Consider the model: ẋ1 = (p1 + 2(1− p2) cos(p1))x2
1 + (1− p2)x2,

ẋ2 = sin(p1)x1,
y = x1,

(8)
where (p1, p2) ∈ [−1, 4]× [0, 1/10] = UP .
By setting c1 = sin(p1), with the elimination order
{c1, p2} < {y} < {x1, x2}, the Rosenfeld-Groebner
algorithm gives the following differential polynomial:

R(y, u) = ÿ−2(p1+2(1−p2) cos(p1))ẏy−(1−p2) sin(p1)y.
(9)

In that case, the functional determinant is reduced to
4R(y) = det(ẏy, y) = −y2ÿ and is not identically equal
to 0.
In order to consider the initial condition, the function
φ : (p1, p2)→ ((p1+2(1−p2) cos(p1)), (1−p2) sin(p1))
has to be studied. By using the algorithm proposed in
(Ravanbod et al., 2014), Figure 1 (right) is obtained.
UP = [−1, 4] × [0, 1/10] has been partitioned in two
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domains: a domain on which the function φ is partially
injective and hence corresponding to µ-SM-identifiable
subsets in grey color on the figure (red if pdf file) and
two subsets in white color in the figure, each of them
producing the same image8. If a parameter estimation
problem is formulated such that the FPS P is in UP , we
can now decide whether P is sound or not. Indeed, if
the inverse image of the trajectories hitting the output data
sets entirely lies in a µ-SM-identifiable subset, then P is
sound. On the contrary, P is unsound.

−1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.01

0.02
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0.05
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 p
2

Fig. 1. A set of diameter ε interposed between P1, P2 and
their undistinguishability neighborhoods (left), Partition
of the parameter domain: the grey color (red if pdf) sub-
sets are µ-SM-identifiable (right).

6. ε-consistency
6.1. Conditions for ε-consistency. ε-consistency as
defined in definition 8 is a property of the solution
set Pε returned by the SM-PE algorithm with specified
precision threshold ε. Among the problems that impact
ε-consistency, two problems are analyzed in this paper:

• the SM-PE algorithm may not be able to separate
the mutually disjoint connected sets composing P by
testing topologically relevant candidate solution sets,

• trajectories arising from solution parameters may
not be distinguishable from trajectories arising from
non-solution parameters, given the precision of the
sensors.

Proposition 7. If the FPS P is sound, then the solution
set Pε is ε-consistent for any ε.

Proof. If P is sound, it is reduced to one single connected
set. Then, from the principle of branch and bound
algorithms, the solution set Pε is also reduced to one
single connected set although it may be an overestimation
of P . �

8Notice that IAVIA gives no information about these two domains:
they are labelled undetermined.

Let’s now assume that P is unsound and consists
of κ mutually disjoint connected sets, say Pi, i =
1, . . . , κ. The fact that the SM-PE algorithm is able
to separate the Pi’s is a topological problem involving
the distance between the Pi’s and the diameter of the
smallest candidate solution sets considered by the branch
and bound SM-PE algorithm.

Proposition 8. If P is unsound and consists of κ mutually
disjoint connected sets Pi, i = 1, . . . , κ, then a necessary
condition for the solution set Pε returned by the SM-PE
algorithm with precision threshold ε to be ε-consistent is
that d(Pi,Pj) > ε, ∀i, j = 1, . . . , κ, i 6= j.

Proof. Without loss of generality, consider two mutually
disjoint connected sets P1 and P2. The successive
partitions of the parameter space arising from the branch
and bound procedure provide candidate solution sets
whose diameter is greater or equal to ε. P1 and P2 are
separable if any candidate solution set of diameter ε can
be interposed anywhere between the two sets, in particular
just where the two sets are closest 9. Only in such case, i.e.
if d(P1,P2) > ε, the interposed candidate solution can be
labelled unfeasible, hence rejected by the algorithm, and
Pε composed of two mutually disjoint sets. �

Let’s now consider the second problem related to the
fact that the output data sets Ym(ti), i = 0, . . . , h, rely
on sensors with a given precision λ, i.e. v = vmes ± λ
where v is the true value and vmes the measured value.
In this case, two trajectories y(., p) and y(., p̄) must be
distant by λ, i.e. be such that there exists t ∈ [t0, T ],
‖ y(t, p) − y(t, p̄) ‖∞> λ, to be distinguishable. If the
trajectories arising from non-solution parameters are not
distinguishable from those arising from parameters of the
the solution sets Pi, then Pε may not be ε-consistent.

