
HAL Id: hal-01701455
https://hal.science/hal-01701455v2

Submitted on 3 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Unbounded Largest Eigenvalue of Large Sample
Covariance Matrices: Asymptotics, Fluctuations and

Applications
Florence Merlevède, Jamal Najim, Peng Tian

To cite this version:
Florence Merlevède, Jamal Najim, Peng Tian. Unbounded Largest Eigenvalue of Large Sample Co-
variance Matrices: Asymptotics, Fluctuations and Applications. Linear Algebra and its Applications,
2019, 577, �10.1016/j.laa.2019.05.001�. �hal-01701455v2�

https://hal.science/hal-01701455v2
https://hal.archives-ouvertes.fr


UNBOUNDED LARGEST EIGENVALUE OF LARGE SAMPLE COVARIANCE

MATRICES: ASYMPTOTICS, FLUCTUATIONS AND APPLICATIONS

FLORENCE MERLEVÈDE, JAMAL NAJIM, AND PENG TIAN

Abstract. Given a large sample covariance matrix SN = 1
n

Γ
1/2
N ZNZ

∗
NΓ

1/2
N , where ZN is a

N × n matrix with i.i.d. centered entries, and ΓN is a N × N deterministic Hermitian positive

semidefinite matrix, we study the location and fluctuations of λmax(SN ), the largest eigenvalue
of SN as N,n→∞ and Nn−1 → r ∈ (0,∞) in the case where the empirical distribution µΓN of

eigenvalues of ΓN is tight (in N) and λmax(ΓN ) goes to +∞. These conditions are in particular

met when µΓN weakly converges to a probability measure with unbounded support on R+.
We prove that asymptotically λmax(SN ) ∼ λmax(ΓN ). Moreover when the ΓN ’s are block-

diagonal, and the following spectral gap condition is assumed:

lim sup
N→∞

λ2(ΓN )

λmax(ΓN )
< 1,

where λ2(ΓN ) is the second largest eigenvalue of ΓN , we prove Gaussian fluctuations for
λmax(SN )
λmax(ΓN )

at the scale
√
n.

In the particular case where ZN has i.i.d. Gaussian entries and ΓN is the N×N autocovariance

matrix of a long memory Gaussian stationary process (Xt)t∈Z, the columns of Γ
1/2
N ZN can be

considered as n i.i.d. samples of the random vector (X1, . . . ,XN )>. We then prove that ΓN is

similar to a diagonal matrix which satisfies all the required assumptions of our theorems, hence

our results apply to this case.

1. Introduction

The model. In this paper we consider the following model of sample covariance matrix

(1) SN =
1

n
Γ

1/2
N ZNZ

∗
NΓ

1/2
N

where ZN =
(
Z

(N)
i,j

)
is a N × n matrix whose entries Z

(N)
i,j are real or complex random variables

identically distributed (i.d.) for all i, j,N and independent across i, j for each N , satisfying

(2) EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1 and E|Z(N)

i,j |
4 <∞ ,

and ΓN is a N ×N deterministic Hermitian positive semidefinite matrix with eigenvalues

0 ≤ λN (ΓN ) ≤ · · · ≤ λ1(ΓN ) := λmax(ΓN ) .

We consider the case where λmax(ΓN ) goes to infinity as N → ∞ while the empirical spectral
distribution (ESD) µΓN associated with ΓN ,

µΓN :=
1

N

N∑
k=1

δλk(ΓN ) ,

forms a tight sequence of probabilities on R+ := [0,∞). These conditions encompass the important
case where µΓN converges to a limiting distribution with unbounded support on R+.
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2 F. MERLEVÈDE, J. NAJIM, AND P. TIAN

In this context, our aim is to study the location and fluctuations of the largest eigenvalue
λmax(SN ) in the asymptotic regime where

(3) N,n→∞ and
N

n
→ r ∈ (0,∞) .

The regime (3) will be simply refered to as N,n→∞ in the sequel.
The model SN defined in (1) is a classical model of sample covariance matrices in the random

matrix theory, and its spectral properties have been intensively studied in the regime (3) in the last
several decades.

At a global scale, the limiting spectral distribution (LSD) of the ESD µSN = N−1
∑N
k=1 δλk(SN )

has been described in the groundbreaking paper by Marčenko and Pastur [34]. In the important
case where SN = 1

nZNZ
∗
N , sometimes referred to as the white noise model, the limiting spectral

distribution of µSN is known as Marčenko-Pastur distribution and admits the following closed-form
expression

PMP ( dλ) :=
(
1− r−1

)
+
δ0( dλ) +

√
[(λ+ − λ)(λ− λ−)]+

2πrλ
dλ , λ± =

(
1±
√
r
)2
,

where x+ := max(x, 0). Later, this result was improved by many others, see for instance [47, 28,
50, 40, 39]. In [39], Silverstein proved that for the model SN defined in (1), if µΓN weakly converges
to a certain probability ν supported on R+ (not necessarily with compact support), then almost
surely, the ESD µSN weakly converges to a deterministic distribution µ, whose Stieltjes transform
gµ is the unique solution with positive imaginary part of the equation

(4) gµ(z) =

∫
1

s(1− r − rzgµ(z))− z
dν(s) ∈ C+, ∀z ∈ C+ .

Central limit theorems have also been established for linear spectral statistics
∑N
i=1 f(λi(SN )), see

for instance [28, 26, 3, 36].
At a local scale, the convergence and fluctuations of individual eigenvalues have been studied,

with a special emphasis on the eigenvalues located near each edge of the connected components
(bulk) of the LSD of SN . The spiked eigenvalues, that is those which stay away from the bulk of
the LSD, have also attracted a lot of attention.

For the white noise model, the support of Marčenko-Pastur’s LSD is [(1 −
√
r)2, (1 +

√
r)2],

with {0} if r > 1. Geman [23] showed that λmax(SN ) → (1 +
√
r)2 almost surely under moment

conditions on the entries. Later, Bai et al. [51, 5, 8] showed that λmax(SN ) almost surely converges

to a finite limit if and only if the fourth moment E|Z(1)
1,1 |4 of the entries is finite. Concerning the

fluctuations of λmax(SN ), they were first studied by Johansson [26] for standard Gaussian complex
entries and by Johnstone [27] for standard Gaussian real entries. They both established that

(5) γN n
2/3
(
λmax(SN )− (1 +

√
rN )2

)
where rN =

N

n
and γN =

r
1/6
N

(1 +
√
rN )4/3

converges in distribution to Tracy-Widom (TW) distributions as N,n→∞, introduced in [44, 45],
to describe the fluctuations of the largest eigenvalues of GUE and GOE random matrices.

For general sample covariance matrices (1), the condition that the spectral norm of ΓN is uni-
formly bounded:

sup
N≥1
‖ΓN‖ = sup

N≥1
λmax(ΓN ) < ∞

implies that the LSD µ (defined by its Stieltjes transform gµ which satisfies (4)) has a bounded
support. In this case, El Karoui [21] and Lee and Schnelli [33] established Tracy-Widom type
fluctuations of the largest eigenvalue in the complex and real Gaussian case respectively. By estab-
lishing a local law, Bao et al [11], and Knowles and Yin [31] extended the fluctuations of the largest
eigenvalue for general entries.

The case of spiked models has been addressed by Baik et al [9, 10] where some eigenvalues (the
spikes) may separate from the bulk. In [9] where the so-called BBP phase transition phenomenon
is described, Baik et al. study the case where ΓN has exactly m non-unit eigenvalues `1 ≥ · · · ≥
`m. For complex Gaussian entries, they fully describe the fluctuations of λmax(SN ) for different
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configurations of the `i’s. Assume for instance that `1 is simple (cf. the original paper for the
general conditions) then (a) if `1 ≤ 1 +

√
r, λmax(SN ) has asymptotically TW fluctuations at speed

n2/3; (b) if `1 > 1 +
√
r, the sequence

(6)

√
n√

`21 − `21rN/(`1 − 1)2

(
λmax(SN )−

(
`1 +

`1rN
`1 − 1

))
is asymptotically Gaussian. In [10] Baik and Silverstein consider general entries and prove the
strong convergence of the spiked eigenvalues; Bai and Yao [6] consider the spiked model with
supercritical spikes (corresponding to the case (b) above) and general entries and establish Gaussian-
type fluctuations for the spiked eigenvalues. Other results are, non exhaustively, [12, 13, 19, 7].

To make a rough conclusion from these results, λmax(SN ) does not in general approach the
largest eigenvalue of λmax(ΓN ). Moreover, if λmax(SN ) converges to the bulk edge of the LSD of
µSN , then it often has Tracy-Widom fluctuation at the scale n2/3. If λmax(SN ) converges to a point
outside the bulk, it often has Gaussian-type fluctuation at the scale n1/2.

The previously mentionned results are limited to the case where λmax(ΓN ) is uniformly bounded.
There are however interesting cases where λmax(ΓN ) goes to infinity, see for instance Forni et al.
[22] in a context of econometrics.

Recently and mainly fostered by principal component analysis (PCA) in high dimension, there
has been a renewed interest in the case where a small number of spiked eigenvalues of the population
covariance matrix goes to infinity while the rest of the population eigenvalues remains bounded.
Let us mention in growing generality Jung and Marron [29], Shen et al. [38], Wang and Fan [48],
Cai et al. [17]. In the latter, a complete description of the various scenarios of the spikes and their
multiplicity is considered, and the first non-spiked eigenvalue’s fluctuations are established. In [32],
Ledoit and Wolf consider a similar framework referred to as the ”Arrow model”.

In this article, we complement the general picture by considering population covariance matrices
with unbounded limiting spectral distribution. Such a case arises in the context of long memory
stationary processes and is not covered by the existing results. In the framework considered here, we
are not in the case where a majority of the population eigenvalues remains bounded. In particular,
the assumptions in [48, 17] fail to hold.

Description of the main results. Let SN be defined in (1) and assume that (µΓN ) is tight with
limN→∞ λmax(ΓN ) =∞, then we establish in Proposition 2.1 that

(7)
λmax(SN )

λmax(ΓN )
−−−−−→
N,n→∞

1

in probability. This convergence is improved to an almost sure (a.s.) convergence if either the

Z
(N)
i,j ’s are standard (real or complex) gaussian, or stem from the top left corner of an infinite array

(Zi,j , i, j ∈ N) of i.i.d. random variables. In the case of a triangular array, one might expect an a.s.
convergence if λmax(SN ) concentrates sufficiently fast around its expectation.

In order to describe the fluctuations of λmax(SN ), we assume in addition that (ΓN ) satisfies the
following spectral gap condition

(8) lim
N→∞

λ2(ΓN )

λmax(ΓN )
< 1 ,

where λ2(ΓN ) is the second largest eigenvalue of ΓN , and that either the Z
(N)
i,j ’s are standard

Gaussian or the ΓN ’s have a block-diagonal structure

(9) ΓN =

(
λmax(ΓN ) 0

0 ΓN−1

)
.

