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Abstract This work presents a new and simple procedure for
the shape selective purification of gold nanorods from a mix-
ture of rods and spheres. Previously reported methods were
time-consuming and revealed several drawbacks such as low
yields and difficulty to recover the purified nanoparticles.
Additionally, they were mostly applied to high aspect ratio
(AR) nanorods. Our process is based on only simple and short
centrifugation steps in order to precipitate specifically gold
nanospheres. Samples containing low AR nanorods (AR < 6)
were selected to perform the purification process. The superna-
tant content was followed by UV-Visible absorption spectros-
copy after each centrifugation step. Then, transmission electron
microscopy (TEM) allowed extract the purification efficiency
thanks to shape analyses performed on more than 1000 nano-
particles. These results showed that our centrifugation process
was applied successfully to three sizes of nanorods (2.4, 3.7,
and 5.3). High purification yields of 72 and 78% were attained
for AR = 3.7 and AR = 5.3 nanorods, respectively.
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Introduction

The interest of gold nanoparticles for applications in the
biological sciences has considerably increased over the
last decades, principally due to numerous advantageous
properties, in particular localized plasmon resonance
[1–3] and good biocompatibility [4–6]. Plasmonic proper-
ties are valuable in many applications such as the en-
hancement of optical signals used for biomedical diagno-
sis (fluorescence [7–9], Raman [10–13], two-photon ex-
cited fluorescence [14–16], second harmonic generation
[17, 18]) or photothermic/photodynamic properties for
light-triggered phototherapy [19–23]. In addition, the
good biocompatibility of gold nanoparticles makes them
suitable in applications such as in vivo imaging, diagno-
sis, or therapy.

Gold nanoparticle synthesis has been widely studied.
Among all the different methods, the most popular one
is based on the reduction of a gold salt (HAuCl4) by
sodium citrate [24]. The Frens’ protocol [25] offers a sim-
ple and reproducible synthesis of small and monodisperse
gold nanospheres with a diameter lower than 60 nm.
These spherical nanoparticles exhibit strong plasmonic
properties in the visible range with a plasmon band close
to 525 nm. However, for many applications, the plasmon
band needs to be shifted to longer wavelengths. For ex-
ample, in biological imaging, it is useful to use gold nano-
particles with a plasmon band located in the near infrared
region as this corresponds to the transparency window of
living tissues [26].

To achieve this, different choices can be considered
such as shape or size tuning [27]. One of the most studied
solutions is the synthesis of gold nanorods which exhibit
strong and tunable plasmon bands from 600 to 1600 nm
[28–30]. Different kinds of synthesis methods have been
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described. In these different syntheses, it is common to
observe a significant amount of nanospheres as a synthe-
sis by-product. These nanospheres can represent between
10 and 90% of the total amount of nanoparticles [31, 32].

Most of the time, these nanospheres are ignored and
the nanorods are used directly. However, for some appli-
cations, the presence of nanospheres can be a problem.
For example, it is known that cellular uptake of nanopar-
ticles is strongly influenced by their shape [4, 33]. Thus,
there is an interest to remove specifically nanospheres
from gold nanorod samples.

Some studies on gold nanorod purification have al-
ready been realized. Different methods have been pro-
posed such as size-exclusion chromatography (SEC) [34]
or centrifugation/precipitation-based methods [31, 32, 35].
However, all these methods showed limitations.

SEC is limited because of the irreversible adsorption of
nanoparticles in the stationary phase. The addition of high
amounts of surfactants (≈50 mM) can reduce this prob-
lem. Nevertheless, the nanoparticle fractions obtained by
SEC purification are generally highly diluted. In addition,
SEC has only been applied to nanorods with high aspect
ratio (AR > 10). Indeed, for nanorods with a low aspect
ratio, shape differences may be not sufficient to ensure an
effective shape separation.