The following proposition, whose proof is based on
the Gronwall lemma, proves that, under some conditions,
y is Lipschitz continuous with respect to the parameter
vector. It provides the Lipschitz constant Ky,p explicitly
so that the conditions about parameters under which
the output trajectories are distant by a given λ can be
determined.
Recall first that, if a function g is real and analytic on M ,
an open set of Rn, for every compact set K ⊂ M , there
exists a constant K > 0 such that for every x in K, the
following bound holds:

‖ dg
dx

(x) ‖∞≤ K,

Since f and h defining Γ are assumed to be real and
analytic on M , assuming that x ∈ K, K a compact, they

9Interposed just where the two sets are closest means that the candi-
date set can be aligned with the segment [p1, p2] that connects the two
points p1 ∈ Fr(P1) and p2 ∈ Fr(P2) that are at minimum distance
and that its intersection with either P1 or P2 is empty.
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are Lipschitz continuous according to x. Their Lipschitz
constants are respectively denoted Kf,x and Kh,x.

Consider the following assumptions:

i) f and h defined on [t0, T ] × UP are Lipschitz
continuous according to p, their Lipschitz constants
are respectively denoted Kf,p and Kh,p

ii) the solution x(t, p) of Γ is in the compact K

iii) if the initial conditions depend on p, the function
p 7→ x(t0, p) is assumed to be Lipschitz continuous
according to p and its Lipschitz constant is denoted
Kx0,p.

Proposition 9. Assume that the assumptions i), ii) and iii)
are verified, then y is Lipschitz continuous according to p
and its Lipschitz constant Ky,p is given by:

Ky,p = Kh,x(Kx0,p+Kf,p(T − t0))eKf,x(T−t0) +Kh,p.

If the initial conditions do not depend on p, Ky,p is given
by:

Ky,p = Kh,xKf,p(T − t0)eKf,x(T−t0) +Kh,p.

Proof. First, integrating the equation ẋ(t, p) =
f(x(t, p), u(t), p) on [0, t] and considering the difference
between x(t, p) and x(t, p̄), one gets:

‖ x(t, p)− x(t, p̄) ‖≤‖ x(t0, p)− x(t0, p̄) ‖

+

∫ t

t0

‖ f(x(s, p), u(s), p)− f(x(s, p̄), u(s), p̄) ‖ ds

≤‖ x(t0, p)− x(t0, p̄) ‖

+

∫ t

t0

‖ f(x(s, p), u(s), p)− f(x(s, p), u(s), p̄) ‖ ds

+

∫ t

t0

‖ f(x(s, p), u(s), p̄)− f(x(s, p̄), u(s), p̄) ‖ ds.

(10)
Using the assumption i) about lipschitz continuity of f ,
we deduce that:

‖ x(t, p)− x(t, p̄) ‖≤‖ x(t0, p)− x(t0, p̄) ‖
+Kf,p(T − t0) ‖ p− p̄ ‖

+Kf,x

∫ t

t0

‖ x(s, p)− x(s, p̄) ‖ ds.
(11)

Then, the application of Gronwall lemma and assumption
iii) gives:

‖ x(t, p)− x(t, p̄) ‖
≤ (Kx0,p +Kf,p(T − t0)) ‖ p− p̄ ‖ eKf,x(T−t0).

(12)
Finally, in using the hypothesis on h, the following

inequalities are obtained:

‖ y(t, p)− y(t, p̄) ‖≤‖ h(x(t, p), p)− h(x(t, p̄), p) ‖
+ ‖ h(x(t, p̄), p)− h(x(t, p̄), p̄) ‖
≤ Kh,x ‖ x(t, p)− x(t, p̄) ‖ +Kh,p ‖ p− p̄ ‖
≤ Kh,x (Kx0,p +Kf,p(T − t0)) ‖ p− p̄ ‖ eKf,x(T−t0)

+Kh,p ‖ p− p̄ ‖
≤ (Kh,x(Kx0,p +Kf,p(T − t0))eKf,x(T−t0)

+Kh,p) ‖ p− p̄ ‖
(13)

�

If the initial conditions do not depend on the
parameters then it is sufficient to set Kx0,p = 0 in the
previous proof.

From this result, one can determine the minimal
distance between two parameter vectors p and p̄ for which
the trajectories y(t, p) and y(t, p̄) are ensured to be distant
by λ. Applying the Lipschitz result of y(t, p) with respect
to p, the following corollary is deduced.

Corollary 3. Let us consider two trajectories y(., p) and
y(., p̄) arising from Γ, then under the conditions i), ii), and
iii), we have:

if ∃t ∈ [t0, T ], ‖ y(t, p)−y(t, p̄) ‖∞> λ then ‖ p−p̄ ‖> λ

Ky,p
.

