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Turbulent Rayleigh-Bénard convection in a 2D square cell is characterized by the existence of a
large-scale circulation which varies intermittently. We focus on a range of Rayleigh numbers where
the large-scale circulation experiences rapid non-trivial reversals from one quasi-steady (or meta-
stable) state to another. In previous work (Podvin and Sergent JFM 2015, Podvin and Sergent
PRE 2017), we applied Proper Orthogonal Decomposition (POD) to the joint temperature and15

velocity �elds at a given Rayleigh number and the dynamics of the �ow were characterized in a
multi-dimensional POD space. Here, we show that several of those �ndings, which required exten-
sive data processing over a wide range of both spatial and temporal scales, can be reproduced, and
possibly extended, by application of embedding theory to a single time series of the global angular
momentum, which is equivalent here to the most energetic POD mode. Speci�cally, embedding20

theory con�rms that the switches among meta-stable states are uncorrelated. It also shows that,
despite the large number of degrees of freedom of the turbulent Rayleigh Benard �ow, a low di-
mensional description of its physics can be derived with low computational e�orts, providing that
a single global observable re�ecting the symmetry of the system is identi�ed. A strong connection
between the local stability properties of the reconstructed attractor and the characteristics of the25

reversals can also be established.



2

We use Rayleigh-Bénard turbulent convection simulations to compare the properties of quasi-
stationary states and transitions (reversals) previously identi�ed via Principal Orthogonal Decom-
position (POD) to those obtained via embedding the global angular momentum of the system. Our
main result is to show that we can map POD properties on the attractor reconstructed via embedding30

techniques. Speci�cally, the embedding technique con�rms that the switches among di�erent meta-
stable states are uncorrelated. Moreover, a local stability indicator can be used to distinguish and
classify the di�erent metastable states. The low computational costs of embedding analysis suggests
to use this procedure whenever a global observable re�ecting the symmetry of the system can be
identi�ed, while the POD should be preferred when such information is not available.35

INTRODUCTION

In the last decades, the study of complex systems has shifted from a pure dynamical systems-based approach to
a mixture of statistical and statistical-mechanics techniques. This can be justi�ed on both practical and theoretical
levels. At the beginning of the 80's, the abundance of data from measurements as well as from numerical models was
limited. The complex systems studied were mostly laboratory �ows whose laminar or turbulent behavior depended40

on a control parameter [1, 2]. The use of numerical weather forecasts was limited to a few days [3] and climate
models were mostly conceptual [4]. At that time, new results in dynamical systems theory seemed to convince the
scienti�c community that a su�ciently long time series could be su�cient to reconstruct the dynamics of the system
via its attractor. This object is a geometric set towards which the system tends to evolve, independently on its initial
conditions.45

The Takens [5, 6] reconstruction theorem was then used to determine the dynamics of climate attractors as well
as of complex �ows. Initially, the dimension of these objects was set to be extremely low, usually smaller than 10
[7]. However, from the beginning of the 90's, several authors [8�10] found out that those low dimensional estimates
were wrong: in fact, despite the complexity of the systems, the reconstructions were mostly made using time series
measured at speci�c points of the physical space. Moreover, the time series used were not su�ciently long. In50

parallel, computational power increased quickly [11] and measurement techniques opened new possibilities to sample
the behavior of complex systems [12]. In experimental facilities, visualization techniques gave rapid access to �eld
measurements instead of local measurements[13, 14] and numerical models were capable to simulate several years of
Earth's climate[15], seconds of human brain activity[16], and molecules/proteins dynamics [17, 18].
The complexity of high-dimensional �elds as opposed to single-point time series required new methodologies in55

order to assess the probability of each con�guration and forecast the evolution of the system. For this purpose, one of
the most popular techniques is the Proper Orthogonal Decomposition (POD). In POD, an orthogonal transformation
is used to transform a dataset with correlated variables into linearly uncorrelated variables. Geometrically, this is
like �tting an n-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component.
Principal Component Analysis was invented by Karl Pearson[19], as an analogue of the principal axis theorem in60

mechanics. In the 1930s it was developed independently also by Harold Hotelling [20]. Depending on the �eld of
application, it is also named the discrete Kosambi-Karhunen-Loève transform (KLT) in signal processing [21], the
Hotelling transform [20] in multivariate quality control, proper orthogonal decomposition (POD) in turbulence [22],
empirical orthogonal functions (EOF) in meteorological science [23], empirical eigenfunction decomposition [24], and it
is also connected to singular value decomposition (SVD) of X [25], eigenvalue decomposition (EVD) of XTX in linear65

algebra, factor analysis, Eckart-Young theorem [26], or Schmidt-Mirsky theorem in psychometrics, quasiharmonic
modes [27], spectral decomposition in noise and vibration, and empirical modal analysis in structural dynamics [28].
The belief that embedding theorems could not be applied either to systems featuring a large number of degrees of
freedom or to time series of high-dimensional vector �elds, caused the data analysis scienti�c community to focus on
POD-based approaches to study complex systems. Meanwhile, several theoretical developments in dynamical systems70

theory were aimed at understanding how systems with large numbers of degrees of freedom could be dealt with[29, 30].
In particular, the framework of stochastic dynamical systems [31, 32] brings into view the idea that the dynamics of
complex systems can be represented by a small number of variables if one lumps the small scales contributions into
noise terms and choose as observables for the embedding procedure, global quantities tracking symmetry properties
of the �ow.75