In this case, the following fluctuation result, stated in Theorem 2.2, holds:

(10)
√
n

(
λmax(SN )

λmax(ΓN )
− 1− 1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )

)
D−−−−−→

N,n→∞
NR(0, σ2)
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where “
D−→” denotes the convergence in distribution, σ2 = E|Z1,1|4 − 1 and NR stands for the real

Gaussian distribution.
Notice that in (10), the term βN := 1

n

∑N
k=2

λk(ΓN )
λmax(ΓN )−λk(ΓN ) goes to zero (see for instance

Remark 4 below), however
√
nβN may not converge to zero as shown in Example 2.3.

These results are then applied to long memory stationary processes.

Long memory stationary process. A process (Xt)t∈Z is (second order) stationary if the following
conditions are satisfied:

E|Xt|2 <∞ , EXt = EX0 and Cov(Xt+h,Xt) = Cov(Xh,X0) = γ(h) ∀t, h ∈ Z

where Cov(Xt+h,Xt) = E(Xt+h − EXt+h)(Xt − EXt) and γ : Z → C is some positive definite
function, usually called the autocovariance function of the process. Note that γ(0) is positive and

γ(−h) = γ(h) for all h ∈ Z. By stationarity, the covariance matrices TN (γ) of the process

(11) TN (γ) := Cov

Xt+1

...
Xt+N

 =


γ(0) γ(−1) . . . γ(−N + 1)

γ(1)
. . .

. . .
...

...
. . .

. . . γ(−1)
γ(N − 1) . . . γ(1) γ(0)


are positive semidefinite Hermitian Toeplitz matrices.

By Herglotz’s Theorem, there exists a finite positive measure α on (−π, π], the symbol of TN (γ),
whose Fourier coefficients are exactly γ(h), i.e.

γ(h) =
1

2π

∫
(−π,π]

e−ihx dα(x) , ∀h ∈ Z .

Depending on the context, we may write TN (γ) or TN [α].
Tyrtyshnikov and Zamarashkin generalized in [46] a result of Szegő and proved that the following

equality holds

(12) lim
N→∞

1

N

N∑
k=1

ϕ(λk(TN (γ))) =
1

2π

∫ π

−π
ϕ(fα(x)) dx ,

where ϕ : R 7→ R is continuous with compact support and fα ∈ L1(−π, π) is the density of
the absolutely continuous part of α with respect to the Lebesgue measure dx on (−π, π], called
the spectral density of TN (γ). The equality (12) can be interpreted as the vague convergence of
probability measures µTN (γ) to the measure ν defined by the integral formula

(13)

∫
ϕdν =

1

2π

∫ π

−π
ϕ(fα(x)) dx ∀ϕ ∈ Cb,

where Cb denotes the space of all bounded continuous functions. The measure ν being a probability,
the sequence µTN (γ) is tight, and the vague convergence coincides with the weak convergence.

The process is usually said to have short memory or short range dependence if
∑
h∈Z |γ(h)| <∞.

Otherwise, if ∑
h∈Z
|γ(h)| =∞ ,

the process (Xt) has long memory or long range dependence1.
In this article we require that the autocovariance function γ of a long memory stationary process

satisfies

(14) γ(h) =
L(h)

(1 + |h|)1−2d
, ∀h ∈ Z

1There are several definitions of long range dependance, all strongly related but not always equivalent, see for

instance [37, Chapter 2].
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for some d ∈ (0, 1/2) and a function L : R → R slowly varying at ∞, that is, a function satisfying
L(y) > 0 for |y| large enough, and

lim
y→∞

L(xy)

L(y)
= 1 ∀x > 0 .

In this case γ is real and even and L is an even function as well. Matrix TN (γ) is real symmetric
and (Xt) is a long memory process. In addition, λmax(ΓN ) −−−−→

N→∞
∞, see for instance Theorem 2.3.

The largest eigenvalue associated with a long memory stationary Gaussian processes. Given a cen-
tered stationary process (Xt)t∈Z with autocovariance function defined by (14), one can study the
spectral properties of the sample covariance matrix

(15) QN :=
1

n
XNX

∗
N =

1

n

n∑
j=1

X·,jX
∗
·,j

where XN is a N ×n random matrix whose columns (X·,j , 1 ≤ j ≤ n) are i.i.d copies of the random
vector X1:N = (X1, . . . ,XN )>.

Let TN (γ) be the covariance matrix of (Xt), it has been recalled that µTN (γ) weakly converges.
Since the process is Gaussian, QN can be written in the form of SN in (1) with ΓN = TN (γ) and
the ESD µQN weakly converges with probability one to a deterministic probability measure µ by
[39, Theorem 1.1].

In order to study the behavior of λmax(QN ) and to apply the results already presented, note that
the process being gaussian, the matrix model (1) has the same spectral properties as a model where
ΓN is replaced by the diagonal matrix obtained with ΓN ’s eigenvalues. In particular, the block-
diagonal structure condition (9) is automatically satisfied. It remains to verify the spectral gap
condition (8) and that λmax(TN (γ)) goes to infinity. In Theorem 2.3, we describe the asymptotic
behaviour of the kth largest eigenvalue λk(TN (γ)) for any fixed k, and prove that there exist positive
numbers a1 > a2 ≥ a3 ≥ · · · > 0 such that for any k ≥ 1,

λk(TN (γ)) ∼ akNγ(N) and lim
N→∞

λ2(TN (γ))

λmax(TN (γ))
=
a2

a1
< 1 ,

hence the spectral gap condition (8) holds. Moreover, standard properties of slowly varying func-
tions [14, Prop. 1.3.6(v)] yield that Nγ(N) → ∞ hence λk(TN (γ)) → ∞ and in particular
λmax(TN (γ)) → ∞. As a corollary, we obtain the asymptotics and fluctuations of the largest
eigenvalue λmax(QN ) for Gaussian long memory stationary processes with autocovariance function
defined in (14).

We now point out two references of interest: In the (non-Gaussian) case where the symbol α
is absolutely continuous with respect to the Lebesgue measure and under additional regularity
conditions on (Xt), Merlevède and Peligrad [35] have established the convergence of the ESD µQN

toward a certain deterministic probability distribution. In a context of a stationary Gaussian
field, Chakrabarty et al. [18] studied large random matrices associated with long range dependent
processes.

Organization. Our paper is organized as follows. In Section 2 we state the assumptions and
main results of the article: Proposition 2.1 and Theorem 2.2 are devoted to the limiting behaviour
and fluctuations of λmax(SN ); the spectral gap condition for a Toeplitz matrix ΓN is studied in
Theorem 2.3; finally Corollary 2.4 builds upon the previous results and describes the behaviour and
fluctuations of covariance matrices based on samples of stationary long memory Gaussian processes.
In Section 3, we provide examples, numerical simulations and mention some open questions. Section
4 and Section 5 are dedicated to the proofs of the main theorems.

Acknowledgement. The authors would like to thank Walid Hachem for useful discussions and
the two referees for helpful comments which improved the presentation of the paper.

2. Notations and main theorems

2.1. Notations and assumptions.
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Notations. Given x ∈ R, denote by bxc the integer satisfying bxc ≤ x < bxc + 1. For vectors u, v

in RN or CN , 〈u, v〉 =
∑N
i=1 uiv̄i denotes the scalar product and ‖u‖ the Euclidean norm of u.

For a matrix or a vector A, we use A> to denote the transposition of A, and A∗ the conjugate
transposition of A; if A is a N×N square matrix with real eigenvalues, we use λ1(A) ≥ · · · ≥ λN (A)
to denote its eigenvalues, and sometimes denote λ1(A) = λmax(A). The ESD µA of A is defined as

µA :=
1

N

N∑
k=1

δλk(A) ,

where δλ is the Dirac measure at λ. For a N × n matrix M and integers a, b ∈ {1, · · · , N} and
c, d ∈ {1, · · · , n}, the following notations are used to deal with submatrices of M :
(16)
Ma:b,· = (Mi,j)a≤i≤b,1≤j≤n , M·,c:d = (Mi,j)1≤i≤N,c≤j≤d , Ma:b,c:d = (Mi,j)a≤i≤b,c≤j≤d .

By convention, these subscripts have higher priority than the transposition or conjugate transpo-
sition, for example M∗a:b,c:d := (Ma:b,c:d)

∗ is the conjugated transposition of the submatrix Ma:b,c:d.

For a matrix A, we write its operator norm as ‖A‖ = sup‖v‖=1 ‖Av‖ and its Frobenius norm

‖A‖F =
√∑

i,j |Ai,j |2.

If c = (ck)k∈Z is a sequence of complex numbers, the N ×N Toeplitz matrix (c(i− j)) is denoted
by TN (c). If moreover the sequence (ck) is a positive-definite function c : Z → C and admits by
Herglotz’s theorem the representation

ck =
1

2π

∫
(−π,π]

e−ikx dα(x) ,

then α is called the symbol of TN (c) which will sometimes be written TN [α]. If moreover α admits
a density with respect to Lebesgue’s measure, i.e. dα(x) = f(x) dx, TN (c) will occasionnally be
denoted by TN [f ]. Notice that if TN (c) is the covariance matrix of a stationary process as in (11)
then f(x) (if it exists) is called the spectral density of the process.

Given two complex sequences xn, yn we denote

(17) xn ∼ yn ⇔ lim
n→∞

(
xn
yn

)
= 1 and xn

.
= yn ⇔ lim

n→∞
(xn − yn) = 0 .

The notations xn = o(1) and xn = O(1) respectively mean limn→∞ xn = 0 and limn→∞ |xn| <∞.
These notations are also applicable to functions with continuous arguments. If Xn, X are random
variables, the notations Xn = o(1) and Xn = oP (1) respectively mean that limn→∞Xn = 0 almost

surely and in probability. The notations Xn
D−→ X and Xn

P−→ X respectively denote convergence
in distribution and in probability. If µ, µn are measures, we denote with a slight abuse of notation

µn
D−→ µ for the weak convergence of µn to µ.

Given a random variable Y or a sub-algebra G, we denote by EY (X) and EG(X) the conditional
expectation of the random variable X with respect to Y and to G.

We denote by NR(m,σ2) the real Gaussian distribution with mean m and variance σ2; we
refer to NR(0, 1) as the standard real Gaussian distribution. A complex random variable Z is
distributed according to the standard complex Gaussian distribution if Z = U + iV where U, V
are independent, each with distribution NR(0, 1/2). In this case we denote Z ∼ NC(0, 1). For
a symmetric semidefinite positive matrix T , denote by NR(0, T ) the distribution of a centered
Gaussian vector with covariance matrix T .

In the proofs we use C to denote a constant that may take different values from one place to
another.

Assumptions. We state our results under one or several of the following assumptions:

A1 (Model setting) Let SN be N ×N random matrices defined as

SN =
1

n
Γ

1
2

NZNZ
∗
NΓ

1
2

N
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where ZN =
(
Z

(N)
i,j

)
1≤i≤N,1≤j≤n

are N × n matrix whose entries Z
(N)
i,j are real or complex.

The Z
(N)
i,j ’s are i.d. random variables for all i, j,N , and independent across i, j for each N ,

satisfying

EZ(N)
i,j = 0, E|Z(N)

i,j |
2 = 1 and E|Z(N)

i,j |
4 <∞,

and ΓN are N ×N positive semidefinite Hermitian deterministic matrices.

Notice that in the assumption above, we do not require that E
(
Z

(N)
i,j

)2

= 0 in the case of complex

r.v. but this is automatically fulfilled in the case of standard complex gaussian random variables.

