D Faranda 
email: davide.faranda@cea.fr
  
B Podvin 
  
A Sergent 
  
  
  
  
  
  
On reversals in 2D turbulent Rayleigh-Bénard convection: insights from embedding theory and comparison with Proper Orthogonal Decomposition analysis

Turbulent Rayleigh-Bénard convection in a 2D square cell is characterized by the existence of a large-scale circulation which varies intermittently. We focus on a range of Rayleigh numbers where the large-scale circulation experiences rapid non-trivial reversals from one quasi-steady (or metastable) state to another. In previous work (Podvin and Sergent JFM 2015, Podvin and Sergent PRE 2017), we applied Proper Orthogonal Decomposition (POD) to the joint temperature and velocity elds at a given Rayleigh number and the dynamics of the ow were characterized in a multi-dimensional POD space. Here, we show that several of those ndings, which required extensive data processing over a wide range of both spatial and temporal scales, can be reproduced, and possibly extended, by application of embedding theory to a single time series of the global angular momentum, which is equivalent here to the most energetic POD mode. Specically, embedding theory conrms that the switches among meta-stable states are uncorrelated. It also shows that, despite the large number of degrees of freedom of the turbulent Rayleigh Benard ow, a low dimensional description of its physics can be derived with low computational eorts, providing that a single global observable reecting the symmetry of the system is identied. A strong connection between the local stability properties of the reconstructed attractor and the characteristics of the reversals can also be established.

We use Rayleigh-Bénard turbulent convection simulations to compare the properties of quasistationary states and transitions (reversals) previously identied via Principal Orthogonal Decomposition (POD) to those obtained via embedding the global angular momentum of the system. Our main result is to show that we can map POD properties on the attractor reconstructed via embedding techniques. Specically, the embedding technique conrms that the switches among dierent metastable states are uncorrelated. Moreover, a local stability indicator can be used to distinguish and classify the dierent metastable states. The low computational costs of embedding analysis suggests to use this procedure whenever a global observable reecting the symmetry of the system can be identied, while the POD should be preferred when such information is not available.

INTRODUCTION

In the last decades, the study of complex systems has shifted from a pure dynamical systems-based approach to a mixture of statistical and statistical-mechanics techniques. This can be justied on both practical and theoretical levels. At the beginning of the 80's, the abundance of data from measurements as well as from numerical models was limited. The complex systems studied were mostly laboratory ows whose laminar or turbulent behavior depended on a control parameter [START_REF] Eckmann | Roads to turbulence in dissipative dynamical systems[END_REF][START_REF] Bergé | Order within chaos[END_REF]. The use of numerical weather forecasts was limited to a few days [START_REF] Mason | A model for assessment of weather forecasts[END_REF] and climate models were mostly conceptual [START_REF] Benzi | Stochastic resonance in climatic change[END_REF]. At that time, new results in dynamical systems theory seemed to convince the scientic community that a suciently long time series could be sucient to reconstruct the dynamics of the system via its attractor. This object is a geometric set towards which the system tends to evolve, independently on its initial conditions.

The Takens [START_REF] Takens | Detecting strange attractors in turbulence[END_REF][START_REF] Noakes | The takens embedding theorem[END_REF] reconstruction theorem was then used to determine the dynamics of climate attractors as well as of complex ows. Initially, the dimension of these objects was set to be extremely low, usually smaller than 10 [START_REF] Fraedrich | Estimating the dimensions of weather and climate attractors[END_REF]. However, from the beginning of the 90's, several authors [810] found out that those low dimensional estimates were wrong: in fact, despite the complexity of the systems, the reconstructions were mostly made using time series measured at specic points of the physical space. Moreover, the time series used were not suciently long. In parallel, computational power increased quickly [START_REF] Molteni | The ecmwf ensemble prediction system: Methodology and validation[END_REF] and measurement techniques opened new possibilities to sample the behavior of complex systems [START_REF] Daviaud | Subcritical transition to turbulence in plane couette ow[END_REF]. In experimental facilities, visualization techniques gave rapid access to eld measurements instead of local measurements [START_REF] Kd Hinsch | Particle image velocimetry[END_REF][START_REF] Juan G Santiago | A particle image velocimetry system for microuidics[END_REF] and numerical models were capable to simulate several years of Earth's climate [START_REF] Mjp Cullen | The unied forecast/climate model[END_REF], seconds of human brain activity [16], and molecules/proteins dynamics [17,[START_REF] Peter | Protein hydration elucidated by molecular dynamics simulation[END_REF].