For turbulent �ows, such as the von Karman swirling �ow, or for atmospheric dynamics, this revised approach produces
phase portraits which make it possible to de�ne low-dimensional models which capture the essential features of the
dynamics[33] in the fashion of the 1963 Lorenz equations [34]. The goal of the present paper is to examine how
information provided by the embedding procedure compares with that obtained by a more extensive analysis such as
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the Proper Orthogonal Decomposition (POD). This will be done for the speci�c case of 2-D turbulent Rayleigh-Bénard80

convection, a �ow which is characterized by a series of random transitions from a quasi-steady state to another. This
system is an interesting platform for exploring the relation between POD and embedding methods for few reasons:
i) It is a turbulent �ow and this would prevent � at least according Landau's conjecture [35]� a projection of the
dynamics onto a low dimensional space due to the large number of degrees of freedom introduced by small scales
perturbations. ii) The dynamics features a non-trivial bifurcation structure. This is only observed in a limited range85

of Prandtl and Rayleigh numbers, for reasons that are not understood [36]. iii) The dynamics for some values of the
parameter analysed in the paper feature the switching among di�erent metastable states, plus reversal with some
hybrid states. The physical origin of the switching remains largely unknown.

The paper is structured as follows: �rst we will recap the methodologies used, with emphasis on the recent devel-
opments on the embedding strategies for complex systems. Then we will describe the dataset used and outline the90

results. Eventually we will discuss the advantage of a combined approach to complex systems analysis.

DYNAMICAL SYSTEMS METHODS

In this section we give some elements of dynamical systems theory and some guidelines derived from recent studies
for reconstructing the attractors using global rather than local observables. We also introduce indicators of stability
derived from the theory of stochastic processes.95

Attractor Reconstruction via embedding methodologies

The aim of dynamical systems theory is to reconstruct the underlying attractor of a system and to assess its
properties. The attractor is a compact geometrical object in phase space that hosts all the possible trajectories of
a system. Once this object is reconstructed, it provides information on the (unstable) �xed points (if the system is
deterministic) or the metastable states (if the system is stochastic) and the transitions linking them. This description100

is useful when the attractor is low dimensional because its structure can be visualized and interpreted in an intuitive
way. Up to recently it was believed that low dimensional attractors would not be suitable to describe complex
geophysical and turbulent �ow. However, it has beeen shown [33] that it is possible to describe the large scale motion
of a fully-developed turbulent �ow with only a few degrees of freedom, if an appropriate observable re�ecting the
�ow symmetry is selected. The large embedding dimensions which prevented the applications of dynamical systems105

theory to turbulence arise from small scale disturbances that can be modeled in terms of stochastic perturbations.
This picture reconciles the Landau [35] and Ruelle-Takens [37] descriptions of turbulence, the former being valid at
small scales, and the latter describing the large scale motions. The observable can be derived as global mean of some
local quantities in the �ow (average energy or momentum), or it can be a single global output quantity measured in
an experiment (such as for instance the frequency of rotation of Von Karman �ow turbines, once a certain torque is110

imposed).

Once the observable is selected and a time series is obtained, di�erent embedding procedures can be used to
reconstruct the attractor from the signal. The �rst thing to determine is the embedding dimension, i.e. the number of
variables necessary for the attractor reconstruction. This can be done using the method by Cao [38], or by trying to
see how much information is added using another dimension. In what follows we will adopt the second strategy. After115

selecting the number of variables n, embedding consists in de�ning a n-dimensional state vector from the observable
time series Xi consisting i = 1, 2, ...t observations, as Mi = (Xi, Xi+τ1 , Xi+τ2 , . . .). The series can be embedded with
the method of delays [5], or with the local peaks procedure [39]. In the method of delays, the value of τi is kept
constant, which is most e�ective when there is a precise time scale in the system. In contrast, the local peaks method
consists in selecting τi dynamically as the interval between two subsequent partial maxima (or minima), which is most120

e�ective when there are no well-identi�ed time scales (e.g. switching frequencies between metastable states). In fact,
local maxima (or minima) are robust features of the dynamics even in the presence of noise, because they track the
position of metastable states [33]. Since we deal with a turbulent system, we stick to the local peaks methodology
and we refer the reader to [33] for a comparison of the two methods.

Once the series of m partial maxima is obtained, the attractor is visualized by plotting in a n-dimensional phase125

space, Mj , Mj+1, ..., Mj+n, where j = 1, 2, ...,m. As mentioned earlier, the value of n, known as the embedding
dimension, plays a crucial role in the applications of dynamical systems theory to real data [40].
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Stability indicator

To characterize the stability of the attractor, we will use the indicator Υ introduced in [41]. We de�ne our stability
indicator by using a simple example: even for a complex system, the dynamics near a metastable state resembles that130

of a stochastic spring (or of a particle in a quadratic potential). The typical equation associated to these systems is
the Langevin equation:

dX(t)

dt
= − k

m
X(t) +

1

m
ξ(t)

where k is a frictional force (e.g. the Stokes' drag), m is the mass of the particle and ξ is a noise term modeling the
random collisions the particle undergoes. The discretized equation then becomes:

Xt = φXt−1 + εt

This de�nes a linear process called an ARMA, an autoregressive moving-average model. These models have been135

widely used over the past decades, especially in econometrics and �nance to forecast markets trends. An ARMA
model is characterized by p autoregressive terms and q moving-average terms and is denoted ARMA(p, q). The
equation above is therefore an ARMA(1,0). We brie�y present the normal form of an ARMA(p, q) model and some
criteria used to �t it to a time series (see [42] for a detailed review).
Let us consider a series X(t) of an observable with unknown underlying dynamics. We further assume that for a140

time scale τ of interest, the time series Xt1 , Xt2 , ..., Xtτ represents a stationary phenomenon. Since Xt is stationary,
we may then model it by an ARMA(p, q) process such that for all t:

Xt =

p∑
i=1

φiXt−i + εt +

q∑
j=1

θjεt−j

with εt ∼ WN(0, σ2) - where WN stands for white noise - and the polynomials φ(z) = 1 − φ1zt−1 − ... − φpzt−p
θ(z) = 1 − θ1zt−1 − ... − θqzt−q, with z ∈ C, have no common factors. Notice that, hereinafter, the noise term εt is
assumed to be a white noise. For a general stationary time series, this model is not unique. However there are several145

standard procedures for selecting the model which best �ts the data. The one we exploit is the Bayesian information
criteria [43]. It is based on the Akaike information criteria (AIC) [44] which was designed to be an approximately
unbiased estimate of the Kullback�Leibler index of the �tted model relative to the true model. Assuming we know
the likelihood estimators β and σ2 of the �tted model model thanks to an innovation algorithm, the best ARMA
model is the one where p and q minimize150

AIC(β) = −2 lnLX(β, σ2) + 2(p+ q + 1)

In order to correct the tendency of the AIC to prefer complex models, we use the BIC (Bayesian information
criteria) which introduces a penalty for large-order models:

BIC = (τ − p− q) ln

(
τσ2

τ − p− q

)
+ τ(1 + ln

√
2π) + (p+ q) ln

((
τ∑
t=1

X2
t − τσ2

)
/(p+ q)

)

Intuitively, p and q are related to the memory lag of the process, while the coe�cients φi and θi represent the
persistence: the higher their sum (in absolute value), the slower the system forgets its past history, the higher the
correlations in the time series. Most of the time ARMA models are used in econometrics �tting the whole time series155

and trying to forecast the future trend of the variable. This assumes a correlation with the past and provide some
signi�cant results for the very near future. Our interest here is rather to use ARMA to detect the local stability. The
procedure is the same as for �tting the whole time series: after slicing the time series by intervals τ , we obtain a
time series Xt−τ , ..., Xt−1. We then �t each ARMA(p, q) model until p ≤ pmax and q ≤ qmax assessing the best one
(according the BIC criterion). We then compute the stability indicator Υ for the system at time t and then move to160

time t+ 1 to perform the same analysis on the time series Xt−τ+1, ..., Xt.
When the system is close to an unstable point, separating multiple basins of attraction, the behavior cannot be

described by a Langevin equation as the underlying potential is not quadratic anymore. The change in the shape of
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the potential introduces new correlation in the time series resulting in higher order ARMA terms. The indicator is
then de�ned as:

Υ = 1− exp

[
−|BIC(p, q)− BIC(1, 0)|

τ

]
Thus, Υ gives us a normalized distance between the stablest state the particle could be in (Υ = 0) and the state

where it really is. The limit Υ −→ 1 correspond to a very unstable state, where the particle is a the edge of a basin
of attraction and the probability to jump to another connected basin is high.
The only free parameter is the choice of τ . To understand its role, we revert to the spring example: the characteristic165

time scale of the problem is the relaxation time of the particle to the basin of attraction. This de�nes a typical
time scale of the system. The ∆t between subsequent observation of the time series should be close to this quantity.
Instead, τ must be a multiple of this quantity but should be smaller than the residence time in the basin of attraction.
In previous works, some of the authors of this paper have shown the validity of the Υ indicator to study �nancial [41]
and climate time series [45].170

POD ANALYSIS

The goal of the paper is to examine how embedding theory results compare with those from a data-intensive analysis
technique such as Proper Orthogonal Decomposition (POD). Proper Orthogonal Decomposition extracts the most
energetic spatial or temporal �ow patterns from either time series or a collection of spatial �elds such as the velocity
and/or the temperature. Any physical �eld q(x, t) can be decomposed into the superposition of an in�nity of spatial175

structures φn(x), the amplitude of which, an(t), varies in time:

q(x, t) =

∞∑
n=1

an(t)φn(x) (1)

where the φn(x) are eigensolutions of the eigenvalue problem∫
R(x, x′).φ(x′)dx′ = λnφ(x) (2)

where R(x, x′) is the spatial autocorrelation tensor at zero time lag. The associated eigenvalues λn =< (an)2 >, where
<> represents a temporal average, correspond to the energy level of the n-th spatial eigenfunction. By construction,
the amplitudes an are uncorrelated and the spatial eigenfunctions orthogonal. Since the �eld at a given time can be180

expressed by the instantaneous amplitudes {an(t)} of the corresponding spatial eigenfunctions, POD directly provides
a dynamical systems representation of the �ow in a natural manner. The representation is energetically optimal, to
the extent that the �rst N POD modes capture on average more energy than any other basis of size N [46].
The spatial eigenfunctions are extracted from the second-order statistics of q, so that Proper Orthogonal Decompo-

sition requires an extensive knowledge of the fully resolved �ow and acts as a powerful data reduction technique. It is185

therefore of interest to compare results from this approach with the embedding technique, which is based on limited
data.