A2 (Asymptotic spectral structure of ΓN ) Given a sequence of N ×N positive semidefinite deter-
ministic matrices ΓN , the empirical spectral distribution

µΓN :=
1

N

N∑
k=1

δλk(ΓN )

forms a tight sequence on R+, and the largest eigenvalue λmax(ΓN ) tends to ∞ as N →∞.

Example 2.1. If µΓN D−→ ν with ν a non-compactly supported probability on R+, then A2 holds.

Example 2.2. Consider ΓN = diag(`
(n)
1 , · · · , `(n)

m , 1, · · · , 1) where m = m(n) is such that m(n)
n → 0

and where `
(n)
i ↗ ∞ (1 ≤ i ≤ m), then A2 holds. The illustrative and simpler case where

ΓN = diag(`
(n)
1 , 1, · · · , 1) will be used hereafter.

A3 (Subarray assumption on ZN ) For each N , ZN = Z1:N,1:n is the top-left submatrix of an infinite
matrix Z = (Zi,j)i,j≥1, with Zi,j i.i.d random variables satisfying

EZi,j = 0, E|Zi,j |2 = 1 and E|Zi,j |4 <∞.

Remark 1. Compared to A1, this subarray assumption (where the matrix entries do not depend
on N,n) is mainly needed to state almost sure convergence results (see Proposition 2.1 below)
and to fully exploit Bai and Silverstein’s results on spectrum confinement [1]. Notice that under
this assumption, interlacing properties of eigenvalues hold true since the realization of the random
variables remains the same as N,n→∞.

A4 (Spectral gap condition on ΓN ) The two largest eigenvalues λmax(ΓN ) and λ2(ΓN ) satisfy

lim
N→∞

λ2(ΓN )

λmax(ΓN )
< 1.

Notice that this spectral gap condition already appears in [38, 48, 17].

A5 (Block-diagonal structure of ΓN ) For all N , ΓN has the block-diagonal form

ΓN =

(
λmax(ΓN ) 0

0 ΓN−1

)
,

where ΓN−1 is a (N − 1)× (N − 1) semidefinite positive Hermitian matrix.

2.2. Main results. We now present the main results of this article. Recall that the asymptotic
regime N,n→∞ (cf. (3)) stands for

N,n→∞ and
N

n
→ r ∈ (0,∞) .

Proposition 2.1 and Theorem 2.2 describe the limiting behaviour and fluctuations of λmax(SN )
under generic assumptions. Theorem 2.3 and Corollary 2.4 specialize the previous results to Toeplitz
covariance matrices and Gaussian long memory stationary processes.

Proposition 2.1. Let SN be a N×N matrix given by (1) and assume that A1 and A2 hold. Then

λmax(SN )

λmax(ΓN )

P−−−−−→
N,n→∞

1 .
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If moreover either the random variables Z
(N)
ij are standard (real or complex) Gaussian or Assump-

tion A3 holds, then the above convergence holds almost surely.

This result already appears under different assumptions in [32, Prop. 7.3], [17, Th. 2.1].

Remark 2 (consistency with the bounded case ‖ΓN‖ <∞). Consider the simple case where ΓN =
diag(`1, 1, · · · , 1), where `1 > 1 +

√
r is fixed - see for instance (6). Then it is well known (cf. [10])

that

λmax(SN )
P−−−−−→

N,n→∞
`1 +

r `1
`1 − 1

.

Notice in particular that λmax(SN )
`1

= 1 + r
`1−1 + oP (1), which is heuristically consistent with Propo-

sition 2.1 if one lets `1 go to infinity.

Theorem 2.2. Let SN be a N × N matrix given by (1) and assume that A1, A2 and A4 hold.
Assume moreover that one of the following conditions is satisfied:

(i) Assumption A5 holds,
(ii) The random variables Z

(N)
ij are standard complex Gaussian,

(iii) The random variables Z
(N)
ij are standard real Gaussian and matrices ΓN are real symmetric.

Consider the quantities

(18) βN :=
1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )
and FN :=

√
n

(
λmax(SN )

λmax(ΓN )
− 1− βN

)
.

Then

(19) FN
D−−−−−→

N,n→∞
NR(0, σ2) ,

where σ2 = E|Z(1)
1,1 |4 − 1.

Counterparts of Theorem 2.2 appear under the assumption that the (λi(ΓN ))’s are bounded
for i ≥ K and K = o(N), see [48, Th. 3.1], [17, Th. 2.2]. In this latter case, the quantity βN
above can be replaced by n−1

∑N
K+1 λi(ΓN )/(λmax(ΓN )−λi(ΓN )). Beware however that under our

assumption, the full summation is required because there is no natural threshold K if one does not
assume boundedness on the majority of the population eigenvalues.

Remark 3. Notice that if E|Z(1)
1,1 |4 = 1 then σ2 = 0 in the previous theorem, hence FN

P−−−−−→
N,n→∞

0 .

Simulation 3 in Section 3.2 (see also Fig. 3(b)) supports this fact.

Remark 4. Under A2 and A4, we have βN −−−−−→
N,n→∞

0. Indeed, by the spectral gap condition A4

and the fact that N = O(n)

βN =
1

n

N∑
k=2

λk(ΓN )/λmax(ΓN )

1− λk(ΓN )/λmax(ΓN )
≤ C

N

N∑
k=2

λk(ΓN )

λmax(ΓN )
.

Since µΓN is tight, for any ε ∈ (0, 1) there exists M > 0 s.t. |{k, : λk(ΓN ) > M}|/N < ε where
|{·}| denotes the cardinality of a set. Hence

lim
N,n→∞

βN ≤ C lim
N

M

λmax(ΓN )
+ Cε = Cε ,

where we use the fact that λmax(ΓN ) → ∞ as N → ∞ for the last equality. Notice however that√
nβN may not go to zero as N,n→∞.

Remark 5 (consistency with the bounded case ‖ΓN‖ < ∞, continued). Consider again the case
where ΓN = diag(`1, 1, · · · , 1) with `1 > 1 +

√
r then

βN =
N − 1

n

1

`1 − 1
=

rN
`1 − 1

+O

(
1

n

)
.
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In the case where `1 →∞, FN in (18) writes

FN =
√
n

(
λmax(SN )

`1
−
(

1 +
rN

`1 − 1

))
+O

(
1√
n

)
and has Gaussian fluctuations. This formula is consistent with (6) which can be rewritten

√
n√

1 +O(`−2
1 )

(
λmax(SN )

`1
−
(

1 +
rN

`1 − 1

))
.

Example 2.3 (various behaviours of
√
nβN ). Consider ΓN = diag(`

(n)
1 , 1, · · · , 1) where `

(n)
1 ↗∞,

then

√
nβN =

√
n×

(
N − 1

n

)
×
(

1

`1 − 1

)
−−−−−→
N,n→∞


∞ if `

(n)
1 �

√
n ,

r/a if `
(n)
1 = a

√
n ,

0 if `
(n)
1 �

√
n .

2.3. Application to large sample covariance matrices associated with long memory pro-
cesses. In order to apply the above results to Gaussian stationary processes with long memory,
we need to verify the spectral gap condition of their autocovariance matrices. We first recall some
definitions.

Definition 1 (Regularly/Slowly varying functions). A measurable function R : R→ R is regularly
varying at infinity if R(y) > 0 for |y| large enough and if there exists a real number ρ s.t. for any
x > 0,

lim
y→∞

R(xy)

R(y)
= xρ.

The number ρ is called the index of the regular variation. If ρ = 0, then we say that the function
(often denoted by L in this case) is slowly varying.

A sequence of real numbers (ck)k∈Z is regularly (resp. slowly) varying if y 7→ cbyc is a regularly
(resp. slowly) varying function.

With Definition 1, long memory (long range dependence) stationary processes can be defined as
follows.

Definition 2. A stationary process (Xt)t∈Z has long memory or long range dependence if its
autocovariance function γ is regularly varying with index ρ ∈ (−1, 0).

Remark 6. Notice that this definition is compatible with the definition of the autocovariance func-
tion provided in (14). In fact, assume that γ(h) is given by (14) then it is regularly varying with
index ρ = 2d − 1 ∈ (−1, 0). Conversely, assume that γ(h) is an even regularly varying sequence
with ρ ∈ (−1, 0). Set d = ρ+1

2 , then L(y) = γ(byc)(1 + |y|)1−2d is a slowly varying function with
d ∈ (0, 1/2) and

γ(h) =
L(h)

(1 + |h|)1−2d
.

Remark 7. Notice that definitions 1 and 2 enable to consider complex processes (Xt), however the
associated autocovariance function is necessarily real and cannot be complex.

Remark 8. The above definition coincides with Condition II in [37] where the autocovariance func-
tion γ satisfies (14).

In this context, the spectral gap condition on autocovariance matrices of a long memory station-
ary process is ensured by the following theorem:

Theorem 2.3. Suppose that c = (ch)h∈Z is an even (ch = c−h for all h ∈ Z) regularly varying

sequence of index ρ ∈ (−1, 0), then there exist positive numbers a
(ρ)
1 > a

(ρ)
2 ≥ a

(ρ)
3 ≥ · · · > 0 such

that for any fixed k ≥ 1,

lim
N→∞

λk(TN (c))

NcN
= a

(ρ)
k .
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In particular,

λk(TN (c)) ∼ a(ρ)
k NcN →∞ and lim

N→∞

λ2(TN (c))

λmax(TN (c))
=
a

(ρ)
2

a
(ρ)
1

< 1 .

Remark 9. The fact that λk(TN (c))→∞ for any fixed k ≥ 1 underlines the difference between the
model under study and the models studied in [6], [7] and [17] where it is always assumed that there
is a finite number of eigenvalues of the population covariance matrix that are spiked [6, 7] or go to
infinity [17].

Definition 3. We say that a complex Gaussian process (Xt)t∈Z is circularly symmetric if for any
N ∈ N the Gaussian vector X1:N := (X1, . . . ,XN )> is circularly symmetric, i.e. for any φ ∈ R, the
vector eiφX1:N has the same distribution as X1:N .

Remark 10. Notice in particular that such a process is centered and satisfies that EX1:NX>1:N = 0,
for all N ≥ 1.

As a canonical example, a standard complex Gaussian vector X = (X1, · · · , XN )> where the
Xi’s are i.i.d. and NC(0, 1)-distributed is circularly symmetric with

EXX∗ = IN and EXX> = 0 .

For such a vector X, we will denote X ∼ NC(0, IN ).
As a by-product of the above theorems, we have the following result on the largest eigenvalue

of sample covariance matrices of a Gaussian long memory stationary process (recall that such a
process admits a real autocovariance function).

Corollary 2.4. Suppose that (Xt)t∈Z is a real centered (resp. complex circularly symmetric) Gauss-
ian stationary process with long range dependence in the sense of definition 2. Let

QN =
1

n
XNX

∗
N

where XN are N × n random matrices whose columns are i.i.d copies of the random vector X1:N =
(X1, . . . ,XN )>. Then

(20)
λmax(QN )

λmax(TN )

a.s.−−−−−→
N,n→∞

1

and

(21)
√
n

(
λmax(QN )

λmax(TN )
− 1− 1

n

N∑
k=2

λk(TN )

λmax(TN )− λk(TN )

)
D−−−−−→

N,n→∞
NR
(
0, σ2

)
,

where TN = TN (γ) is the autocovariance matrix of the process defined in (11) and where

σ2 =
E|X 4

1 |
γ2(0)

− 1 =

{
2 if X1 is real
1 if X1 is complex

.