The complexity of high-dimensional elds as opposed to single-point time series required new methodologies in order to assess the probability of each conguration and forecast the evolution of the system. For this purpose, one of the most popular techniques is the Proper Orthogonal Decomposition (POD). In POD, an orthogonal transformation is used to transform a dataset with correlated variables into linearly uncorrelated variables. Geometrically, this is like tting an n-dimensional ellipsoid to the data, where each axis of the ellipsoid represents a principal component. Principal Component Analysis was invented by Karl Pearson [START_REF] Pearson | Principal components analysis[END_REF], as an analogue of the principal axis theorem in mechanics. In the 1930s it was developed independently also by Harold Hotelling [20]. Depending on the eld of application, it is also named the discrete Kosambi-Karhunen-Loève transform (KLT) in signal processing [START_REF] Dd Kosambi | Statistics in function space[END_REF], the Hotelling transform [20] in multivariate quality control, proper orthogonal decomposition (POD) in turbulence [START_REF] Podvin | A low-dimensional approach for the minimal ow unit[END_REF], empirical orthogonal functions (EOF) in meteorological science [START_REF] Edward | Empirical orthogonal functions and statistical weather prediction[END_REF], empirical eigenfunction decomposition [START_REF] Sirovich | Turbulence and the dynamics of coherent structures. i. coherent structures[END_REF], and it is also connected to singular value decomposition (SVD) of X [START_REF] Gene | Matrix computations, the john's hopkins univ[END_REF], eigenvalue decomposition (EVD) of XTX in linear algebra, factor analysis, Eckart-Young theorem [START_REF] Harry H Harman | Modern factor analysis[END_REF], or Schmidt-Mirsky theorem in psychometrics, quasiharmonic modes [START_REF] Bernard R Brooks | Harmonic analysis of large systems. i. methodology[END_REF], spectral decomposition in noise and vibration, and empirical modal analysis in structural dynamics [START_REF] Norden | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF].

The belief that embedding theorems could not be applied either to systems featuring a large number of degrees of freedom or to time series of high-dimensional vector elds, caused the data analysis scientic community to focus on POD-based approaches to study complex systems. Meanwhile, several theoretical developments in dynamical systems theory were aimed at understanding how systems with large numbers of degrees of freedom could be dealt with [START_REF] Bagley | Counting and classifying attractors in high dimensional dynamical systems[END_REF][START_REF] Temam | Innite-dimensional dynamical systems in mechanics and physics[END_REF].

In particular, the framework of stochastic dynamical systems [START_REF] Arnold | Random dynamical systems[END_REF][START_REF] Mickaël D Chekroun | Approximation of Stochastic Invariant Manifolds: Stochastic Manifolds for Nonlinear SPDEs I[END_REF] brings into view the idea that the dynamics of complex systems can be represented by a small number of variables if one lumps the small scales contributions into noise terms and choose as observables for the embedding procedure, global quantities tracking symmetry properties of the ow.

For turbulent ows, such as the von Karman swirling ow, or for atmospheric dynamics, this revised approach produces phase portraits which make it possible to dene low-dimensional models which capture the essential features of the dynamics [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF] in the fashion of the 1963 Lorenz equations [START_REF] Edward | Deterministic nonperiodic ow[END_REF]. The goal of the present paper is to examine how information provided by the embedding procedure compares with that obtained by a more extensive analysis such as the Proper Orthogonal Decomposition (POD). This will be done for the specic case of 2-D turbulent Rayleigh-Bénard convection, a ow which is characterized by a series of random transitions from a quasi-steady state to another. This system is an interesting platform for exploring the relation between POD and embedding methods for few reasons: i) It is a turbulent ow and this would prevent at least according Landau's conjecture [START_REF] Landau | On the problem of turbulence[END_REF] a projection of the dynamics onto a low dimensional space due to the large number of degrees of freedom introduced by small scales perturbations. ii) The dynamics features a non-trivial bifurcation structure. This is only observed in a limited range of Prandtl and Rayleigh numbers, for reasons that are not understood [START_REF] Sugiyama | Flow reversals in thermally driven turbulence[END_REF]. iii) The dynamics for some values of the parameter analysed in the paper feature the switching among dierent metastable states, plus reversal with some hybrid states. The physical origin of the switching remains largely unknown. The paper is structured as follows: rst we will recap the methodologies used, with emphasis on the recent developments on the embedding strategies for complex systems. Then we will describe the dataset used and outline the results. Eventually we will discuss the advantage of a combined approach to complex systems analysis.

DYNAMICAL SYSTEMS METHODS

In this section we give some elements of dynamical systems theory and some guidelines derived from recent studies for reconstructing the attractors using global rather than local observables. We also introduce indicators of stability derived from the theory of stochastic processes.