Proof. Since y is Lipschitz continuous according to the
parameter vector p, one gets:

λ <‖ y(t, p)− y(t, p̄)‖∞ < Ky,p ‖ p− p̄ ‖, (14)

which implies:

‖ p− p̄ ‖> λ

Ky,p
.

�

This result means that the Pi’s composing P
are surrounded by a neighborhood that may generate
trajectories that are not distinguishable from those arising
from their inside parameters.

Putting together the results of Proposition 8 and
Corollary 3, we obtain the following condition for
ε-consistency.

Proposition 10. Considering the system Γ with the as-
sumptions i), ii), iii) and assuming that P is unsound
and consists of κ mutually disjoint connected sets Pi, i =
1, . . . , κ, if the solution set Pε returned by the SM-PE al-
gorithm with precision threshold ε is ε-consistent, then
d(Pi,Pj) > ε + 2λ

Ky,p
,∀i, j = 1, . . . , κ, where λ is the

precision of the sensors.

Proof. Without loss of generality, consider that P
consists of two mutually disjoint connected sets P1 and
P2. Let’s denote byNP1

andNP2
the undistinguishability
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neighborhoods of P1 and P2, respectively. The sets to be
separated by the SM-PE algorithm are hence P1 ∪ NP1

and P2 ∪ NP2
. Then, Proposition 8 applied to these sets

implies d(P1∪NP1
,P2∪NP2

) > ε. The characterization
of NP1 and NP2 provided by Corollary 3 hence implies
d(Pi,Pj) > ε+ 2λ

Ky,p
as illustrated in Figure 1 (left). �

Remark– The reciprocal is also true if the inclusion
function P → [Y ](P ) used by the SM-PE algorithm
to predict the set of trajectories arising from a given
candidate parameter set P is such that [Y ](P ) = Y (P ),
which is rarely the case.

6.2. Example. Consider the following example
defined on [0, T ]:


ẋ1(t, p) = cos(p)x2(t, p), x1(0) = ( 1√

2
+ 1)/2,

ẋ2(t, p) = −x1(t, p) cos(p) +
(
1− x1(t, p)2

−2x2(t, p)2
)
x2(t, p), x2(0) = 0,

y(t, p) = x1(t, p).
(15)

The functions f and h are defined by f(x, p) =
(cos(p)x2,−x1 cos(p) + (1 − x2

1 − 2x2
2)x2)T , and

h(x, p) = x1 where x = (x1, x2)T and T denotes
the transpose of the considered vector. The solution
(x1(t), x2(t))T remains in the ring R defined by the two
circles centered at (0, 0) with radii 1√

2
and 1. Indeed, we

have:

d

dt

(
x2

1 + x2
2

2

)
= x1

dx1

dt
+ x2

dx2

dt
= (1− x2

1− 2x2
2)x2

2.

Since 1 − x2
1 − 2x2

2 is positive for x2
1 + x2

2 < 1/2

and negative for x2
1 + x2

2 > 1, x2
1 + x2

2 increases when
x2

1 + x2
2 < 1/2 and decreases when x2

1 + x2
2 > 1.

One can conclude that according to the initial condition,
the solution remains in the ring R. The following step
consists in finding the Lipschitz constants. Let’s consider
z = (z1, z2)T ∈ R. Clearly, Kh,p = 0, Kh,x = 1 and
Kf,p = 1 since ‖ x ‖=‖ (x1, x2)T ‖< 1. For Kf,x, by
reordering the terms and by adding x2

1z2 − x2
1z2 at line 3,

one gets:

‖ f(x, p)− f(z, p)‖1 ≤ | cos(p)|(|x2 − z2|+ |x1 − z1|)
+|x2 − z2|+ |(x2

1 − 2x2
2)x2 − (z2

1 − 2z2
2)z2|

≤ (|x1 − z1|+ 2|x2 − z2|) + |x2
1x2 − x2

1z2 + x2
1z2

−z2
1z2 − 2(x3

2 − z3
2)|

≤ (|x1 − z1|+ 2|x2 − z2|) + x2
1|x2 − z2|

+|z2||x2
1 − z2

1 |+ 2|x3
2 − z3

2 |.
(16)

Since |x1| < 1, |z1| < 1, we deduce, on the one hand that
|x2

1−z2
1 | ≤ |x1−z1|(|x1|+ |z1|) ≤ 2|x1−z1| and on the

other hand that |z3
2 −x3

2| = |x2− z2||z2
2 + 2x2z2 +x2

2| ≤

4|x2 − z2|. Hence the following inequality:

‖ f(x, p)− f(z, p)‖1 ≤ (|x1 − z1|+ 2|x2 − z2|)
+|x2 − z2|+ 2|x1 − z1|+ 8|x2 − z2| ≤ 11‖x− z‖1.