Corollary 2.4 being an easy consequence of Proposition 2.1 and Theorems 2.2 and 2.3, we provide
its proof hereafter.

Proof. Let X be a centered N -dimensional random vector either real or circularly symmetric com-
plex gaussian with (real) covariance matrix T . Then X writes X = T 1/2Z where Z ∼ NR(0, IN ) or
NC(0, IN ) depending on whether X is real or complex. In fact, if T is invertible then Z = T−1/2X
has the required properties.

If not, T = O diag(d2
1, · · · , d2

p, 0 · · · )O> withO orthogonal and di > 0. Let Y = (0, . . . , 0, Yp+1, . . . , YN )>

with Yk i.i.d. standard Gaussian random variables, either real or complex (depending on X), and
independent from X. Let

Z = O diag(d−1
1 , · · · , d−1

p , 0 · · · )O>X +OY

then Cov(Z) = IN and if X is complex, then EZZ> = 0. In particular, Z is a standard gaussian
random vector and a covariance computation yields

Cov(X − T 1/2Z) = 0 ,
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which implies that X = T 1/2Z almost surely.

Then for any N and almost surely, the representation QN = 1
nT

1/2
N ZNZ

∗
NT

1/2
N holds with (TN )

the autocovariance matrices of process (Xt)t∈Z. In Section 1 we have noticed that µTN converges
weakly, and by Theorem 2.3, λmax(TN ) → ∞ and (TN ) satisfy the spectral gap condition. By
Proposition 2.1 and Theorem 2.2, the results follow.

�

3. Additional applications and simulations

3.1. Additional applications to Gaussian stationary processes. Although Definition 2 is a
common definition of long memory, it can seem restrictive as it requires that the autocovariance
function has at most a finite number of nonpositive values. In the first example hereafter we consider
Gaussian processes with autocovariance functions either complex or with alternate signs. In the
two subsequent examples, we relate our results with other definitions of long memory, via linear
representation or via the autocovariance density.

Covariance matrices with alternating signs of entries. Let (Xt)t∈Z be a centered Gaussian stationary
process with autocovariance function γX . Let θ ∈ (−π, π], θ 6= 0 be fixed and consider the process
(Yt = eitθXt)t∈Z. This process is a Gaussian stationary process with autocovariance function
γY(t) = eitθγX (t) and

Y1:N = ΣθX1:N

where Σθ = diag(eikθ, 1 ≤ k ≤ N) is a unitary matrix. Notice that if (Xt) is complex circularly
symmetric, then so is (Yt) but if (Xt) is real then (Yt) is either complex Gaussian but not circularly
symmetric if θ 6= π or real Gaussian with alternate signs if θ = π.

Let XXN (resp. XYN ) a N × n matrix whose columns are i.i.d. copies of the vector X1:N (resp.
Y1:N ) and assume that the process (Xt) fulfills the assumptions of Corollary 2.4. Then

QYN =
1

n
XYn (XYn )∗ =

1

n
ΣθXXn (XXn )∗(Σθ)∗ = ΣθQXN (Σθ)∗ where QXN =

1

n
XXn (XXn )∗ .

In particular, λmax(QYN ) = λmax(QXN ) satisfies (20) and (21). In this example the positivity con-
straint of the autocovariance function is relaxed.

Linear processes with long memory. If the process (Xt)t∈Z has a linear representation

Xt =

∞∑
j=0

ψjεt−j

where (εt)t∈Z is a sequence of i.i.d real valued standard Gaussian r.v.’s and ψj ∼ jd−1L(j) as j →∞
with d ∈ (0, 1/2) and L a slowly varying function at ∞, then it is well known (c.f. for example [37,
Corollary 2.2.10]) that its autocovariance function γ is regularly varying with index ρ = 2d−1, and
more precisely we have

γ(h) ∼ h2d−1L2(h)B(1− 2d, d)

where B(1 − 2d, d) =
∫ 1

0
x−2d(1 − x)d−1 dx is the beta-function. Corollary 2.4 can be applied in

this case.

Long range dependence defined through spectral density. Among the various definitions of long range
dependence, there is an important one which defines the long range dependence through the spectral
density, that is, if the symbol of the autocovariance matrices TN has a density f : (−π, π] → R+

satisfying

(22) f(x) = |x|−2dL

(
1

|x|

)
, x ∈ (−π, 0) ∪ (0, π],

with d ∈ (0, 1/2), and L a slowly varying function defined on [1/π,+∞). (cf. Condition IV in [37]).
If a (real centered or complex circularly) Gaussian stationary process (Xt)t∈Z has long memory
in this sense, then the LSD of the covariance matrices TN [f ] is not compactly supported and in
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particular λmax(TN [f ]) → ∞ and (20) in Corollary 2.4 holds. Moreover if L in (22) is quasi-
monotone, then the process is also a long memory process in the sense of Definition 2 (see for
instance [37, Corollary 2.2.17]) with index ρ = 2d− 1. More precisely we have

γ(h) ∼ 2h2d−1L(h)Γ(1− 2d) sin(dπ) as h→∞

where Γ(t) :=
∫∞

0
xt−1e−x dx denotes the gamma-function. Hence by Theorem 2.3, TN satisfies the

spectral gap condition, and applying Theorem 2.2 we get the same result as Corollary 2.4.

3.2. Numerical simulations.

Simulation 1: Limiting behaviour of λmax(SN ). To illustrate Proposition 2.1, we take

SN =
1

n
Γ

1
2

NZNZ
>
NΓ

1
2

N

with ZN a N × n matrix having i.i.d standard real Gaussian entries, and ΓN = TN (γ) is the
Toeplitz matrix dertermined by γ(h) = 1

(1+|h|)3/4 . Let N take all the values in the finite sequence

{100, 150, 200, . . . , 3000}, and let n = b5N/4c. We plot the simulation results in Figure 1.

(a) (b)

Figure 1. Convergence of λmax(SN )/λmax(ΓN ) to 1. In 1(a), the values λmax(SN )
and λmax(ΓN ) are plotted as crosses and solid points respectively; in 1(b) the values
of the ratio λmax(SN )/λmax(ΓN ) are plotted as crosses, compared with the constant
1.

Simulation 2: Fluctuations of λmax(SN ). To illustrate the fluctuations of λmax(SN ), we fix N =
1000 and n = 1250 and let ΓN = diag(λk(T1000(γ))) with γ as in the previous simulation. We take
900 independant samples of S1000, plot the histogram of F1000 defined in (18) and compare with
the density of the theoretical limiting law. In Figure 2(a) we simulate the model S1000 with Z1000

having i.i.d. real Gaussian entries, the limiting law, according to Theorem 2.2, is NR(0, 2); while in

Figure 2(b), Z1000 has i.i.d. standardized exponential entries, i.e. Z
(1000)
i,j ∼ E(1)− 1. The limiting

law is NR(0, 8).

Simulation 3: Concentration. We now address the case E|Z(N)
1,1 |4 = 1. Consider a matrix ZN

with i.i.d. symmetric Bernoulli variables taking values in {−1, 1}. As previously we take ΓN =
diag(λk(TN (γ))) with γ(h) = 1

(1+|h|)3/4 . In this case, Theorem 2.2 asserts that

√
n

(
λmax(SN )

λmax(ΓN )
− 1− 1

n

N∑
k=2

λk(ΓN )

λmax(ΓN )− λk(ΓN )

)
P−−−−−→

N,n→∞
0 .
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(a) (b)

Figure 2. Fluctuations of λmax(S1000), with Z1000 having Gaussian entries in 2(a)
and standardized exponential entries in 2(b). Simulation with 900 samples.

In Figure 3(a) we plot the fluctuations of λmax(S1000) with n = 1250 and notice that the corre-
sponding F1000 are far more concentrated around 0 than the previous simulations, as predicted by
the theorem.

An interesting phenomenon occurs in Figure 3(b), where the same matrix Z1000 is considered
while we do not diagonalize Γ1000 and just take Γ1000 = T1000(γ). In this case, the concentration
phenomenon disappears, and the obtained histogram is very close to that in Figure 2(a). This
simulation suggests that some universality holds in the fluctuations of λmax(SN ) if the (ΓN )’s are
Toeplitz matrices. This will be explored in a forthcoming work.

(a) (b)

Figure 3. Fluctuations of λmax(SN ) in the case of symmetric Bernoulli entries.
ΓN is diagonal in 3(a) and nondiagonal in 3(b).

3.3. Open questions.

At the border between long memory and short memory. An interesting regime is when ρ = −1. In
this case, the autocovariance function γ(h) = (1 + |h|)−1L(h) can be summable or not depending
on the slowly varying function L. For example if L(h) = log−1−ε(2 + |h|) with ε > 0 then γ
is absolutely summable and the process has short memory. If L(·) = 1 then one can prove that
λmax(TN (γ)) = O(logN), and that the spectral gap condition no longer holds. In this case, the
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asymptotics (20) remains true as Proposition 2.1 does not rely on the spectral gap condition but
only on the condition λmax(TN (γ))→∞. The question whether the fluctuations (21) together with
their normalization and the limiting distribution hold remains open.

Non-Gaussian long memory stationary processes. A Gaussian long memory stationary process ad-

mits a linear representation X1:N = T
1/2
N (γ)Z1:N , where TN (γ) is a hermitian Toeplitz matrix and

Z1:N is a standard Gaussian vector. This representation is key in the analysis of the top eigenvalue
of the corresponding large covariance matrix of samples of the process but does not hold anymore
if the process is not Gaussian. The question whether it is possible to perform the same eigenvalue
analysis in the case of non-Gaussian long memory stationary process is open.

Correlation structure of the top eigenvalues. Beyond the top eigenvalue λmax(SN ), it would be inter-
esting to understand the asymptotic correlation structure and the fluctuations of the (many) largest
eigenvalues (λmax(SN ), λ2(SN ), · · · , λk(SN )) for a fixed k ≥ 1. This question will be addressed in
a forthcoming work [43].

Behaviour of the eigenvectors associated to the top eigenvalues. For bounded spiked models (by
bounded we mean supN ‖ΓN‖ < ∞) the structure of the eigenvectors associated to the top eigen-
values has been studied and carries interesting information, see for example [13]. A similar study
would be interesting in the general context of unbounded population covariance matrices where
λmax(ΓN )→∞ and of (Gaussian) long memory stationary processes. In this latter case, one needs
to have a good understanding of the Toeplitz matrix’ TN (γ) eigenvectors.

Universality for non-Gaussian linear stationary processes with long memory. In the case where ΓN
is required to be (block-)diagonal, the variance of the limiting distribution depends on the fourth

moment of the entries ZNi,j and may be equal to zero if E|Z(1)
1,1 |4 = 1. However when ΓN is a Toeplitz

matrix (11) with γ satisfying (14), this dependence is weakened and Simulation 3 in Section 3.2
strongly suggests that some universality occurs depending on the population covariance matrix ΓN ,
see in particular Figures 3(a) and 3(b). This question will be addressed in [43].