Attractor Reconstruction via embedding methodologies

The aim of dynamical systems theory is to reconstruct the underlying attractor of a system and to assess its properties. The attractor is a compact geometrical object in phase space that hosts all the possible trajectories of a system. Once this object is reconstructed, it provides information on the (unstable) xed points (if the system is deterministic) or the metastable states (if the system is stochastic) and the transitions linking them. This description is useful when the attractor is low dimensional because its structure can be visualized and interpreted in an intuitive way. Up to recently it was believed that low dimensional attractors would not be suitable to describe complex geophysical and turbulent ow. However, it has beeen shown [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF] that it is possible to describe the large scale motion of a fully-developed turbulent ow with only a few degrees of freedom, if an appropriate observable reecting the ow symmetry is selected. The large embedding dimensions which prevented the applications of dynamical systems theory to turbulence arise from small scale disturbances that can be modeled in terms of stochastic perturbations. This picture reconciles the Landau [START_REF] Landau | On the problem of turbulence[END_REF] and Ruelle-Takens [START_REF] Ruelle | On the nature of turbulence[END_REF] descriptions of turbulence, the former being valid at small scales, and the latter describing the large scale motions. The observable can be derived as global mean of some local quantities in the ow (average energy or momentum), or it can be a single global output quantity measured in an experiment (such as for instance the frequency of rotation of Von Karman ow turbines, once a certain torque is imposed).

Once the observable is selected and a time series is obtained, dierent embedding procedures can be used to reconstruct the attractor from the signal. The rst thing to determine is the embedding dimension, i.e. the number of variables necessary for the attractor reconstruction. This can be done using the method by Cao [START_REF] Cao | Practical method for determining the minimum embedding dimension of a scalar time series[END_REF], or by trying to see how much information is added using another dimension. In what follows we will adopt the second strategy. After selecting the number of variables n, embedding consists in dening a n-dimensional state vector from the observable time series X i consisting i = 1, 2, ...t observations, as M i = (X i , X i+τ1 , X i+τ2 , . . .). The series can be embedded with the method of delays [START_REF] Takens | Detecting strange attractors in turbulence[END_REF], or with the local peaks procedure [START_REF] Norman H Packard | Geometry from a time series[END_REF]. In the method of delays, the value of τ i is kept constant, which is most eective when there is a precise time scale in the system. In contrast, the local peaks method consists in selecting τ i dynamically as the interval between two subsequent partial maxima (or minima), which is most eective when there are no well-identied time scales (e.g. switching frequencies between metastable states). In fact, local maxima (or minima) are robust features of the dynamics even in the presence of noise, because they track the position of metastable states [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF]. Since we deal with a turbulent system, we stick to the local peaks methodology and we refer the reader to [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF] for a comparison of the two methods.

Once the series of m partial maxima is obtained, the attractor is visualized by plotting in a n-dimensional phase space, M j , M j+1 , ..., M j+n , where j = 1, 2, ..., m. As mentioned earlier, the value of n, known as the embedding dimension, plays a crucial role in the applications of dynamical systems theory to real data [START_REF] Kantz | Nonlinear time series analysis[END_REF].

Stability indicator

To characterize the stability of the attractor, we will use the indicator Υ introduced in [START_REF] Faranda | Early warnings indicators of nancial crises via auto regressive moving average models[END_REF]. We dene our stability indicator by using a simple example: even for a complex system, the dynamics near a metastable state resembles that of a stochastic spring (or of a particle in a quadratic potential). The typical equation associated to these systems is the Langevin equation:

dX(t) dt = - k m X(t) + 1 m ξ(t)
where k is a frictional force (e.g. the Stokes' drag), m is the mass of the particle and ξ is a noise term modeling the random collisions the particle undergoes. The discretized equation then becomes:

X t = φX t-1 + t
This denes a linear process called an ARMA, an autoregressive moving-average model. These models have been widely used over the past decades, especially in econometrics and nance to forecast markets trends. An ARMA model is characterized by p autoregressive terms and q moving-average terms and is denoted ARMA(p, q). The equation above is therefore an ARMA(1,0). We briey present the normal form of an ARMA(p, q) model and some criteria used to t it to a time series (see [START_REF] Poon | Forecasting volatility in nancial markets: A review[END_REF] for a detailed review).

Let us consider a series X(t) of an observable with unknown underlying dynamics. We further assume that for a time scale τ of interest, the time series X t1 , X t2 , ..., X tτ represents a stationary phenomenon. Since X t is stationary, we may then model it by an ARMA(p, q) process such that for all t:

X t = p i=1 φ i X t-i + ε t + q j=1 θ j ε t-j with ε t ∼ W N (0, σ 2 )
-where W N stands for white noise -and the polynomials φ