RAYLEIGH-BÉNARD CONVECTION

In this section we provide a description of the �ow physics. The con�guration consists of a Rayleigh-Bénard square
(2-D) cell in the turbulent regime (see �gure 1). The top and the bottom plate of the cell are maintained at di�erent190

temperatures, with a hotter bottom plate and colder top one. This leads to the generation of temperature plumes
along the plates, which detach from the boundary layer and are transported into the �ow. Natural �ow in the square
cell is characterized by two parameters. One is the Prandtl number Pr = ν/κ where ν is the kinematic viscosity and

κ the thermal di�usivity. Here we consider water (Pr = 4.3). The other is the Rayleigh number Ra = αg∆TH3

νκ which
measures the ratio of buoyancy and di�usive e�ects, with α the thermal expansion coe�cient, g the gravity, ∆T the195

temperature di�erence between the plates, H the dimension of the cell. Adiabatic boundary conditions are imposed
on the cell sides.
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The �ow is numerically simulated in the Boussinesq approximation using a spectral code (see [47] for details). The
simulation parameters are given in table I. The equations are made nondimensional using as characteristic units the
cell height H for length, the temperature di�erence ∆T for temperature and the convective velocity Ra1/2κ/H for200

velocity. More details on the numerical simulation can be found in [48]. Three di�erent Rayleigh numbers Ra = 3 · 107,
Ra = 5 · 107 and Ra = 108 are considered in the present study. For each of these Rayleigh numbers, the small-scale
plumes are advected by a large-scale circulation (or roll), which can take two di�erent orientations (see �gure 1).
The orientation of the roll remains nearly constant for a large portion of the time, but may switch randomly from one
state to another over a relatively short duration (transition or reversal). Figure 1 shows two typical �ow realizations205

at Ra = 5 · 107 respectively preceding and following a reversal. The �ow therefore displays random large-scale pattern
changes in the presence of small-scale �uctuations. The occurrence and frequency of reversals depends on the Rayleigh
number and the Prandtl number as shown by Sugiyama et al [36]. Reversal processes in 2-D or near 2-D cells have
been the object of several investigations (Sugiyama et al. [36], Chandra et al., [49], Ni et al. [50]), while several models
have also been derived for reversals occuring in a cylinder cell (Brown and Ahlers [51], Sreenivasan et al. Araujo et210

al. [52, 53], Benzi [54]). More recently, Podvin and Sergent [48], [55] have used Proper Orthogonal Decomposition
(POD) to construct dynamical systems to reproduce reversals in the square 2-D cell at Ra = 5 107. By use of a
time rescaling of the temporal series, Castillo et al. [56] have evidenced a generic reversal cycle consisting of three
successive phases.

RESULTS215

POD spectrum

In previous works [48], [55], we have used POD to investigate the large-scale structure of the �ow at Ra = 5 · 107.
POD was applied to the joint temperature and velocity �elds, which amounts to de�ning a POD "energy", corre-
sponding to the sum of the kinetic energy and thermal energy in the nondimensional units de�ned in the previous
section [48]. In this work we show results for two other Rayleigh numbers: Ra = 3 · 107 and Ra = 108. The number220

of snapshots and separation between snapshots used in the study is given in table I. We checked that at all Rayleigh
numbers the �rst four modes corresponded to the same spatial structures described in [55]. The amplitude of the
dominant mode a1, which corresponds to a large-scale circulation scaling with the cell size, is shown in Figure 2. It
is shown that reversals are more frequent as Ra increases. Moreover the amplitude a1 is almost entirely correlated
with the global angular momentum L (with a correlation coe�cient larger than 0.95). This con�rms that the choice225

of the global angular momentum L, which is directly proportional to a1, is relevant to carry out the analysis. In the
remainder of the paper we will speak indi�erently of L or a1 (we actually use the notation L for a1 in [48] and [55]).
We note that this is a very particular case as in general the chosen physical indicator may not coincide with a single
POD mode. However it is reasonable to expect that a suitable global indicator could be well approximated with a
limited combination of POD modes, so that the observations made here should remain relevant in the general case.230

The �rst four modes of the POD capture more than 85% of the total POD energy. The full eigenvalue spectrum is
represented in Figure 3 and shows that the energy in the �rst modes is similar for Ra = 5 · 107 and Ra = 108 and
larger than at Ra = 3 · 107. igure 3(right) shows that the third mode is the least important for Ra = 3 · 107, which
can also be seen in table II. It is eight times less energetic than for the two higher Rayleigh numbers. However, as
can be seen in table III, the di�erent behaviors for di�erent Rayleigh numbers do not correspond to a global increase235

in the energy of small scales. This suggests that the increase of the reversal frequency is associated with a higher
energy in the lowest order modes, and in particular mode 3.