(17)
Using the equivalence between norm 1 and maximum
norm, we get:

‖f(x, p)− f(z, p)‖∞ ≤ 22 ‖ x− z ‖,

hence Kf,x = 22 and from Proposition 9, the Lipschitz
constant Ky,p is equal to Te22T . Taking [0, T ] =
[0, 1], sensor precision λ = 0, 01, and SM-PE algorithm
precision threshold ε = 0, 001, then from Proposition 10
the solution set is ε-consistent implies that d(Pi,Pj) >
ε + 2λ

Ky,p
' 0, 001 + 5, 579.10−12 ' 0, 001,∀i, j =

1, . . . , κ. In this example, the SM-PE algorithm
precision is dominant over sensor precision with respect
to ε-consistency.

7. Discussion and conclusions

This paper casts identifiability in an SM framework
and relates the properties introduced in (Jauberthie
et al., 2011) and (Jauberthie et al., 2013), namely
SM-/µ-SM-/ε-SM-identifiability, to the properties of
SM-PE problems. Soundness and ε-consistency are
proposed to characterize an SM-PE problem. Soundness
is a theoretical property that assesses that the SM-PE
problem is well-posed. ε-consistency guarantees that
the structure of the FPS is well reflected in the solution
returned by the SM-PE algorithm.

SM-/µ-SM-/ε-SM-identifiability are compared to
related properties existing in the literature, in particular
partial injectivity. The Differential Algebra based method
proposed to check these properties leads to checking
partial-injectivity and a newly introduced property
named partial-R-injectivity. The algorithm proposed
for this (Ravanbod et al., 2014) remains of exponential
complexity like many interval-based algorithms but it is
still useful for medium-size problems.

ε-consistency is a complex property for which
only necessary conditions are provided. It is impacted
by several features of the SM-PE problem, including
sensor precision and the overestimation involved in the
computation of the image of a parameter set. Evaluating
this overestimation and how it impacts ε-consistency
remains an open problem.
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(2013). Fault detection and identification relying on
set-membership identifiability, Annual Reviews in Control
37: 129–136.

Jaulin, L., Kieffer, M., Didrit, O. and Walter, E. (2001). Applied
Interval Analysis, with examples in parameter and state
estimation, Robust control and robotics, Springer, Londres.

Jaulin, L. and Walter, E. (1993). Set inversion via interval
analysis for nonlinear bounded-error estimation, Automat-
ica 29: 1053–1064.

Kieffer, M., Jaulin, L. and Walter, E. (2002). Guaranteed
recursive nonlinear state bounding using interval analysis,
International Journal of Adaptative Control and Signal
Processing 6: 191–218.

Kieffer, M., Jaulin, L., Walter, É. and Meizel, D. (2000). Robust
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ONERA Center of Lille in collaboration with the Laboratory of Applied
Mathematics. Her research interests concern fault detection and diagno-
sis as well as the analysis of related properties, including identifiability
and diagnosability of nonlinear dynamical systems with mixed uncer-
tainties.

Louise Travé-Massuyès holds a position of Di-
recteur de Recherche at Laboratoire d’Analyse
et d’Architecture des Systmes, Centre National
de la Recherche Scientifique (LAAS-CNRS),
Toulouse, France, head of the Diagnosis and
Supervisory Control (DISCO) Team from 1994
to 2015. She graduated in control engineering
from the Institut National des Sciences Appliques
(INSA), Toulouse, France, in 1982 and received
the Ph.D. degree from INSA in 1984. Her re-

search interests are in dynamic systems supervision with special focus
on qualitative, model-based methods and data mining. She has been par-
ticularly active in bridging the AI and Control Engineering Diagnosis
fields, as leader of the BRIDGE Task Group of the MONET European
Network of Excellence. She is coordinator of the Maintenance & Di-
agnosis Strategic Field within the Aerospace Valley World Competitive-
ness Cluster, and serves as the contact evaluator for the French Research
Funding Agency. She serves in the Editorial Board of the Artificial In-
telligence Journal. She is member of the IFAC Safeprocess Technical
Committee.

Nathalie Verdière is Associate Professor
at University of Le Havre (France) since
2006. She is a researcher at the Labo-
ratory of Applied Mathematics of Le Havre
(www.lmah.univ-lehavre.fr) in the ”Dynami-
cal Systems” research team (www.lmah.univ-
lehavre.fr/systemes dynamiques). She obtained
a Ph.D. degree in 2005 in Applied Mathematics,
specialized in system control, from University of
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