(z) = 1 -φ 1 z t-1 -... -φ p z t-p θ(z) = 1 -θ 1 z t-1 -... -θ q z t
-q , with z ∈ C, have no common factors. Notice that, hereinafter, the noise term ε t is assumed to be a white noise. For a general stationary time series, this model is not unique. However there are several standard procedures for selecting the model which best ts the data. The one we exploit is the Bayesian information criteria [START_REF] Akaike | Time series analysis and control through parametric models[END_REF]. It is based on the Akaike information criteria (AIC) [START_REF] Akaike | Information theory and an extension of the maximum likelihood principle[END_REF] which was designed to be an approximately unbiased estimate of the KullbackLeibler index of the tted model relative to the true model. Assuming we know the likelihood estimators β and σ 2 of the tted model model thanks to an innovation algorithm, the best ARMA model is the one where p and q minimize

AIC(β) = -2 ln L X (β, σ 2 ) + 2(p + q + 1)
In order to correct the tendency of the AIC to prefer complex models, we use the BIC (Bayesian information criteria) which introduces a penalty for large-order models:

BIC = (τ -p -q) ln τ σ 2 τ -p -q + τ (1 + ln √ 2π) + (p + q) ln τ t=1 X 2 t -τ σ 2 /(p + q)
Intuitively, p and q are related to the memory lag of the process, while the coecients φ i and θ i represent the persistence: the higher their sum (in absolute value), the slower the system forgets its past history, the higher the correlations in the time series. Most of the time ARMA models are used in econometrics tting the whole time series and trying to forecast the future trend of the variable. This assumes a correlation with the past and provide some signicant results for the very near future. Our interest here is rather to use ARMA to detect the local stability. The procedure is the same as for tting the whole time series: after slicing the time series by intervals τ , we obtain a time series X t-τ , ..., X t-1 . We then t each ARMA(p, q) model until p ≤ p max and q ≤ q max assessing the best one (according the BIC criterion). We then compute the stability indicator Υ for the system at time t and then move to time t + 1 to perform the same analysis on the time series X t-τ +1 , ..., X t .

When the system is close to an unstable point, separating multiple basins of attraction, the behavior cannot be described by a Langevin equation as the underlying potential is not quadratic anymore. The change in the shape of the potential introduces new correlation in the time series resulting in higher order ARMA terms. The indicator is then dened as:

Υ = 1 -exp - |BIC(p, q) -BIC(1, 0)| τ
Thus, Υ gives us a normalized distance between the stablest state the particle could be in (Υ = 0) and the state where it really is. The limit Υ -→ 1 correspond to a very unstable state, where the particle is a the edge of a basin of attraction and the probability to jump to another connected basin is high. The only free parameter is the choice of τ . To understand its role, we revert to the spring example: the characteristic time scale of the problem is the relaxation time of the particle to the basin of attraction. This denes a typical time scale of the system. The ∆t between subsequent observation of the time series should be close to this quantity. Instead, τ must be a multiple of this quantity but should be smaller than the residence time in the basin of attraction. In previous works, some of the authors of this paper have shown the validity of the Υ indicator to study nancial [START_REF] Faranda | Early warnings indicators of nancial crises via auto regressive moving average models[END_REF] and climate time series [START_REF] Faranda | A wavelet-based approach to detect climate change on the coherent and turbulent component of the atmospheric circulation[END_REF].

POD ANALYSIS

The goal of the paper is to examine how embedding theory results compare with those from a data-intensive analysis technique such as Proper Orthogonal Decomposition (POD). Proper Orthogonal Decomposition extracts the most energetic spatial or temporal ow patterns from either time series or a collection of spatial elds such as the velocity and/or the temperature. Any physical eld q(x, t) can be decomposed into the superposition of an innity of spatial structures φ n (x), the amplitude of which, a n (t), varies in time:

q(x, t) = ∞ n=1 a n (t)φ n (x) (1) 
where the φ n (x) are eigensolutions of the eigenvalue problem

R(x, x ).φ(x )dx = λ n φ(x) (2) 
where R(x, x ) is the spatial autocorrelation tensor at zero time lag. The associated eigenvalues λ n =< (a n ) 2 >, where <> represents a temporal average, correspond to the energy level of the n-th spatial eigenfunction. By construction, the amplitudes a n are uncorrelated and the spatial eigenfunctions orthogonal. Since the eld at a given time can be expressed by the instantaneous amplitudes {a n (t)} of the corresponding spatial eigenfunctions, POD directly provides a dynamical systems representation of the ow in a natural manner. The representation is energetically optimal, to the extent that the rst N POD modes capture on average more energy than any other basis of size N [START_REF] Holmes | Turbulence, Coherent Structures, Dynamical Systems and Symmetry[END_REF]. The spatial eigenfunctions are extracted from the second-order statistics of q, so that Proper Orthogonal Decompo- sition requires an extensive knowledge of the fully resolved ow and acts as a powerful data reduction technique. It is therefore of interest to compare results from this approach with the embedding technique, which is based on limited data.