Phase portraits

The �ow dynamics can be characterized by the phase portraits of the POD amplitudes given in Figures 4 to 6 (the
amplitudes in the �gure aiN = ai/(λi)1/2 are normalized). As expected, the system spends a large portion of the time240

near one of two quasi-stable states (corresponding to a large-scale circulation which can be oriented either clockwise
or counterclockwise, as was evidenced in �gure 1). Each of the quasi-stable states can be de�ned in the POD space
as a±eq = {±|a1

eq|, |a2
eq|, 0,−(±|a4

eq|)}. At random times it makes an excursion far from the state. The excursion is
generally brief, and typically ends up with the system approaching the opposite steady state, which constitutes a
reversal. Again, despite similarities, di�erences between the Rayleigh numbers are clear in the phase portraits. As245

the Rayleigh number increases, the second mode takes smaller positive and even occasionally negative values during
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excursions (Figure 4). The system appears to spend more time outside the quasi-stable regions for the two highest
Rayleigh numbers. At Ra = 5 · 107, the system appears to spend a good portion of that time near a1 = 0, which
corresponds to a state where the large-scale circulation has disappeared. This is less present at Ra = 108, where
the presence of a limit cycle appears most probable, as can be seen in particular by comparing the di�erent phase250

portraits in the (a1, a4) space.
The phase portraits can be compared with the embedding portraits represented for three di�erent ∆t in Figure 7.

The dynamics consists of two main �xed points, symmetric and located at |L| ' 0.07, and two marginal �xed points at
|L| ' 0.02. They are connected by two limit cycles. By increasing the Rayleigh number it is evident that the stability
of the �xed points decreases and the dynamics consist of limit cycles rather than �xed points. One can see that both255

limit cycles and �xed points are identi�ed with the POD representation (Figures 4 to 6). While at Ra = 3 · 107,
the two main �xed points are identi�able, their structure becomes more stretched and circular as Ra increases. It is
interesting to relate these �ndings to the predictions reported in [48] and [55] for two models derived from the POD at
Ra = 5 · 107 with respective dimensions of 3 and 5. The dynamics of the three-dimensional model was characterized
by heteroclinic connections ([48]), which formed a cycle in the presence of noise, while the �ve-dimensional model260

(with two extra modes) displayed a limit cycle ([55]).
In the embedding method, we �nd that the optimal embedding dimension for the attractor is 2, which implies

that reversals from one state to another are independent from each other. This is an important result, which is in
agreement with experimental measures of the inter-reversal period, which was found to be well modelled by a Poisson
distribution in cylinder cells by Xi and Xia [57] and Brown et al. [51]. This is in contrast with the results found265

for the Von Karman �ow [33]. For this �ow, the attractor is 3D which suggests that subsequent reversals are not
independent. A possible explanation of this di�erence is the role of the hysteresis observed in the von Karman �ow.

Stability analysis

We compute the stability parameter Υ using the following procedure: i) we coarse grain the time series of L at the
three di�erent ∆t = 3, 6, 9 used for the attractor reconstruction, ii) for each of the value L(t) obtained, we used the270

time series L(t− τ), L(t+ ∆t− τ), ...L(t) where t ≥ τ to compute Υ. Note that we �x τ = 50 for the statistical needs
outlined in [41].

The values of Υ for each point of the time series and di�erent ∆t are reported in Figures 8-10. The histogram of
Υ and the bivariate histogram L,Υ are reported in �gure 11. Overall, we remark that there is a general agreement275

among the results obtained at di�erent ∆t. For Ra = 3 · 107, most of the values of Υ are close to 0, as the dynamics
is that of a noisy �xed points. During the reversal and immediately after the values of Υ are higher, indicating the
switching of the dynamics. This is why Υ histograms (Figure 11 left) show a principal mode for low value of Υ and a
small mode at higher values. The dynamics is di�erent for the cases Ra = 5 · 107 and Ra = 1 108 as for the presence
of the limit cycle. The periodicity of the reversals and the sporadic presence of a noisy �xed points dynamics leads280

to a general increase of Υ values.
The theory says that Υ should be large when rapid changes occur in the dynamics, i.e at the onset or at the end

of reversals. This means that large values of Υ should coincide with the edges of the attractor. Interestingly, as the
Rayleigh number increases, large values of Y are found for an increasing and continuous range of L values, which is not
easy to understand with a purely one-dimensional representation. Indeed, the histogram of a1 (L), shown in �gure 12,285

does not provide a clear picture of the attractor. In particular, there does not seem to be a marked di�erence between
Ra = 108 and Ra = 5 · 107. However, multi-dimensional histograms in the POD space, such as the joint histogram in
the a1 − a2 plane shown in �gure 13, show that the attractor is elongated in the a1 direction for increasing Rayleigh
numbers. The values of a1 associated with the edge of these regions agree well with the values of L for which Υ is
high. Lower values of L (a1) over a relatively small extent are associated with the case Ra = 3 · 107, while the values290

increase over a wider range for Ra = 5 · 107 and even more so for the case Ra = 108.