4. Proofs of Proposition 2.1 and Theorem 2.2

4.1. A short reminder of results related to large covariance matrices. Given a probability
measure µ on R, define its Cauchy-Stieltjes transform as

mµ(z) :=

∫
dµ(s)

z − s
, ∀z ∈ C+ := {z ∈ C : =z > 0}

Notice that mµ(z) is the opposite of the Stieltjes transform gµ(z) =
∫ dµ(s)

s−z .

For a random matrix SN given by (1), we will often consider its companion matrix

(23) SN =
1

n
Z∗NΓNZN ,

which shares the same non-zero eigenvalues with SN . In particular, λmax(SN ) = λmax(SN ). Recall
that rN := N

n and let µSN , µSN be the ESD of SN and SN respectively, then the following relation
holds:

(24) µSN = (1− rN )δ0 + rNµ
SN .

Limiting spectral distribution. We recall results from [39, Theorem 1.1]. For any probability ν in R+

and any r ∈ (0,+∞), there exists a unique probability measure µ = µ(r, ν) whose Cauchy-Stieltjes
transform mµ satisfies the equation:

mµ(z) =

∫
dν(s)

z − s(1− r + rzmµ(z))
for any z ∈ C+ .
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If the probability measure ν is the ESD µA associated with a matrix A, we simply write µ = µ(r,A)
instead of µ = µ(r, µA). Similarly, there exists a unique probability measure µ = µ(r, ν) with
Cauchy-Stieltjes transform mµ satisfying

(25) z =
1

mµ(z)
+ r

∫
sdν(s)

1− smµ(z)
for any z ∈ C+ .

As previously, we will write µ(r,A) instead of µ(r, µA). If moreover µΓN D−−−−→
N→∞

ν, then

(26) µSN
D−−−−−→

N,n→∞
µ a.s. and µSN

D−−−−−→
N ;n→∞

µ a.s.

Spectrum confinement. By ”spectrum confinement”, we refer to the phenomenon where the empiri-
cal spectrum of the eigenvalues ”concentrates” near the support of the limiting spectral distribution.
In the specific case of model (1) under assumption supN ‖ΓN‖ <∞ and the convergence (26), spec-
trum confinement can be roughly expressed (in the absence of spikes) as: for every ε > 0, almost
surely,

supp(µSN ) ⊂ supp(µ) + (−ε, ε)
for N large enough.

A more accurate description of spectrum confinement relies on the deterministic equivalent of
µSN defined as µ

N
:= µ(rN ,ΓN ) (cf. (25) with ν = µΓN ). Assume that A3 holds. By [1, Theorem

1.1], if there exists ε > 0 and an interval [a, b] such that

[a, b] ∩
(

supp(µ
N

) + (−ε, ε)
)

= ∅

for N large enough, then almost surely

(27) supp(µSN ) ∩ [a, b] = ∅

for N large enough. In particular, if a > 0 there is no eigenvalue of SN in [a, b] for N large enough.
The description of the support of a probability distribution defined via a fixed-point equation

(25) is given in [41, Theorems 4.1 and 4.2]. Based on these results, we now state a necessary and
sufficient condition for which a real number x lies outside the support of µ

N
= µ(rN ,ΓN ). Let

(28) BN := {y ∈ R : y 6= 0, y−1 6= λk(ΓN ), ∀k = 1, . . . , N} ,

and define

(29) xN (y) :=
1

y
+ rN

∫
s dµΓN (s)

1− sy
for y ∈ BN .

A real number x ∈ R lies outside the support of µ
N

if and only if

∃ y ∈ BN , x = xN (y) and x′N (y) = − 1

y2
+ rN

∫
s2 dµΓN (s)

(1− sy)2
< 0 .

Exact separation. Let [a, b] be an interval eventually outside the support of µ
N

= µ(rN ,ΓN ), assume

that µΓN → ν and let µ = µ(r, ν). ”Exact separation” is a phenomenon that expresses the fact
that (almost surely and eventually) the interval [a, b] separates the empirical eigenvalues of matrix
SN exactly in the same proportions as [1/mµ(a), 1/mµ(b)] separates those of matrix ΓN .

This expression has been coined in the article [2] by Bai and Silverstein, from which we recall the
result of interest to us, that is mainly [2, Theorem 1.2(2)]: Assume in addition to the assumptions
of [1, Theorem 1.1] (and in particular to assumption A3) that the conditions mµ(b) > 0 and

r(1− ν({0})) ≤ 1 hold. For N large enough, let iN be an integer such that

λiN (ΓN ) >
1

mµ(b)
and λiN+1(ΓN ) <

1

mµ(a)
.

Then almost surely, λiN (SN ) > b and λiN+1(SN ) < a for N large enough. This result will be used
in the particular case where ν = δ0. In this case, mµ(x) = 1

x and r(1− δ0(0)) = 0.
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4.2. Reduction to the bounded model. When studying λmax(SN ) under A2, the main difficulty
is to handle the unboundedness of λmax(ΓN ). In order to circumvent this issue, we define

S̃N =
1

n
Γ̃

1/2
N ZNZ

∗
N Γ̃

1/2
N where Γ̃N :=

ΓN
λmax(ΓN )

.

In particular, notice that λmax(S̃N ) = λmax(SN )
λmax(ΓN ) . Thus, in order to establish the results stated in

Proposition 2.1 and Theorem 2.2, we only need to prove the corresponding results for S̃N .
Using the definition of Γ̃N , the tightness of (µΓN ) and the fact that λmax(ΓN ) → ∞, we imme-

diatly deduce the following properties for Γ̃N :

λmax(Γ̃N ) = 1 and µΓ̃N D−−−−→
N→∞

δ0 .

In particular, the spectral norm of Γ̃N is bounded and many classical results, for instance those of
Bai and Silverstein [39, 1] can be applied to S̃N . Considering this fact, we state and prove below
Proposition 4.1 and Theorem 4.2 which are the counterparts of Proposition 2.1 and Theorem 2.2.

A2(b) Given a sequence of N ×N positive semidefinite deterministic matrices ΓN , the following
properties hold:

λmax(ΓN ) = 1 ∀N ≥ 1 and µΓN D−−−−→
N→∞

δ0 .

Proposition 4.1. Let SN be a N ×N matrix given by (1) and assume that A1 and A2(b) hold.
Then

(30) λmax(SN )
P−−−−−→

N,n→∞
1.

If moreover either the random variables Z
(N)
ij are standard (real or complex) Gaussian or Assump-

tion A3 holds, then the above convergence holds almost surely.

Although the spectral norm of ΓN is assumed to be bounded while the limiting spectral measure
is δ0, we cannot directly apply the results of [7] since we do not assume a clear separation between
the spikes and non-spiked eigenvalues. Note that, as quoted in Remark 9, all the non-normalized
eigenvalues of a Toeplitz matrix converge to infinity at the same rate. Consequently, there is an
infinite number of normalized eigenvalues of a Toeplitz matrix which are generalized spikes in the
sense of [7].

Theorem 4.2. Let SN be a N ×N matrix given by (1) and assume that A1, A2(b) and A4 hold.
Assume moreover that one of the following conditions is satisfied:

(i) Assumption A5 holds,
(ii) The random variables Z

(N)
ij are standard complex Gaussian,

(iii) The random variables Z
(N)
ij are standard real Gaussian and matrices ΓN are real symmetric,

then

(31)
√
n

(
λmax(SN )− 1− 1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )

)
D−−−−−→

N,n→∞
NR(0, σ2),

where σ2 = E|Z(1)
1,1 |4 − 1.

In order to prove Proposition 2.1 and Theorem 2.2, we only need to apply the above results to
S̃N .
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4.3. Proof of Proposition 4.1. We first prove the theorem under assumption A3. We first
establish that

(32) lim
N,n→∞

λmax(SN ) ≤ 1 a.s.

Recall the definition of the set BN in (28). Due to the spectrum confinement property (27), we
only need to prove that for any ε > 0, the interval [1 + ε,+∞) eventually stays outside the support
of µ

N
= µ(rN ,ΓN ). Relying on the caracterization of a point x outside supp(µ

N
), this will be the

consequence of the following property

∀x ∈ [1 + ε,∞), ∃ y ∈ BN , x = xN (y) and x′N (y) < 0

that we now prove.
Since λmax(ΓN ) = 1 under A2(b), notice that (0, 1) ⊂ BN . Consider a real number η such that

η ∈
(

1

1 + ε
, 1

)
.

For s ≤ 1, we have |1− sη| ≥ 1− η > 0, therefore by the definition (29) of xN , and by the fact that
µΓN −−−−→

N→∞
δ0, we have

xN (η) −−−−−→
N,n→∞

1

η
< 1 + ε and x′N (η) −−−−−→

N,n→∞
− 1

η2
< 0 .

So for N large enough, we have xN (η) < 1 + ε, and x′N (η) < 0. For such N ’s, note that xN is
continuous on (0, η) and that xN (y) → +∞ as y → 0+. We have proved so far that [1 + ε,∞) ⊂
xN ((0, η)). Notice finally that x′N is increasing on (0, η), in particular x′N (y) ≤ x′N (η) < 0 for
all y ∈ (0, η). Therefore xN ((0, η)) and thus [1 + ε,∞) eventually lie outside the support of µ

N
.

Equation (32) is established.
We now prove that

(33) lim
N,n→∞

λmax(SN ) ≥ 1, a.s.

by an exact separation argument.
As µ = δ0, we have 1/mµ(a) = a, 1/mµ(b) = b for any a, b > 0. We intend to find some constant

interval of the form [a, 1− ε], for small ε > 0 which separates the eigenvalues of matrix ΓN into two
non-empty parts. This is not always possible because even if λmax(ΓN ) = 1 and µΓN → δ0, there
might be some intermediate eigenvalues among the (λi(ΓN ))’s for i ≥ 2 eventually lying in (0, 1).
In order to circumvent this issue, we introduce the auxiliary matrices

ŜN :=
1

n
Z∗NΘNZN and ŜN :=

1

n
Θ

1
2

NZNZ
∗
NΘ

1
2

N ,

where ΘN is obtained from the spectral decomposition of ΓN as:

ΘN := UN diag(1, 0, · · · )U∗N where ΓN = UN diag(1, λ2(ΓN ), · · · )U∗N .

Using [41, Theorems 4.1 and 4.2], we conclude that for any 0 < ε < 1/2, the interval [ε, 1 − ε] is
eventually outside the support of probability µ(rN ,ΘN ), obtained from (25) with parameters rN
and ΘN . Notice in particular that

λmax(ΘN ) = 1 and λi(ΘN ) = 0 for i = 2 : N .

Applying [2, Theorem 1.2] to ŜN with separating interval [ε, 1 − ε] for arbitrary ε ∈ (0, 1/2), we

conclude that almost surely, λmax(ŜN ) > 1− ε for N large enough. We have proved so far that

lim
N,n→∞

λmax(ŜN ) ≥ 1

almost surely. Now, since

SN − ŜN =
1

n
Z∗NUN diag(0, λ2(SN ), · · · , λN (SN ))U∗NZN

is nonnegative definite, we have limN,n→∞ λmax(SN ) ≥ limN,n→∞ λmax(ŜN ) ≥ 1. Therefore Propo-
sition 4.1 with assumption A3 is proved.
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As a byproduct of the above proof, we can easily prove λmax(SN )
P−→ 1 without imposing A3.