RAYLEIGH-BÉNARD CONVECTION

In this section we provide a description of the ow physics. The conguration consists of a Rayleigh-Bénard square (2-D) cell in the turbulent regime (see gure 1). The top and the bottom plate of the cell are maintained at dierent temperatures, with a hotter bottom plate and colder top one. This leads to the generation of temperature plumes along the plates, which detach from the boundary layer and are transported into the ow. Natural ow in the square cell is characterized by two parameters. One is the Prandtl number P r = ν/κ where ν is the kinematic viscosity and κ the thermal diusivity. Here we consider water (P r = 4.3). The other is the Rayleigh number Ra = αg∆T H 3 νκ which measures the ratio of buoyancy and diusive eects, with α the thermal expansion coecient, g the gravity, ∆T the temperature dierence between the plates, H the dimension of the cell. Adiabatic boundary conditions are imposed on the cell sides.

The ow is numerically simulated in the Boussinesq approximation using a spectral code (see [START_REF] Xin | 3d spectral parallel multi-domain computing for natural convection ows[END_REF] for details). The simulation parameters are given in table I. The equations are made nondimensional using as characteristic units the cell height H for length, the temperature dierence ∆T for temperature and the convective velocity Ra 1/2 κ/H for velocity. More details on the numerical simulation can be found in [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF]. Three dierent Rayleigh numbers Ra = 3 • 10 7 , Ra = 5 • 10 7 and Ra = 10 8 are considered in the present study. For each of these Rayleigh numbers, the small-scale plumes are advected by a large-scale circulation (or roll), which can take two dierent orientations (see gure 1). The orientation of the roll remains nearly constant for a large portion of the time, but may switch randomly from one state to another over a relatively short duration (transition or reversal). Figure 1 shows two typical ow realizations at Ra = 5 • 10 7 respectively preceding and following a reversal. The ow therefore displays random large-scale pattern changes in the presence of small-scale uctuations. The occurrence and frequency of reversals depends on the Rayleigh number and the Prandtl number as shown by Sugiyama et al [START_REF] Sugiyama | Flow reversals in thermally driven turbulence[END_REF]. Reversal processes in 2-D or near 2-D cells have been the object of several investigations (Sugiyama et al. [START_REF] Sugiyama | Flow reversals in thermally driven turbulence[END_REF], Chandra et al., [START_REF] Chandra | Flow reversals in turbulent convection via vortex reconnections[END_REF], Ni et al. [START_REF] Ni | Reversals of the large-scale circulation in quasi-2d rayleighbénard convection[END_REF]), while several models have also been derived for reversals occuring in a cylinder cell (Brown and Ahlers [START_REF] Brown | Reorientation of the large-scale circulation in turbulent rayleighbénard convection[END_REF], Sreenivasan et al. Araujo et al. [START_REF] Katepalli R Sreenivasan | Mean wind and its reversal in thermal convection[END_REF][START_REF] Francisco Fontenele Araujo | Wind reversals in turbulent rayleigh-bénard convection[END_REF], Benzi [START_REF] Benzi | Flow reversal in a simple dynamical model of turbulence[END_REF]). More recently, Podvin and Sergent [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF], [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF] have used Proper Orthogonal Decomposition (POD) to construct dynamical systems to reproduce reversals in the square 2-D cell at Ra = 5 10 7 . By use of a time rescaling of the temporal series, Castillo et al. [START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF] have evidenced a generic reversal cycle consisting of three successive phases.

RESULTS

POD spectrum

In previous works [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF], [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF], we have used POD to investigate the large-scale structure of the ow at Ra = 5 • 10 7 . POD was applied to the joint temperature and velocity elds, which amounts to dening a POD "energy", corresponding to the sum of the kinetic energy and thermal energy in the nondimensional units dened in the previous section [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF]. In this work we show results for two other Rayleigh numbers: Ra = 3 • 10 7 and Ra = 10 8 . The number of snapshots and separation between snapshots used in the study is given in table I. We checked that at all Rayleigh numbers the rst four modes corresponded to the same spatial structures described in [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF]. The amplitude of the dominant mode a 1 , which corresponds to a large-scale circulation scaling with the cell size, is shown in Figure 2. It is shown that reversals are more frequent as Ra increases. Moreover the amplitude a 1 is almost entirely correlated with the global angular momentum L (with a correlation coecient larger than 0.95). This conrms that the choice of the global angular momentum L, which is directly proportional to a 1 , is relevant to carry out the analysis. In the remainder of the paper we will speak indierently of L or a 1 (we actually use the notation L for a 1 in [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF] and [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF]). We note that this is a very particular case as in general the chosen physical indicator may not coincide with a single POD mode. However it is reasonable to expect that a suitable global indicator could be well approximated with a limited combination of POD modes, so that the observations made here should remain relevant in the general case.