Time between reversals

A characteristic of the �ow reversals can be given by the time intervals T between zeros of the dominant amplitude
a1. Histograms of the time intervals are represented in �gure 14-a,b,c). The mean values of the separation times 〈T 〉,
given in table III, are very similar at the two highest Rayleigh numbers, while the mean value is higher by a factor of295

6 in the case Ra = 3 · 107. To try and understand this from a dynamical systems perspective , let us consider model
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dynamics consisting of a heteroclinic cycle characterized by a single unstable eigenvalue σu and submitted to a noise
of amplitude ε. In that case Holmes et al. [46] have shown that a mean period THC can be de�ned for the heteroclinic
cycle, where THC is the average time the system needs to leave the attractor, move towards the other attractor and
come back again (so with our notations we have T = 1

2THC). This mean period can be expressed as300

THC ∼ 2(K0 +
1

σu
(K1 + log(

1

ε
)))), (3)

where K0 and K1 are constants.
A crude estimate of the noise level here can be given by the standard deviation of the distance deq between the

current vector state ai, 1 ≤ i ≤ 4 and the nearest quasi-steady states a±eq:

deq = min(‖a− a+
eq‖, ‖a− a−eq‖)

The estimate for the noise level drmseq is reported in table III. At Ra = 5 · 107 and Ra = 108, the noise level appears
similar and the mean reversal rate 1/〈T 〉 is about the same, which suggests that the unstable growth rate is also the305

same, which is consistent with similar mean values of Υ (0.59 for Ra = 108 and 0.56 for Ra = 5 · 107 ). In contrast, Υ
is on average twice as small at Ra = 3 · 107 its value being 0.26, while the average reversal rate is six times smaller.
However this di�erence is consistent with the fact that the noise level is smaller by a factor of 4 at this Rayleigh
number.
We now take a detailed look at the distribution of the times normalized by their time-averaged value, which is310

shown in Figure 14. Normalizing the time separation T by its mean value 〈T 〉 can be seen as loosely equivalent to
the normalization used in the de�nition of the stability indicator. Although strict equivalence is not possible, since
the indicator varies only between 0 and 1, we have also represented in the middle row of �gure 14 the distribution
of the normalized separation times limited to the interval [0, 1]. It is of interest to compare the histograms of T/〈T 〉,
which are obtained from the full time-series and over long periods of time, with the distributions of the indicator Υ315

shown in Figure 11, which is extracted from application of the autoregressive model over a short period of time. The
general shape of the time distribution is di�erent for each Rayleigh number. The very low values of the separation
times observed at all Rayleigh numbers correspond to times which are smaller than a full transition time (i.e a
complete switch from one metastable state to another). This means that there is no real reversal corresponding to
these separation times: either the �ow switches back to its former state, or it remains around zero for a while, which320

corresponds to the temporary disappearance of a large-scale circulation (which is termed a cessation). The low values
are frequent at Ra = 3 · 107 and Ra = 5 · 107, but less so at Ra = 108, in agreement with both embedding and POD
phase portraits. The low reversal rate at Ra = 3 107 is consistent with a mildly unstable system, which agrees with
the distribution of Υ in �gure 11.
The distributions at Ra = 5 · 107 and Ra = 108 present two main modes (see �gure 14-a,b,c). One mode is associ-325

ated with the relatively low values described above. The other mode associated with a higher value corresponds to a
long-lived switch from one metastable state to the other i.e a full reversal. There are more reversals and less cessations
at Ra = 108 than at Ra = 5 107. A restriction of the histograms of the normalized time separation to the period [0, 1]
is represented in �gure 14-d,e,f) for the di�erent Rayleigh numbers. It is of interest to compare these histograms,
which are obtained from the full time-series and over long periods of time, with the distributions of the indicator Υ330

shown in Figure 11, which is extracted from application of the autoregressive model over a short period of time. The
strong similarities observed betwen the time histogram and the variations of Υ support the idea that the Υ indicator is
able to discriminate between the true reversals of the �ow (higher values) from shorter-lived transitions (lower values).

Attractors and representative �ow patterns335

We retain the local peaks method for reconstructing attractors. But taking advantage of previous knowledge
about the physical response of the system [48, 56], we tune the peak identi�cation process accordingly with physical
considerations. First we extract the partial maxima from the time series of the absolute value of the angular momentum
|L|. In order to avoid pointing a local peak during the transition period τd between two plateaus, we add a speci�c
criterion: two successive maxima must be at least separated by twice the transition duration (see [48] for de�nition),340

which di�ers with the Rayleigh number. The corresponding attractors are shown in Figure 15.
As expected, most of the points corresponding to the (Mi−1,Mi) pairs are located close to the main diagonal for

large |L| values. This is particularly obvious at Ra = 3 · 107 where the L plateaus (i.e. �xed points) are very extended
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in time. Additional points show the path (limit cycle) between the opposite plateaus and point out transitional states
in the quadrants of opposite signs. Fewer points are plotted in the center of the �gure. They seems approximately345

equally distributed on the four quadrants for smaller |L| values. For the two highest Rayleigh numbers attractors
display more complex patterns. Transition path is still present. But points appears clustering around speci�c locations
along the transition path as well as at the diagram center i.e. for low values of L.
Figure 16 shows a rough attempt of clustering the (Mi−1,Mi) pairs for Ra = 5 · 107, as well as the representative

�ow patterns of theMi−1 andMi states, estimated from a conditional averaging over each cluster. Ten clusters (which350

can be related two by two by centrosymmetry) have been identi�ed in the (Mi−1,Mi) diagram: two �xed points at
|L| ' ¯|L| + σ(|L|) ( ¯|L| and σ(|L|) being the mean |L| value and its standard deviation over the whole time series),
two marginal �xed points at |L| . ¯|L| − σ(|L|), and six clusters describing particular steps during the cycle limit.
As previously mentioned, the most dense clusters (in blue on the �gure 16) which are located close to the main

diagonal, are closely related to the two main �xed points i.e. plateaus. The evolution of the �ow pattern betweenMi−1355

and Mi states exhibits the growth of the corner �ows. This physical phenomenon has been already identi�ed in the
literature (for example see [36, 48]) and associated to the accumulation phase of the generic reversal cycle in [56]. This
is clearly shown on �gure 17, where examples of (Mi−1,Mi) pairs are marked for each cluster on a particular sequence
of the angular momentum time series at Ra = 5 · 107. The orange cluster highlights the �rst part of the transition
period (called the release phase in [56]), as the Mi states point out the rebound instant of the transition on �gure360