Jana [32] and Khanal [35] proposed using precipitation-
based techniques to purify gold nanorods. On one hand,
Jana et al. reported the separation of long nanorods
(AR > 15–20) using a hot and concentrated cetyl
trimethylammonium bromide (CTAB) aqueous solution
(0.1 M). In their work, hot CTAB was used to stabilize
all the nanoparticles, while cold CTAB could not stabilize
the longest nanorods, inducing their specific sedimenta-
tion. On the other hand, Khanal et al. proposed to induce
an autoassembly of long nanorods (AR > 15–20) in the
presence of concentrated CTAB (0.1 M) and then allow
these nanorods assemblies to sediment over 10 to 12 h.
The efficiency of these techniques was demonstrated, but
the authors did not show results for low aspect ratio nano-
rods (AR < 10). Moreover, the addition of an excess of
CTAB to the nanorods can be a problem for potential
applications. Indeed, as CTAB is hard to remove from
nanorods’ surface, further functionalization steps can be
difficult to perform.

For these reasons, methods using simple centrifugation
processes present a great interest.

Sharma et al. [31] proposed using a single long centri-
fugation step (5600 g, 30 min) to separate gold nanorods
(AR = 7.3) from gold nanospheres owing to the difference
of sedimentation coefficient between these two types of
nanoparticles. After centrifugation, it was observed that gold
nanorods were preferentially located on the side walls of the
centrifugation tubes, whereas gold nanospheres were located

at the bottom. Thus, it is possible to use centrifugation to
separate two populations of nanoparticles. Due to the vi-
cinity of the two precipitates, the remaining problem is to
recover these purified nanorods on the side walls of the
centrifugation tube as unfortunately they can be easily
remixed with nanospheres during their extraction.
Moreover, during precipitation, irreversible aggregation
of the nanorods can occur, leading to a degradation of
their plasmonic properties.

In this work, we propose to go further, improving
Sharma’s protocol, using three short centrifugation steps
(6700g, 3 × 1 min) to precipitate, specifically and only,
gold nanospheres in order to simplify the purification pro-
cess. Indeed, using our protocol, nanorods remain in the
supernatant; thus, they are easier to extract. In addition,
under our conditions, the nanorods do not aggregate as
they remain in the supernatant. Finally, we chose to use
nanorods with low aspect ratios (AR < 6), considering this
case as the less favorable to perform shape-selective sep-
aration. The optical and structural properties of nanorods
samples were investigated by UV-visible absorption spec-
troscopy and transmission electron microscopy (TEM)
imaging, before purification and after several centrifuga-
tion steps. Three nanorod aspect ratios (AR = 2.4,
AR = 3.7 and AR = 5.3) were selected. Their capacity
to be separated from nanospheres was evaluated and
compared.

Experimental

Nanorods synthesis

All chemicals were obtained from Sigma-Aldrich and
used as received. Milli-Q water (18.2 MΩ/cm) was used
in all the preparations. Nanorods were prepared using a
previously reported protocol [30]. Gold seeds were syn-
thesized by mixing 629 μL of aqueous CTAB solution
(150 mM), 216 μL of deionized water and 55.1 μL of
aqueous HAuCl4 solution (4.28 mM). Then, 100 μL of
NaBH4 aqueous solution was added and the obtained so-
lution was left to react during 3 h at 25 °C. Next, the
growth solution was prepared by mixing 9.87 mL of aque-
ous CTAB solution (150 mM), 2.2 mL of deionized water,
and 1.73 mL of aqueous HAuCl4 solution (4.28 mM).
Then, 32, 130, or 160 μL of an aqueous AgNO3 solution
(7.4 mM) were added, to obtain nanorods with AR = 2.4,
3.7, and 5.3, respectively. The obtained solution was
stirred slowly during 2 min, and 1 mL of aqueous solution
of ascorbic acid (8.18 mM) was then added. After a slow
stirring of 1 min, 25 μL of the previously prepared gold
seed suspension was added. The solution was stirred for
1 min and let to react, at 30 °C, overnight. Centrifugation
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at 6700g during 5 min was used to stop the reaction and
remove reactants and by-products from nanorod suspen-
sion after reaction.