The rst four modes of the POD capture more than 85% of the total POD energy. The full eigenvalue spectrum is represented in Figure 3 and shows that the energy in the rst modes is similar for Ra = 5 • 10 7 and Ra = 10 8 and larger than at Ra = 3 • 10 7 . igure 3(right) shows that the third mode is the least important for Ra = 3 • 10 7 , which can also be seen in table II. It is eight times less energetic than for the two higher Rayleigh numbers. However, as can be seen in table III, the dierent behaviors for dierent Rayleigh numbers do not correspond to a global increase in the energy of small scales. This suggests that the increase of the reversal frequency is associated with a higher energy in the lowest order modes, and in particular mode 3.

Phase portraits

The ow dynamics can be characterized by the phase portraits of the POD amplitudes given in Figures 4 to 6 (the amplitudes in the gure a i N = a i /(λ i ) 1/2 are normalized). As expected, the system spends a large portion of the time near one of two quasi-stable states (corresponding to a large-scale circulation which can be oriented either clockwise or counterclockwise, as was evidenced in gure 1). Each of the quasi-stable states can be dened in the POD space as a ± eq = {±|a 1 eq |, |a 2 eq |, 0, -(±|a 4 eq |)}. At random times it makes an excursion far from the state. The excursion is generally brief, and typically ends up with the system approaching the opposite steady state, which constitutes a reversal. Again, despite similarities, dierences between the Rayleigh numbers are clear in the phase portraits. As the Rayleigh number increases, the second mode takes smaller positive and even occasionally negative values during excursions (Figure 4). The system appears to spend more time outside the quasi-stable regions for the two highest Rayleigh numbers. At Ra = 5 • 10 7 , the system appears to spend a good portion of that time near a 1 = 0, which corresponds to a state where the large-scale circulation has disappeared. This is less present at Ra = 10 8 , where the presence of a limit cycle appears most probable, as can be seen in particular by comparing the dierent phase portraits in the (a 1 , a 4 ) space.

The phase portraits can be compared with the embedding portraits represented for three dierent ∆t in Figure 7. The dynamics consists of two main xed points, symmetric and located at |L| 0.07, and two marginal xed points at |L| 0.02. They are connected by two limit cycles. By increasing the Rayleigh number it is evident that the stability of the xed points decreases and the dynamics consist of limit cycles rather than xed points. One can see that both limit cycles and xed points are identied with the POD representation (Figures 4 to 6). While at Ra = 3 • 10 7 , the two main xed points are identiable, their structure becomes more stretched and circular as Ra increases. It is interesting to relate these ndings to the predictions reported in [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF] and [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF] for two models derived from the POD at Ra = 5 • 10 7 with respective dimensions of 3 and 5. The dynamics of the three-dimensional model was characterized by heteroclinic connections ( [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF]), which formed a cycle in the presence of noise, while the ve-dimensional model (with two extra modes) displayed a limit cycle ( [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF]).

In the embedding method, we nd that the optimal embedding dimension for the attractor is 2, which implies that reversals from one state to another are independent from each other. This is an important result, which is in agreement with experimental measures of the inter-reversal period, which was found to be well modelled by a Poisson distribution in cylinder cells by Xi and Xia [START_REF] Heng | Flow mode transitions in turbulent thermal convection[END_REF] and Brown et al. [START_REF] Brown | Reorientation of the large-scale circulation in turbulent rayleighbénard convection[END_REF]. This is in contrast with the results found for the Von Karman ow [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF]. For this ow, the attractor is 3D which suggests that subsequent reversals are not independent. A possible explanation of this dierence is the role of the hysteresis observed in the von Karman ow.

Stability analysis

We compute the stability parameter Υ using the following procedure: i) we coarse grain the time series of L at the three dierent ∆t = 3, 6, 9 used for the attractor reconstruction, ii) for each of the value L(t) obtained, we used the time series L(t -τ ), L(t + ∆t -τ ), ...L(t) where t ≥ τ to compute Υ. Note that we x τ = 50 for the statistical needs outlined in [START_REF] Faranda | Early warnings indicators of nancial crises via auto regressive moving average models[END_REF].

The values of Υ for each point of the time series and dierent ∆t are reported in Figures 8910. The histogram of Υ and the bivariate histogram L, Υ are reported in gure 11. Overall, we remark that there is a general agreement among the results obtained at dierent ∆t. For Ra = 3 • 10 7 , most of the values of Υ are close to 0, as the dynamics is that of a noisy xed points. During the reversal and immediately after the values of Υ are higher, indicating the switching of the dynamics. This is why Υ histograms (Figure 11 left) show a principal mode for low value of Υ and a small mode at higher values. The dynamics is dierent for the cases Ra = 5 • 10 7 and Ra = 1 10 8 as for the presence of the limit cycle. The periodicity of the reversals and the sporadic presence of a noisy xed points dynamics leads to a general increase of Υ values.