Suppose that SN = 1
nΓ

1/2
N ZNZ

∗
NΓ

1/2
N satisfies A1 and A2(b) and construct Ž = (Ži,j)i,j≥1 with

Ži,j i.i.d random variables identically distributed as the entries of ZN . Let S′N = 1
nΓ

1/2
N Z ′NZ

′∗
NΓ

1/2
N

with Z ′N the top-left N×n submatrix of Ž. Then according to the above proof, λmax(S′N ) converges
to 1 almost surely, hence in probability. Since λmax(SN ) and λmax(S′N ) have the same distribution,

we have also λmax(SN )
P−→ 1.

Finally, we prove that if the entries Z
(N)
i,j are i.d standard Gaussian variables, and i.i.d for all

1 ≤ i, j ≤ N , the convergence (30) holds almost surely without the need of assumption A3. This

mainly relies on a concentration argument. Recall that we already have λmax(SN )
P−→ 1. Using [16,

Theorem 5.6], we prove the following concentration inequality: for all N ≥ 1 and all ε > 0,

(34) P(|
√
λmax(SN )− E

√
λmax(SN )| > ε) < 2e−CNε

2

where C > 0 is a proper fixed constant. Indeed it suffices to show that the function s defined by

s : ZN 7→
√
λmax(SN ) =

√
λmax

(
1

n
Γ

1
2

NZNZ
∗
NΓ

1
2

N

)
is 1√

CN
-lipschitz, where we consider the N × n matrix ZN as a vector in Euclidean space RNn

when Z
(N)
i,j are real Gaussian, and in R2Nn when the entries are complex Gaussian. Note that the

Euclidean norm of the vector ZN is the same as the Frobenius norm ‖ZN‖F of the matrix ZN . So

for any two matrices ZN and ẐN , we have

|s(ZN )− s(ẐN )| = 1√
n

∣∣∣‖Γ1/2
N ZN‖ − ‖Γ1/2

N ẐN‖
∣∣∣ ≤ 1√

n
‖Γ1/2

N (ZN − ẐN )‖

≤ 1√
n
‖Γ1/2

N (ZN − ẐN )‖F
(a)

≤ 1√
n
‖Γ1/2

N ‖‖ZN − ẐN‖F
(b)
=

1√
n
‖ZN − ẐN‖F ,

where (a) follows from the Frobenius norm inequality ‖AB‖F ≤ ‖A‖‖B‖F , and (b) from the fact

that ‖Γ1/2
N ‖ =

√
λmax(ΓN ) = 1. Thus s is 1/

√
n-lipschitz, and the concentration inequality (34) is

proved. Using Borel-Cantelli lemma, we have

(35)
√
λmax(SN )− E

√
λmax(SN )→ 0 a.s.

Together with
√
λmax(SN )

P−→ 1, we then obtain that E
√
λmax(SN )→ 1. By (35) again, it follows

that

λmax(SN ) −−−−−→
N,n→∞

1 a.s.

The proof of Proposition 4.1 is complete.

4.4. Proof of Theorem 4.2. We first prove the fluctuation of λmax(SN ) under A1, A2(b), A4
and A5. Under these assumptions, ΓN is of the form

ΓN =

(
1 0
0 ΓN−1

)
,

where (ΓN−1) is a sequence of semidefinite positive Hermitian matrices satisfying µΓN−1
D−→ δ0, and

lim
N→∞

λmax(ΓN−1) = lim
N→∞

λ2(ΓN ) = lim
N→∞

λ2(ΓN )

λ1(ΓN )
< 1

by assumption A4. We set d = limN→∞ λmax(ΓN−1). For convenience, in this section we omit

all the subscript N of matrices, for example we write S = n−1Γ
1
2ZZ∗Γ

1
2 . In the following of this

section we write λmax(SN ) as λmax if it does not cause any ambiguity.
Recall the submatrix notations introduced in (16) and consider the following block decomposition

of matrix S:

(36) S =

(
S1,1 S1,2:N

S2:N,1 S2:N,2:N

)
=

1

n

(
Z1,·Z

∗
1,· Z1,·Z

∗
2:N,·Γ

1
2

Γ
1
2Z2:N,·Z

∗
1,· Γ

1
2Z2:N,·Z

∗
2:N,·Γ

1
2

)
.
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Denote

S2:N,2:N :=
1

n
Z∗2:N,·ΓZ2:N,· and rN =

N − 1

n
.

Analog to µ(rN ,ΓN ) defined in (25), we define the probability measure µ(rN , ΓN−1) whose Cauchy-
Stieltjes transform m satisfies the equation

z =
1

m(z)
+

1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )m(z)
, ∀z ∈ C+.

Also, for all y ∈ BN := {y ∈ R : y 6= 0, y−1 6= λk(ΓN ),∀k = 2, . . . , N}, we define

(37) xN (y) :=
1

y
+

1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )y
=

1

y
+ rN

∫
s

1− sy
dµΓN−1(s).

Consider in particular

(38) θN = xN (1) = 1 +
1

n

N∑
k=2

λk(ΓN )

1− λk(ΓN )
.

Let ε > 0 be small enough. Thanks to the assumption µΓN−1
D−→ δ0 and d = limλmax(ΓN−1) < 1,

one can adapt the first part of the proof of Proposition 4.1 to obtain that eventually

sup suppµ(rN , ΓN−1) < d+ ε .

Let ε < 1−d
2 so that d+ ε < 1− ε and consider the family of events ΩN defined as

(39) ΩN := {λmax(S2:N,2:N ) < d+ ε < 1− ε < λmax}.

According to the spectrum confinement property [1, Theorem 1.1] and to Proposition 4.1, one has

P(ΩN ) −−−−−→
N,n→∞

1 .

In particular, for any sequence of events AN , we have P(AN )− P(AN ∩ ΩN )→N→∞ 0, which can
be written

P(AN )
.
= PΩ(AN )

if one writes PΩ(·) for P( · ∩ ΩN ) and recall the notation x
.
= y for x− y → 0. Hence, with no loss

of generality, we will assume below that ΩN holds.
Let λmax ∈ ΩN . Using the block decomposition (36) of S together with the determinantal

formula based on Schur complements (see for instance [24, Section 0.8.5]), the eigenvalue λmax

satisfies the equation:

(40) det(λmaxI − S)

=
(
λmaxI − S1,1 − S1,2:N (λmaxI − S2:N,2:N )−1S2:N,1

)
det(λmaxI − S2:N,2:N ) = 0 .

Since det(λmaxI − S2:N,2:N ) 6= 0 on ΩN , we have

λmax = S1,1 + S1,2:N (λmaxI − S2:N,2:N )−1S2:N,1 ,

=
Z1,·Z

∗
1,·

n
+
Z1,·Z

∗
2:N,·Γ

1
2

n

(
λmaxI −

1

n
Γ

1
2Z2:N,·Z

∗
2:N,·Γ

1
2

)−1 Γ
1
2Z2:N,·Z

∗
1,·

n
,

=
Z1,·

n

(
I +A∗ (λmaxI −AA∗)−1

A
)
Z∗1,· .

(
A = n−1/2 Γ

1
2Z2:N,·

)
(41)

Using the equality I + A∗(λI − AA∗)−1A = λ(λI − A∗A)−1 for all scalar λ and all matrix A such
that λI −AA∗ and λI −A∗A are invertible, the equation (41) is equivalent to

(42) 1 =
1

n
Z1,·(λmaxI − S2:N,2:N )−1Z∗1,· .

As θN = xN (1) ≥ 1 lies outside the support of µ(rN , ΓN−1) for large N , [41, Theorem 4.2] yields

m(θN ) = m(xN (1)) = 1 .
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This can be regarded as a “deterministic” version of (42), which indicates that λmax and θN are
comparable.

In order to prove the Gaussian fluctuations of λmax, we need to prove that for all b ∈ R
(43) P (λmax ≤ ηN ) −−−−−→

N,n→∞
Φ(b, σ)

where

ηN := θN +
b√
n
, Φ(x, σ) :=

1

σ
√

2π

∫ x

−∞
e−

t2

2σ2 dt and σ2 = E
∣∣∣Z(1)

1,1

∣∣∣4 − 1 .

Note that on ΩN the function

Υ(λ) :=
1

n
Z1,·(λI − S2:N,2:N )−1Z∗1,·

is decreasing on (d+ ε,+∞). Let N large enough so that ηN > d+ ε.
Taking into account the fact that Υ(λmax) = 1 due to (42), we have

(44) PΩ(λmax ≤ ηN ) = PΩ (Υ(ηN ) ≤ 1) = PΩ

(√
n (Υ(ηN )−m(ηN )) ≤

√
n(1−m(ηN ))

)
.

We first prove that

(45)
√
n(1−m(ηN )) = b+ o(1) .

Taking into account the fact that m(θN ) = 1 and performing a Taylor expansion on m around θN
yields

√
n(1−m(ηN )) =

√
n(m(θN )−m(ηN )) = −bm′(θN )−m′′(ξN )

b2√
n

where ξN is between θN = xN (1) and ηN . The assumptions µΓN−1
D−→ δ0 and d = limλmax(ΓN−1) <

1 yield
θN , ηN −−−−−→

N,n→∞
1 .

Similarly, one proves that x′N (1) −−−−−→
N,n→∞

−1. By [41, Theorem 4.2], equality m(xN (y)) = y holds

for any y /∈ suppµrN ,ΓN−1 . Differentiating, we get

m′(xN (y))x′N (y) = 1 and m′(xN (1)) =
1

x′N (1)
−−−−−→
N,n→∞

−1 .

Finally, for large N , we have supN suppµ(rN , ΓN−1) < d+ ε < 1− ε < min(ηN , θN ) which implies

|m′′(ξN )| = 2

∣∣∣∣∫ dµ(rN , ΓN−1)(s)

(ξN − s)3

∣∣∣∣ ≤ 2

(1− d− 2ε)3
.

Plugging this into the Taylor expansion finally yields (45).
We now go back to (44) and handle the quantity

√
n(Υ(ηN )−m(ηN )). More precisely, we prove

in the sequel that

(46)
√
n(Υ(ηN )−m(ηN )) =

√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) .

In order to proceed, we need the following estimates, valid under the assumptions of Theorem 4.2.

Proposition 4.3. Assume that A1, A2(b), A4 and A5 hold, then

(a)
√
n
(

1
n tr

(
ηNI − S2:N,2:N

)−1 −m(ηN )
)

P−−−−−→
N,n→∞

0 ,

(b)
√
n

ηN

(
1
nZ1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· − 1

n tr(ηNI − S2:N,2:N )−1S2:N,2:N

) P−−−−−→
N,n→∞

0 .