Nanorods shape-selective purification

Nanorod suspensions were centrifuged at 6700g during
1 min. Supernatants, containing gold nanorods, were re-
covered and precipitates containing nanospheres were
discarded. Supernatants were centrifuged with the same
conditions and the precipitates were again discarded.
Supernatants were centrifuged a third time, with the same
conditions, and precipitates were discarded. Supernatants
were analyzed using UV-visible absorption spectroscopy
and TEM.

Characterization methods

UV-visible absorption spectroscopy was performed on a
double beam SAFAS mc2 spectrophotometer using quartz
cuvettes. TEM images were realized with a JEOL 2100HT
working at 200 kV. For TEM studies, 2 μL of the diluted
dispersion of nanoparticles was deposited onto a carbon
holey grid (Ted Pella, Inc.). Images were analyzed with
ImageJ 1.46r software. Histograms were obtained on a
population of at least 100 nanoparticles. For nanosphere
percentage calculation, analyses were performed on 1000

nanoparticles coming from at least eight different TEM
images in order to obtain representative statistical data.

Results and discussion

Three nanorod samples were prepared using various
amounts of silver nitrate in order to obtain different aspect
ratios. Silver ions combined with CTAB allow the aniso-
tropic growth of the nanorods to be controlled. TEM was
used to characterize the as-synthesized samples. Images
and corresponding size distributions are given in the
Supporting Information. The size characteristics of the
samples are summarized in Table 1. Nanorods with in-
creasing aspect ratios exhibit decreasing diameters, from
18.9 to 9.9 nm. Their lengths range between 42.8 and
52.8 nm. As shown in TEM images (Figs. S1, S2, and
S3 in the Supporting Information), numerous nanospheres
can be observed in all samples. In all cases, their size
distribution is bimodal, with a first population of nano-
spheres whose mean diameter is between 20.6 and
25.3 nm and a second population between 38.0 and
47.4 nm of diameter. For all populations of nanoparticles,
the standard deviation was found to be not higher than
10%.

Nanorods were separated from nanospheres using suc-
cessive centrifugation steps. Nanorods were recovered in
the supernatants, while nanospheres were precipitated to
the bottom of centrifugation tubes. The mass to surface
ratio was selected to compare nanoparticles theoretical
sedimentation properties (Table 2). Indeed, for nanoparti-
cles with different shapes such as nanorods and nano-
spheres, two parameters must be considered for sedimen-
tation: gravitational force and friction coefficient [31].
The gravitational force is directly linked to the nanoparti-
cles’ mass: as the mass increases, the sedimentation
speed increases. The friction coefficient is associated to
the surface of the nanoparticles in contact with the

Table 1 Size characteristics of the studied samples

AR 2.4 3.7 5.3

Nanorod diameter (nm) 18.9 ± 1.4 11.5 ± 0.5 9.9 ± 1.1

Nanorod length (nm) 45.2 ± 1.9 42.8 ± 1.8 52.8 ± 3.5

Nanosphere diameter (nm) Bimodal Bimodal Bimodal

25.3±2.1 22.0 ± 1.2 20.6 ± 0.9

47.4 ± 1.7 38.0 ± 2.7 46.1 ± 3.8

Table 2 Calculated mass and
surface of nanospheres and
nanorods

AR 2.4 3.7 5.3

Smaller nanospheres Mass (10−18 g) 166 109 90

Surface (nm2) 2011 1520 1333

Mass to surface ratio (g m−2) 0.082 0.071 0.067

Bigger nanospheres Mass (10−18 g) 1093 563 1005

Surface (nm2) 7058 4536 6677

Mass to Surface Ratio (g m−2) 0.155 0.124 0.150

Nanorodsa Mass (10−18 g) 155 61.4 59.2

Surface (nm2) 2027 1302 1457

Mass to Surface Ratio (g m−2) 0.076 0.047 0.041

a Penta-twinned nanorods [3, 39] were considered for mass and surface calculations