17. On the contrary red clusters encompass the whole release phase from the reversal phenomenon to the following
step consisting of the �ow pattern reorganisation into the main diagonal roll surrounding by two smaller corner �ows.
The next cluster (in green) corresponds to the acceleration phase of the reversal cycle, where the large diagonal roll
is being strengthened. Finally central clusters (in magenta) reveal the relative importance of the cessation regime in
comparison to the plateau regime in L time series. This regime is characterized by the disappearance of the main365

diagonal roll[48]. Figure 17 shows that the magenta points match well with rapid oscillations of |L| peaks close to
zero which is typical of cessations.
The clustering process has been applied similarly to both other attractors (�gures 18, 19). It is noteworthy that

the cluster shapes are quite similar whatever the Rayleigh number, as well as the corresponding representative �ow
patterns. However it can be noted that most clusters at Ra = 3 · 107 does not contain a su�cient number of points370

to obtain a clear convergence of the representative �ow patterns. Nonetheless the relative density of the clusters
illustrates the relative time duration of di�erent phases (as seen in �gure 20). It shows shorter plateaus regarding
the transition duration τd (stability decrease of the two main �xed points) as Ra increases, or the infrequency of
cessations at Ra = 3 · 107 and 108 . At all Ra, the Mi−1 representative �ow patterns of the clusters related to the
release phase (in orange or red) point out a speci�c �ow pattern where the corner �ows occupy at least half the cavity375

width along the top or bottom wall. This feature is typical of the precursor event as noted in [55, 56]. Consequently
this methodology of snapshots classi�cation appears to be able to discriminate the di�erent regimes of reversal or
cessation [48], the successive phases of standard reversals and speci�c events (rebound, precursor) [55, 56] as previously
identi�ed by using di�erent techniques.

DISCUSSION380

In this work embedding techniques and comparison with POD analysis have been carried out for the simulation
of turbulent Rayleigh-Bénard convection in a 2D square cell for Pr=4.3. Three di�erent Rayleigh numbers were
considered. Results suggest that signi�cant information on the structure of the stationary states and their stability
can be recovered by the embedding technique, which can be applied on-line to the time series of a single observable.
The results are consistent with the characteristics of reversals provided by POD analysis.385

The embedding theory displays a two-dimensional attractor, which is consistent with the idea that the reversals
are independent from each other, at least at long-term as suggested by [52]. The existence of a two-dimensional
description of the e�ective turbulent dynamics of the Rayleigh-Bénard �ow is the �rst main result of this paper. In
fact, contrary to Landau's conjecture [35], low dimensional descriptions of turbulent �ow exist, providing that the
right observable is embedded. This result also reinforces those found in [33] for the von Karman turbulent �ow and in390

[58] for the turbulent atmospheric boundary layer. Moreover, the position on the reconstructed attractor can be used
as a classi�er of the di�erent phases of the dynamics. The second main achievement of this paper is to show that the
embedding/dynamical systems approach is still of interest for studying �ow with a complex behavior. The novelty is
to perform the embedding using the time series of a global observable tracing the symmetry of the �ow, such as the
angular momentum in the Rayleigh Bénard convection in the present case or the reduced frequency of rotation in the395

Von Karman �ow [33]. Once the observable is identi�ed it is a matter of seconds to embed the data and only a few
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minutes of CPU time on a laptop is needed to compute the stability Υ. Finally, our study also suggests that in some
phenomena, as those involving the motions of geophysical �ows such as the atmosphere or the ocean, it can be di�cult
to directly identify a single symmetry parameter and in this case POD analysis can be helpful to identify the relevant
variables to which the embedding technique could be applied. The use of Empirical Orthogonal Functions, which are400

analogous to POD modes, is already a common practice in the climate community. When possible, combining Proper
Orthogonal Decomposition and embedding theory will therefore provide a robust description of the system.
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Ra (Nx, Nz) ∆t Nsnapshots ∆Tsnapshots Ntotal

3 · 107 (159,385) 6 10−4 825 6 12000

5 · 107 (159,385) 6 10−4 825 6 12000

108 (201,513) 3 10−4 660 4.5 8000
TABLE I. Simulation and POD analysis characteristics ar di�erent Rayleigh numbers : numerical resolution, time step, number
of snapshots used to extract the POD eigenfunctions, time separation between snapshots, total number of snapshots considered
in the time series

Ra λ1 λ2 λ3 λ4

3 · 107 0.7 0.13 0.02 0.01

5 · 107 1.15 0.26 0.17 0.05

108 1.07 0.26 0.15 0.05
TABLE II. POD �rst eigenvalues at di�erent Rayleigh numbers.