Proof of Proposition 4.3 is postponed to Section 4.4.1. We have
√
n(Υ(ηN )−m(ηN ))

=
√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
+

1

n
tr
(
ηNI − S2:N,2:N

)−1 −m(ηN )

)
,

=
√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
)

+ oP (1)(47)
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by the first part of Proposition 4.3. We now apply the resolvent identity A−1 − B−1 = A−1(B −
A)B−1 to A = ηNI − S2:N,2:N and B = ηNI and obtain

√
n

(
Υ(ηN )− 1

n
tr
(
ηNI − S2:N,2:N

)−1
)

=

√
n

ηN

(
1

n
Z1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· −

1

n
tr(ηNI − S2:N,2:N )−1S2:N,2:N

)
+

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
,

=

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1)(48)

where the last equality follows from the second estimate of Proposition 4.3. Notice that by the
standard Central Limit theorem,

√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
=
√
n

 1

n

n∑
j=1

|Z1,j |2 − 1

 D−−−−→
n→∞

NR(0,Var |Z1,1|2)

where Var |Z1,1|2 = E|Z1,1|4 − 1. Since ηN → 1, one has

√
n

ηN

(
1

n
Z1,·Z

∗
1,· − 1

)
=
√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) .

Plugging this last estimate into (48) and (47) finally yields (46). We can now conclude the proof
of the CLT:

P(λmax ≤ ηN )
.
= PΩ(λmax ≤ ηN ) ,

(a)
= PΩ

(√
n (Υ(ηN )−m(ηN )) ≤ b+ o(1)

)
,

(b)
= PΩ

(√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) ≤ b

)
,

.
= P

(√
n

(
1

n
Z1,·Z

∗
1,· − 1

)
+ oP (1) ≤ b

)
(49)

where (a) follows from (44) and (45) and (b) follows from (46). We can now get rid of the term
oP (1) in (49) by Slutsky’s theorem and finally obtain the desired result:

P(
√
n(λmax − θN ) ≤ b) = P(λmax ≤ ηN ) −−−−−→

N,n→∞
Φ(b, σ) , σ2 = E|Z1,1|4 − 1 .

This completes the proof of Theorem 4.2 under condition (i).

Assume now that Z
(N)
ij ∼ NC(0, 1) and consider the eigen-decomposition ΓN = UNDNU

∗
N , where

UN is unitary and DN = diag(λ1(ΓN ), . . . , λN (ΓN )). Then SN can be written as

SN =
1

n
UND

1
2

N (U∗NZN ) (Z∗NUN )D
1
2

NU
∗
N =

1

n
UND

1
2

N Z̃N Z̃
∗
ND

1
2

NU
∗
N where Z̃N = U∗NZN

and has the same eigenvalues as the matrix RN = n−1D
1
2

N Z̃N Z̃
∗
ND

1
2

N . It remains to notice that Z̃N
has i.i.d. NC(0, 1) entries. In particular, RN satisfies A1, A2(b), A4 and A5, and the desired
result follow for SN . Theorem 4.2 is established under condition (ii).

Assume now that Z
(N)
ij ∼ NR(0, 1) and that ΓN is real symmetric. In this case, ΓN ’s eigen-

decomposition writes ΓN = ONDNO
>
N , where matrix ON is orthogonal. It remains to notice that

O>NZN has i.i.d NR(0, 1) entries and to proceed as in the complex case to prove Theorem 4.2 under
condition (iii).

Proof of Theorem 4.2 is completed.
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4.4.1. Proof of Proposition 4.3. We first establish item (a). Denote by

∆N (x) =
1

n
tr
(
xI − S2:N,2:N

)−1 −m(x) .

We will first establish that n∆n(ηN ) is tight and then, as an easy consequence, we will deduce the

desired convergence:
√
n∆N (ηN )

P−−−−−→
N,n→∞

0.

If x ≥ 1 − ε is fixed with 1 − ε > d + ε, then the tightness of n∆N (x) is a consequence of Bai
and Silverstein’s peripheral results of their CLT paper [3], see also [4, Chapter 9]. In fact,

∆N (x) =

∫
f(x, λ)µS2:N,2:N (dλ)−

∫
f(x, λ)µ(rN , ΓN−1)(dλ) where f(x, λ) =

1

x− λ
.

Notice that for any x ≥ 1−ε, λ 7→ f(x, λ) is analytic in a neighbourhood of [0, d+ε] which contains
the support of µ(rN , ΓN−1). According to [4, Theorem 9.10(1)] and to the remark at the end of page
265 in [4] which tightens the interval where the function f(x, ·) needs to be analytic, we immediatly
obtain the tightness of (n∆N (x)).

The case where x = ηN ≥ 1− ε for N large necessitates some adaptation. We closely follow [4,
Chapter 9]. Denote by

MN (z) = n
(
mS2:N,2:N (z)−m(z)

)
and by C+ the contour defined by (δ, u > 0 fixed)

C+ = C` ∪ Cup ∪ Cr where

 C` = {z = (−δ, y) , y ∈ [0, u]}
Cup = {z = (x, u) , x ∈ [−δ, d+ ε]}
Cr = {z = (d+ ε, y) , y ∈ [0, u]}

.

Consider the truncated version M̂N (z) of MN (z) as defined in [4, (9.8.2)] then∫
C

1

ηN − z

(
M̂N (z)−MN (z)

)
dz

a.s.−−−−−→
N,n→∞

0 where C = C+ ∪ C+

and {M̂N (·)} forms a tight sequence on C. Consider now the mapping

ΓN : M̂N (·) 7−→ 1

2iπ

∫
C

1

ηN − z
M̂N (z) dz .

ΓN is a continuous mapping from C(C,R2) to C. Applying Prohorov’s theorem (see for instance
[30, Theorem 16.3]) and the continuous mapping theorem [30, Theorem 4.27], we conclude that

ΓN (M̂N ) is tight. It remains to notice that

n∆N (ηN ) = ΓN (M̂N ) +
(

ΓN (M̂N )− ΓN (MN )
)

︸ ︷︷ ︸
→0 a.s.

to conclude that n∆N (ηN ) is tight. Now let δ > 0 be fixed, then

P(|
√
n∆N (ηN )| > δ) = P(|n∆N (ηN )| >

√
nδ) −−−−−→

N,n→∞
0

by tightness, hence the convergence of
√
n∆N (ηN ) to zero in probability. Part (a) of Proposition

4.3 is proved.
We now prove part (b) of Proposition 4.3 and rely on the lemma on quadratic forms [4, Lemma

B.26]. Denote by

PN =
√
n

(
1

n
Z1,·(ηNI − S2:N,2:N )−1S2:N,2:NZ

∗
1,· −

1

n
tr
{

(ηNI − S2:N,2:N )−1S2:N,2:N

})
and apply the lemma on quadratic forms with p = 2: There exists a constant C such that

EZ2:N,·(|PN |2) ≤ C

n
E(|Z(1)

1,1 |4) tr
{

(ηNI − S2:N,2:N )−2 S2
2:N,2:N

}
.

Taking into account the facts that

lim
n→∞

ηN = 1 , lim
N
λmax(S2:N,2:N )

P
≤ d and µS2:N,2:N

D−−−−−→
N,n→∞

δ0 a.s. ,
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we obtain that

1

n
tr
{

(ηN − S2:N,2:N )−2S2
2:N,2:N

}
=

∫
s2

(ηN − s)2
µS2:N,2:N ( ds)

P−−−−−→
N,n→∞

0 .

Thus EZ2:N,·(|PN |2) converges to zero in probability, from which we deduce that for δ > 0,

EZ2:N,·(1|PN |2>δ) ≤
1

δ
EZ2:N,·

(
|PN |21|PN |2>δ

) P−−−−−→
N,n→∞

0 .

Finally

P(|PN |2 > δ) = EEZ2:N,·(1|PN |2>δ) −−−−−→
N,n→∞

0 ,

which completes the proof of Proposition 4.3.

5. Proof of Theorem 2.3

In order to study the spectral gap associated to the family of Toeplitz matrices and to prove
Theorem 2.3, we follow the method used in [15]. The main idea is to interpret the eigenvalues of
the Toeplitz matrix TN as eigenvalues of an operator KN using Widom-Shampine’s Lemma, and
then analyse the convergence of this operator, correctly normalized.

In this section, for p ∈ [1,∞], the Lp norm of a function f is denoted by ‖f‖p, and the Lp → Lp

norm of an operator K is denoted by ‖K‖p. Recall that ‖K‖p := sup‖f‖p=1 ‖Kf‖p.

5.1. Widom-Shampine’s Lemma and convergence of operators. We first recall Widom-
Shampine’s Lemma, see [15] for a proof.

Lemma 5.1 (Widom-Shampine). Let A = (ai,j)
N−1
i,j=0 be a matrix with complex entries ai,j, and let

G be the integral operator on L2(0, 1) defined by

(Gf)(x) =

∫ 1

0

abNxcbNycf(y) dy, x ∈ (0, 1).

Then a nonzero complex number λ is an eigenvalue of A of a certain algebraic multiplicity if and
only if λ/N is an eigenvalue of G of the same algebraic multiplicity.

Let c = (ck)k∈Z be the sequence in Theorem 2.3, and ρ ∈ (−1, 0) be the index, then the function
R(h) := cb|h|c is even and regularly varying and R(k) = ck. By Definition 1, R(N) 6= 0 for large
enough N ∈ N, for convenience we can suppose that R(N) 6= 0 for all N ∈ N without loss of
generality. By Widom-Shampine’s Lemma, for each N , the matrix TN (c)/(NR(N)) has the same

nonzero eigenvalues (with the same multiplicities) as the integral operator K(ρ)
N defined on L2(0, 1)

by

(50) (K(ρ)
N f)(x) =

∫ 1

0

R(bNxc − bNyc)
R(N)

f(y) dy .

We will prove that the operators K(ρ)
N converge in the operator norm to the operator K(ρ) defined

on L2(0, 1) by

(51) (K(ρ)f)(x) =

∫ 1

0

|x− y|ρf(y) dy.

For this we need the following Lemma 5.2 which is a special case of the uniform convergence theorem
of regularly varying functions.

Lemma 5.2 ([14, Theorem 1.5.2]). If R is regularly varying with index ρ < 0, then for every a > 0

sup
x>a

∣∣∣∣R(xy)

R(y)
− xρ

∣∣∣∣ −−−→y→∞
0 .

The following description of the asymptotic integral of regularly varying functions will also be
useful in the sequel.
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Lemma 5.3 ([14, Proposition 1.5.8]). If R is regularly varying with index ρ > −1, and suppose
that R is locally bounded, then ∫ y

0

R(x) dx ∼ yR(y)

1 + ρ
(y → +∞).

Recall that for an operator defined by (Kf)(x) =
∫ 1

0
K(x, y)f(y) dy, we have

‖K‖1 ≤M1 and ‖K‖∞ ≤M∞ ,

where

(52) M1 := ess sup
y∈[0,1]

∫ 1

0

|K(x, y)|dx, M∞ := ess sup
x∈[0,1]

∫ 1

0

|K(x, y)|dy.

If the kernelK is symmetric for x and y, thenM1 = M∞. In this case and ifM1 = M∞ <∞, then by
the Riesz–Thorin interpolation theorem (cf. [20, Theorem 2.2.14], taking p0 = q0 = 1, p1 = q1 =∞),
for all p ∈ [1,+∞], we have

(53) ‖K‖p ≤M1 = M∞.