Gold Bull (2017) 50:69–76 71

Author's personal copy



solvent. Thus, as the surface increases, the sedimentation
slows down. As shown in Table 2, nanorods exhibit lower
mass to surface ratios than the two populations of nano-
spheres. Thus, the sedimentation speed of nanorods is
expected to be lower than that of nanospheres. This is
consistent with our experimental observations. It is no-
ticed in Table 2 that the difference in mass to surface ratio
between nanorods and nanospheres increases for higher
AR. Thus, centrifugation is supposed to be theoretically
more efficient for nanorods with high AR.

The supernatants containing nanorods after each step of
centrifugation were first studied by UV-visible absorption
spectroscopy and compared to the sample before purifica-
tion (Figs. 1, 2, and 3). For all types of nanorod, two main
peaks can be observed in the absorption spectra. The peak
located at higher wavelengths is related to the longitudinal
plasmon resonance mode of the nanorods. Its position is

specific to the nanorods aspect ratio: It is located at
λ = 650 nm, λ = 790 nm, and λ = 940 nm for nanorods
with AR = 2.4 (Fig. 1a), AR = 3.7 (Fig. 2a) and AR = 5.3
(Fig. 3a), respectively. The peak around λ = 525 nm has
two origins: (i) It is due to the transverse resonance mode
of nanorods, and (ii) it is also associated to the plasmon
resonance mode of nanospheres.

The first contribution (transverse resonance mode of
nanorods) is known to be relatively small and can be
neglected [34, 36]. Thus, we can assume that this peak
is mainly due to nanospheres. The presence of two nano-
sphere populations (as detailed in Table 1) has little effect
on the position of the plasmon band. Indeed, for nano-
sphere diameters ranging from 5 to 50 nm, the plasmon
band is still between λ = 520 nm and λ = 530 nm.
Therefore, the absorbance value at λ = 525 nm can be a
means to evaluate the presence of nanospheres in each

Fig. 1 a UV-Visible absorption spectra of gold nanorods with AR = 2.4 before purification (a), after the first centrifugation step (b), after the second
centrifugation step (c), and after the third centrifugation step (d). b Absorbance values at λ = 525 nm (diamond) and λ = 650 nm (square) at each step

Fig. 2 a UV-Visible absorption spectra of gold nanorods with AR = 3.7 before purification (a), after the first centrifugation step (b), after the second
centrifugation step (c), and after the third centrifugation step (d). b Absorbance values at λ = 525 nm (diamond) and λ = 790 nm (square) at each step
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sample. The evolution of plasmon band intensities along
the purification steps is presented in Figs. 1b, 2b, 3b. A
strong decrease of absorbance at 525 nm can be observed
for nanorods of all aspect ratios. This indicates an effi-
cient removal of nanospheres for all the samples after
centrifugation. A decrease of absorbance for longitudinal
resonance mode is also observed but is less significant.
These spectra are very similar to the ones obtained with
the other separation methods cited previously [31, 32, 34,
35]. However, our results were obtained using nanorods
with low aspect ratios (AR < 6). Different authors report
that the sedimentation speed is decreased for nanorods
with increased aspect ratios [31, 37, 38]. Thus, for nano-
rods with higher aspect ratio, our shape-selective purifica-
tion could be still more efficient.

In addition, by comparing the absorbance of the longi-
tudinal plasmon band, we can estimate the purification

yield, which is considerably impacted by the aspect ratio
of the nanorods. For nanorods with the lowest aspect ratio
(AR = 2.4), only 29% of nanorods can be recovered after
the three centrifugation steps. In comparison, nanorods
with higher aspect ratios present total yields of 72 and
78% for AR = 3.7 and AR = 5.3, respectively. These
yields are consistent with the easier separation for the
longest nanorods [31, 37, 38].