The theory says that Υ should be large when rapid changes occur in the dynamics, i.e at the onset or at the end of reversals. This means that large values of Υ should coincide with the edges of the attractor. Interestingly, as the Rayleigh number increases, large values of Y are found for an increasing and continuous range of L values, which is not easy to understand with a purely one-dimensional representation. Indeed, the histogram of a 1 (L), shown in gure 12, does not provide a clear picture of the attractor. In particular, there does not seem to be a marked dierence between Ra = 10 8 and Ra = 5 • 10 7 . However, multi-dimensional histograms in the POD space, such as the joint histogram in the a 1 -a 2 plane shown in gure 13, show that the attractor is elongated in the a 1 direction for increasing Rayleigh numbers. The values of a 1 associated with the edge of these regions agree well with the values of L for which Υ is high. Lower values of L (a 1 ) over a relatively small extent are associated with the case Ra = 3 • 10 7 , while the values increase over a wider range for Ra = 5 • 10 7 and even more so for the case Ra = 10 8 .

Time between reversals

A characteristic of the ow reversals can be given by the time intervals T between zeros of the dominant amplitude a 1 . Histograms of the time intervals are represented in gure 14-a,b,c). The mean values of the separation times T , given in table III, are very similar at the two highest Rayleigh numbers, while the mean value is higher by a factor of 6 in the case Ra = 3 • 10 7 . To try and understand this from a dynamical systems perspective , let us consider model dynamics consisting of a heteroclinic cycle characterized by a single unstable eigenvalue σu and submitted to a noise of amplitude . In that case Holmes et al. [START_REF] Holmes | Turbulence, Coherent Structures, Dynamical Systems and Symmetry[END_REF] have shown that a mean period T HC can be dened for the heteroclinic cycle, where T HC is the average time the system needs to leave the attractor, move towards the other attractor and come back again (so with our notations we have T = 1 2 T HC ). This mean period can be expressed as

T HC ∼ 2(K 0 + 1 σu (K 1 + log( 1 )))), (3) 
where K 0 and K 1 are constants.

A crude estimate of the noise level here can be given by the standard deviation of the distance d eq between the current vector state a i , 1 ≤ i ≤ 4 and the nearest quasi-steady states a ± eq :

d eq = min( a -a + eq , a -a - eq )
The estimate for the noise level d rms eq is reported in table III. At Ra = 5 • 10 7 and Ra = 10 8 , the noise level appears similar and the mean reversal rate 1/ T is about the same, which suggests that the unstable growth rate is also the same, which is consistent with similar mean values of Υ (0.59 for Ra = 10 8 and 0.56 for Ra = 5 • 10 7 ). In contrast, Υ is on average twice as small at Ra = 3 • 10 7 its value being 0.26, while the average reversal rate is six times smaller. However this dierence is consistent with the fact that the noise level is smaller by a factor of 4 at this Rayleigh number.

We now take a detailed look at the distribution of the times normalized by their time-averaged value, which is shown in Figure 14. Normalizing the time separation T by its mean value T can be seen as loosely equivalent to the normalization used in the denition of the stability indicator. Although strict equivalence is not possible, since the indicator varies only between 0 and 1, we have also represented in the middle row of gure 14 the distribution of the normalized separation times limited to the interval [0, 1]. It is of interest to compare the histograms of T / T , which are obtained from the full time-series and over long periods of time, with the distributions of the indicator Υ shown in Figure 11, which is extracted from application of the autoregressive model over a short period of time. The general shape of the time distribution is dierent for each Rayleigh number. The very low values of the separation times observed at all Rayleigh numbers correspond to times which are smaller than a full transition time (i.e a complete switch from one metastable state to another). This means that there is no real reversal corresponding to these separation times: either the ow switches back to its former state, or it remains around zero for a while, which corresponds to the temporary disappearance of a large-scale circulation (which is termed a cessation). The low values are frequent at Ra = 3 • 10 7 and Ra = 5 • 10 7 , but less so at Ra = 10 8 , in agreement with both embedding and POD phase portraits. The low reversal rate at Ra = 3 10 7 is consistent with a mildly unstable system, which agrees with the distribution of Υ in gure 11.

The distributions at Ra = 5 • 10 7 and Ra = 10 8 present two main modes (see gure 14-a,b,c). One mode is associated with the relatively low values described above. The other mode associated with a higher value corresponds to a long-lived switch from one metastable state to the other i.e a full reversal. There are more reversals and less cessations at Ra = 10 8 than at Ra = 5 10 7 . A restriction of the histograms of the normalized time separation to the period [0, 1] is represented in gure 14-d,e,f) for the dierent Rayleigh numbers. It is of interest to compare these histograms, which are obtained from the full time-series and over long periods of time, with the distributions of the indicator Υ shown in Figure 11, which is extracted from application of the autoregressive model over a short period of time. The strong similarities observed betwen the time histogram and the variations of Υ support the idea that the Υ indicator is able to discriminate between the true reversals of the ow (higher values) from shorter-lived transitions (lower values).