Ra
∑
λ≥5 /

∑
λ 〈T 〉 drmseq

3 · 107 0.09 1160 0.09

5 · 107 0.12 200 0.38

108 0.10 195 0.30

TABLE III. POD Characteristics at di�erent Rayleigh numbers. 〈T 〉 is de�ned as the time-averaged value separating two zeros
of a1 and is expressed in convective time units. drmseq is de�ned as the room mean square value of the minimal distance between

the POD state vector {ai, 1 ≤ i ≤ 4} and one of the steady states.
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FIG. 1. Instantaneous �ow �eld in the 2D Rayleigh-Bénard cell at Ra = 5 · 107 for two arbitrary times preceding
(a) and following (b) a reversal; Flow streamlines and temperature isocontours.
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FIG. 2. Time evolution of �rst POD mode a1. a) Ra = 3 · 107, b) Ra = 5 · 107, c) Ra = 108.

FIG. 3. a) POD spectrum at the di�erent Rayleigh numbers - the eigenvalues are unnormalized. ; b) Relative fraction of POD
energy contained in the �rst 20 modes.
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FIG. 4. Phase portraits for the �rst two normalized POD modes a1N and a2N (the N subscript stands for normalization). a)
Ra = 3 · 107, b) Ra = 5 · 107, c) Ra = 108.

FIG. 5. Phase portraits for the �rst two normalized POD modes a1N and a3N (the N subscript stands for normalization). a)
Ra = 3 · 107, b) Ra = 5 · 107, c)Ra = 108.

FIG. 6. Phase portraits for the �rst two normalized POD modes a1N and a4N (the N subscript stands for normalization). a)
Ra = 3 · 107, b) Ra = 5 · 107, c) Ra = 108.
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FIG. 7. Rayleigh-Bénard attractors obtained at Ra = 3 · 107 (a,b,c), Ra = 5 · 107 (d,e,f), Ra = 1 · 108 (g,h,i) varying ∆t from
∆t = 3 (a,d,g), ∆t = 6 (b,e,h) and ∆t = 9 (c,f,i).
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FIG. 8. Rayleigh-Bénard time series obtained at Ra = 3 · 107 (a), Ra = 5 · 107 (b), Ra = 1 · 108 (c) for ∆t = 3. The colorscale
represents the value of Υ.

FIG. 9. Rayleigh-Bénard time series obtained at Ra = 3 · 107 (a), Ra = 5 · 107 (b), Ra = 1 · 108 (c) for ∆t = 6. The colorscale
represents the value of Υ
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FIG. 10. Rayleigh-Bénard time series obtained at Ra = 3 · 107 (a), Ra = 5 · 107 (b), Ra = 1 · 108 (c) for ∆t = 9. The colorscale
represents the value of Υ

FIG. 11. a,b,c): histograms of Υ. d,e,f): bivariate histograms Υ vs L. Ra = 3 · 107 (a), Ra = 5 · 107 (b), Ra = 1 · 108 (c).
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FIG. 12. Histogram of the POD mode a1. a) Ra = 3 · 107, b) Ra = 5 · 107, c) Ra = 108.

FIG. 13. Joint histogram of the two POD modes a1 vs a2. a) Ra = 3 · 107, b) Ra = 5 · 107, c) Ra = 108.
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FIG. 14. a,b,c): Distribution of time (normalized by time-averaged value) between zeros of �rst POD mode a1; d,e,f): Distri-
bution of normalized time between zeros of �rst POD mode a1 restricted to the time [0, T/ < T >].

FIG. 15. Rayleigh-Bénard attractors obtained at Ra = 3 · 107 (a), Ra = 5 · 107 (b), Ra = 108 (c) with a time between
subsequent peaks larger than twice the transition time τd (τd ∼ 30, 12.5, 15 convective time units for Ra = 3 · 107, 5 · 107, 108

respectively). Yellow lines show the paths between two subsequent (Mi−1,Mi) points.
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FIG. 16. Clusters in the Rayleigh-Bénard attractor at Ra = 5 · 107 and the related mean �ow patterns at Mi−1 (left) and Mi

(right). Colour of cluster refers to the di�erent regime or phases of the reversal cycle : �rst part of the release (orange), complete
release (red), acceleration (green), accumulation (blue) and cessation (magenta). Flow pattern is shown by streamlines and
temperature isocontours. Green, orange and black straight solid lines correspond to ¯|L|, ¯|L|−σ(|L|) and ¯|L|+σ(|L|) respectively.

FIG. 17. Particular sequence of the angular momentum L time series at Ra = 5 · 107. Colours refer to the di�erent regime
or phases of the reversal cycle : release (orange), after rebound (red), acceleration (green), accumulation (blue) and cessation
(magenta). Markers give examples of the pairs (Mi−1,Mi) for each cluster: • (Mi−1), ∗ (Mi).
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FIG. 18. Clusters in Rayleigh-Bénard attractors at Ra = 108 and the related mean �ow patterns. Same legend as in �gure 16.
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FIG. 19. Clusters in Rayleigh-Bénard attractors at Ra = 3 · 107 and the related mean �ow patterns. Same legend as in �gure
16.
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FIG. 20. Particular sequence of the angular momentum L time series at Ra = 3 · 107 (a), Ra = 5 · 107 (b) and Ra = 108 (c).
Markers give locations of all points contained inside the �rst part of release (orange), complete release (red) and accumulation
(blue) clusters. • (Mi−1), ∗ (Mi) peaks.
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