In Fig. 4, the ratio between the absorbance measured for
the longitudinal resonance mode and the absorbance at
λ = 525 nm has been plotted as a function of each purifi-
cation step. This graphic clearly shows that the absorbance
ratio increases for the three different aspect ratios and that
the ratio improves as the number of centrifugation steps is
increased. This confirms the efficiency of our method.

To quantify the purification efficiency, TEM images
(Fig. 5) were realized on nanorod samples before and

Fig. 3 a UV-Visible absorption spectra of gold nanorods with AR = 5.3 before purification (a), after the first centrifugation step (b), after the second
centrifugation step (c), and after the third centrifugation step (d). b Absorbance values at λ = 525 nm (diamond) and λ = 940 nm (square) at each step

Fig. 4 Ratio between the
absorbance of nanorods
longitudinal resonance mode and
the absorbance of nanospheres at
λ = 525 nm as a function of
purification steps for nanorods
with AR = 2.4, A650/A525 ratio
(black bars), AR = 3.7, A790/A525

ratio (gray bar) and AR = 5.3,
A940/A525 ratio (white bar)
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after the three centrifugation steps. The images are con-
sistent with the absorption spectroscopy results. Before
purification, a high amount of nanospheres can be ob-
served in the images (Fig. 5a, c, e), while after the third
centrifugation step, only a few nanospheres are present
(Fig. 5b, d, f).

Finally, the percentage of nanospheres in each sample
was quantified on populations of 1000 nanoparticles com-
ing from at least eight different TEM images. Counting
results are summarized in Table 3. The percentage of
nanospheres before purification ranges from 24 to 28%
for all the samples. After three centrifugation steps, the
percentage decreases to less than 10% for all aspect ratios.
Interestingly, purification efficiency increases with the
gold nanorods’ aspect ratio. For those with the lowest

aspect ratio, the percentage of nanospheres after purifica-
tion was reduced by a factor of 2.9, whereas for those
with the highest aspect ratio, this reduction was 3.4.
These results confirm the impact of increased aspect ratios

Table 3 Nanospheres percentage in all samples, before and after shape-
selective purification

Nanorods AR 2.4 3.7 5.3

Nanospheres before purification (%) 28.1 24.0 28.0

Nanospheres after purification (%) 9.6 7.0 8.3

Gaina 2.9 3.4 3.4

a The Gain is the ratio between the percentage of nanospheres before
purification and after purification

Fig. 5 TEM images of gold nanorods a with AR = 2.4 before purification, b with AR = 2.4 after the third centrifugation step, c with AR = 3.7 before
purification, dwith AR = 3.7 after the third centrifugation step, ewith AR = 5.3 before purification, and fwith AR = 5.3 after the third centrifugation step
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on the efficiency of shape-selective purification processes,
which is consistent with the results obtained by UV-
visible absorption spectroscopy.

Conclusions

In this work, gold nanorods of different aspect ratios and con-
taining initially large amounts of nanospheres (24–28%) were
purified using a shape-selective method based on simple and
short centrifugation steps. After centrifugation, the nanorods
remain in the supernatant and can be easily recovered.
Additionally, as they do not sediment, they do not aggregate
and their initial plasmonic properties are preserved. This
method was less efficient for low aspect ratio nanorods.
Thus, it could be difficult to apply for samples containing
nanorods with very low aspect ratio, for which the shape does
not differ a lot from the shape of nanospheres. However, our
process demonstrates its efficiency to remove specifically
nanospheres from nanorods, even with nanorods of low aspect
ratios (AR < 6) and with high yields (up to 78% for nanorods
with an aspect ratio of 5.3). In this way, our shape-selective
separation method offers an alternative to the limitations men-
tioned in previous reports.
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