We are now ready to prove the theorem. As mentioned above, we first prove the following
convergence of operators.

Lemma 5.4. Let ρ ∈ (−1, 0), then for any p ∈ [1,∞] and any N ∈ N, the fomulas (50) and (51)

define bounded operators K(ρ)
N and K(ρ) on Lp(0, 1). Moreover we have

(54) lim
N→∞

‖K(ρ)
N −K

(ρ)‖p = 0

for any p ∈ [1,∞].

Proof. Let K
(ρ)
N : [0, 1]2 → R and Kρ : [0, 1]2 → R be the integral kernels defining respectively K(ρ)

N

and K(ρ), that is,

K
(ρ)
N (x, y) =

R(bNxc − bNyc)
R(N)

, K(ρ)(x, y) = |x− y|ρ.

Recall that since R is even, the considered kernels are symmetric and the two essential supremums

in (52) of each kernel are equal. Moreover, for each N , K
(ρ)
N is bounded on [0, 1]2 as it takes only

a finite number of values, hence

ess sup
x∈[0,1]

∫ 1

0

|K(ρ)
N (x, y)|dy = ess sup

y∈[0,1]

∫ 1

0

|K(ρ)
N (x, y)|dx <∞ .

For ρ ∈ (−1, 0), easy calculations yield

ess sup
x∈[0,1]

∫ 1

0

|x− y|ρ dy = ess sup
y∈[0,1]

∫ 1

0

|x− y|ρ dx =
2−ρ

(1 + ρ)
<∞ .

So by (53), for all p ∈ [1,+∞] we have

‖K(ρ)
N ‖p <∞ and ‖K(ρ)‖p ≤

2−ρ

(1 + ρ)
.

Also by (53), we have

(55) ‖K(ρ)
N −K

(ρ)‖p ≤ ess sup
y∈[0,1]

∫ 1

0

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx .

We now prove that ‖K(ρ)
N − K(ρ)‖p → 0 by showing that the RHS of (55) goes to 0 as N →∞.

Taking an arbitrary ε ∈ (0, 1), we set Aε := {(x, y) ∈ [0, 1]2 : |x− y| > ε} and for y ∈ [0, 1], we set
Aε(y) := {x ∈ [0, 1] : (x, y) ∈ Aε} = {x ∈ [0, 1] : |x− y| > ε}.

By the inequality

(56) |x− y| − 1

N
≤ |bNxc − bNyc|

N
≤ |x− y|+ 1

N
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and the uniform continuity of the function x 7→ xρ on [ ε2 ,+∞), we can take N1 = N1(ε) ∈ N such
that for N > N1 and (x, y) ∈ Aε we have

(57)
|bNxc − bNyc|

N
>
ε

2

and

(58)

∣∣∣∣ |bNxc − bNyc|ρNρ
− |x− y|ρ

∣∣∣∣ < ε

2
.

Then applying Lemma 5.2 with a = ε/2, we can find N2 = N2(ε) ∈ N such that for N > N2 and
for all c satisfying |c| ≥ ε/2, we have

(59)

∣∣∣∣R(cN)

R(N)
− |c|ρ

∣∣∣∣ < ε

2
.

For all N > max(N1, N2) and (x, y) ∈ Aε, let c = bNxc−bNyc
N then by (57) we have |c| > ε/2.

Moreover

(60)

∣∣∣∣R(bNxc − bNyc)
R(N)

− |bNxc − bNyc|
ρ

Nρ

∣∣∣∣ < ε

2

by (59). Combining (58), (60) and the triangle inequality, we have∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ < ε

for all N > max(N1, N2) and (x, y) ∈ Aε. Then for N large enough, we have

(61) ess sup
y∈[0,1]

∫
Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx < ε .

On the other hand, for all y ∈ [0, 1], we have

(62)

∫
[0,1]\Aε(y)

|x− y|ρ dx ≤
∫ ε

−ε
|x|ρ dx =

2ε1+ρ

1 + ρ
.

Hence we just need to control the integral∫
[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx .

Notice that both R and |R| are even, locally bounded and regularly varying with index ρ. By
Lemma 5.3, we have∫

[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx ≤
∫ y+ε

y−ε

∣∣∣∣R(bNxc − bNyc)
R(N)

∣∣∣∣ dx

(a)
=

∫ ε

−ε

∣∣∣∣R(bNx+ (Ny − bNyc)c)
R(N)

∣∣∣∣ dx

=

∫ Nε

−Nε

∣∣∣∣R(bx+ (Ny − bNyc)c)
NR(N)

∣∣∣∣ dx

≤
∫ Nε+1

−Nε−1

∣∣∣∣ R(bxc)
NR(N)

∣∣∣∣ dx

(b)∼ 2

∣∣∣∣R(Nε+ 1)

R(N)

∣∣∣∣ ε

1 + ρ

(c)∼ 2ε1+ρ

1 + ρ
(63)

as N → ∞, where (a) follows from a change of variable and the fact that bxc + h = bx + hc for
every h ∈ Z, (b) follows from Lemma 5.3 and (c) from Lemma 5.2. Notice that the controls (62)
and (63) are independent of y, hence for N large enough, we have

(64) ess sup
y∈[0,1]

∫
[0,1]\Aε(y)

∣∣∣∣R(bNxc − bNyc)
R(N)

− |x− y|ρ
∣∣∣∣ dx <

5ε1+ρ

1 + ρ
.
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Combining (61) and (64), and taking ε→ 0, we finally obtain

‖K(ρ)
N −K

(ρ)‖p −−−−→
N→∞

0

for all p ∈ [1,∞]. �

As a consequence of Lemma 5.4, we conclude that K(ρ) is compact on Lp(0, 1) for all p ∈ [1,∞],

because it is the limit in operator norm of finite dimensional operators K(ρ)
N .

We will complete the proof of Theorem 2.3 in the next section.

5.2. Convergence of eigenvalues and simplicity of the largest eigenvalue. First we note
that K(ρ), as an operator on L2(0, 1), is self-adjoint and nonnegative definite. The definite non-
negativity can be concluded from the convergence (54). Indeed, taking the slowly varying function
L ≡ 1 in the definition (14) of TN , by Polya’s Theorem (see for example Theorem 3.5.22 of [25]),
the Toeplitz matrices TN are positive definite for all N . Thus by Widom-Shampine Lemma 5.1,

K(ρ)
N does not have negative eigenvalues, since it has the same nonzero eigenvalues as TN/(Nγ(N)).

Then for any f ∈ L2(0, 1), we have

〈K(ρ)
N f, f〉 ≥ 0 .

Let N →∞, from (54) we have

〈K(ρ)f, f〉 ≥ 0 .

For k = 1, 2, . . . , let a
(ρ)
k be the k-th largest eigenvalue of K(ρ). The asymptotic formula of a

(ρ)
k

as k → ∞ has been obtained by Kac and Widom. See for example eq. (2) of [49]. Thus a
(ρ)
k > 0

for all k ≥ 1.

Let a
(ρ)
N,k = λk(TN (c))/(NR(N)) be the k-th largest eigenvalue of K(ρ)

N . From the convergence

‖K(ρ)
N −K(ρ)‖2 → 0 we deduce that a

(ρ)
N,k → a

(ρ)
k as N →∞. In fact, as K(ρ)

N and K(ρ) are compact

and self-adjoint, by the Min-Max Formula (see also [42, Theorem 4.12]) we have

a
(ρ)
N,k = min

dimU=k−1
max
u∈U⊥
‖u‖2=1

〈u,K(ρ)
N u〉

≤ min
dimU=k−1

max
u∈U⊥
‖u‖2=1

〈u,K(ρ)u〉+ ‖K(ρ)
N −K

(ρ)‖2 = a
(ρ)
k + ‖K(ρ)

N −K
(ρ)‖2 .

Symmetrically, we also have a
(ρ)
k ≤ a

(ρ)
N,k + ‖K(ρ)

N −K(ρ)‖2, from which we deduce

|a(ρ)
N,k − a

(ρ)
k | ≤ ‖K

(ρ)
N −K

(ρ)‖2

for all N and k. This implies the convergence of each eigenvalue a
(ρ)
N,k toward a

(ρ)
k .

We now prove that a
(ρ)
1 is a simple eigenvalue of K(ρ). Let u ∈ L2(0, 1) be an eigenfunction of

a
(ρ)
1 , then by the mini-max formula a

(ρ)
1 = maxf∈L2,‖f‖2=1〈f,K(ρ)f〉, we have

a
(ρ)
1 =

∫ 1

0

∫ 1

0

|x− y|ρu(x)u(y) dxdy ≤
∫ 1

0

∫ 1

0

|x− y|ρ|u(x)u(y)|dxdy ≤ a(ρ)
1

which implies ∫ 1

0

∫ 1

0

|x− y|ρ(|u(x)u(y)| − u(x)u(y)) dxdy = 0.

Hence |u(x)u(y)| = u(x)u(y) for (x, y) ∈ [0, 1]2 dx dy-a.e. This implies that for almost all y ∈ [0, 1],

the equality |u(x)u(y)| = u(x)u(y) holds for almost all x ∈ [0, 1]. Let y0 be such that u(y0) 6= 0
and c = u(y0)/|u(y0)| = eiϕ0 . Then for almost every x ∈ [0, 1], we have

u(x) =
|u(x)u(y0)|
u(y0)

= c|u(x)|.

So up to a nonzero constant multiplier we can suppose that u ≥ 0 on [0, 1]. Therefore

a
(ρ)
1 u(x) =

∫ 1

0

|x− y|ρu(y) dy ≥
∫ 1

0

u(y) dy > 0 .
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This implies that a
(ρ)
1 > 0 and u(x) > 0 for all x ∈ [0, 1]. Then for any other function v ∈ L2(0, 1)

s.t. 〈u, v〉 = 0, v cannot be an eigenfunction of the eigenvalue a
(ρ)
1 . Otherwise following the same

line of reasoning as previously we may write v = |v|eiϕ̃0 where |v| is also an eigenfunction associated

to a
(ρ)
1 , |v| > 0 on [0, 1] and 〈u, |v|〉 = e−iϕ̃0〈u, v〉 = 0. But u, |v| > 0 contradict the orthogonality

〈u, |v|〉 =

∫ 1

0

u(x)|v(x)|dx = 0 .

Finally recall that if R is regularly varying of index ρ ∈ (−1, 0), then NR(N) → ∞ as N → ∞
by [14, Prop. 1.3.6(v)]. Combining Widom-Shampine’s lemma and the convergence of eigenvalues,
we obtain

a
(ρ)
N,k =

λk(TN (c))

NR(N)
−−−−→
N→∞

a
(ρ)
k .

Hence λk(TN (c)) ∼ a(ρ)
k NR(N)→∞ as N →∞ and

λ2(TN (c))

λmax(TN (c))
−−−−→
N→∞

a
(ρ)
2

a
(ρ)
1

< 1 .

Proof of Theorem 2.3 is now completed.
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Paris-Est Marne-La-Vallée, 5, boulevard Descartes, Champs sur Marne, 77454 Marne-La-Vallée Cedex

2, France

E-mail address: florence.merlevede@u-pem.fr

Jamal Najim, Laboratoire d’Informatique Gaspard Monge (UMR 8049) Université Paris-Est Marne-
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