Attractors and representative ow patterns

We retain the local peaks method for reconstructing attractors. But taking advantage of previous knowledge about the physical response of the system [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF][START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF], we tune the peak identication process accordingly with physical considerations. First we extract the partial maxima from the time series of the absolute value of the angular momentum |L|. In order to avoid pointing a local peak during the transition period τ d between two plateaus, we add a specic criterion: two successive maxima must be at least separated by twice the transition duration (see [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF] for denition), which diers with the Rayleigh number. The corresponding attractors are shown in Figure 15.

As expected, most of the points corresponding to the (M i-1 , M i ) pairs are located close to the main diagonal for large |L| values. This is particularly obvious at Ra = 3 • 10 7 where the L plateaus (i.e. xed points) are very extended in time. Additional points show the path (limit cycle) between the opposite plateaus and point out transitional states in the quadrants of opposite signs. Fewer points are plotted in the center of the gure. They seems approximately equally distributed on the four quadrants for smaller |L| values. For the two highest Rayleigh numbers attractors display more complex patterns. Transition path is still present. But points appears clustering around specic locations along the transition path as well as at the diagram center i.e. for low values of L.

Figure 16 shows a rough attempt of clustering the (M i-1 , M i ) pairs for Ra = 5 • 10 7 , as well as the representative ow patterns of the M i-1 and M i states, estimated from a conditional averaging over each cluster. Ten clusters (which can be related two by two by centrosymmetry) have been identied in the (M i-1 , M i and M i states exhibits the growth of the corner ows. This physical phenomenon has been already identied in the literature (for example see [START_REF] Sugiyama | Flow reversals in thermally driven turbulence[END_REF][START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF]) and associated to the accumulation phase of the generic reversal cycle in [START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF]. This is clearly shown on gure 17, where examples of (M i-1 , M i ) pairs are marked for each cluster on a particular sequence of the angular momentum time series at Ra = 5 • 10 7 . The orange cluster highlights the rst part of the transition period (called the release phase in [START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF]), as the M i states point out the rebound instant of the transition on gure 17. On the contrary red clusters encompass the whole release phase from the reversal phenomenon to the following step consisting of the ow pattern reorganisation into the main diagonal roll surrounding by two smaller corner ows. The next cluster (in green) corresponds to the acceleration phase of the reversal cycle, where the large diagonal roll is being strengthened. Finally central clusters (in magenta) reveal the relative importance of the cessation regime in comparison to the plateau regime in L time series. This regime is characterized by the disappearance of the main diagonal roll [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF]. Figure 17 shows that the magenta points match well with rapid oscillations of |L| peaks close to zero which is typical of cessations.

The clustering process has been applied similarly to both other attractors (gures [START_REF] Peter | Protein hydration elucidated by molecular dynamics simulation[END_REF][START_REF] Pearson | Principal components analysis[END_REF]. It is noteworthy that the cluster shapes are quite similar whatever the Rayleigh number, as well as the corresponding representative ow patterns. However it can be noted that most clusters at Ra = 3 • 10 7 does not contain a sucient number of points to obtain a clear convergence of the representative ow patterns. Nonetheless the relative density of the clusters illustrates the relative time duration of dierent phases (as seen in gure 20). It shows shorter plateaus regarding the transition duration τ d (stability decrease of the two main xed points) as Ra increases, or the infrequency of cessations at Ra = 3 • 10 7 and 10 8 . At all Ra, the M i-1 representative ow patterns of the clusters related to the release phase (in orange or red) point out a specic ow pattern where the corner ows occupy at least half the cavity width along the top or bottom wall. This feature is typical of the precursor event as noted in [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF][START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF]. Consequently this methodology of snapshots classication appears to be able to discriminate the dierent regimes of reversal or cessation [START_REF] Podvin | A large-scale investigation of wind reversal in a square rayleighbénard cell[END_REF], the successive phases of standard reversals and specic events (rebound, precursor) [START_REF] Podvin | Precursor for wind reversal in a square Rayleigh-Bénard cell[END_REF][START_REF] Castillo-Castellanos | Reversal cycle in square rayleighbénard cells in turbulent regime[END_REF] as previously identied by using dierent techniques.

DISCUSSION

In this work embedding techniques and comparison with POD analysis have been carried out for the simulation of turbulent Rayleigh-Bénard convection in a 2D square cell for Pr=4.3. Three dierent Rayleigh numbers were considered. Results suggest that signicant information on the structure of the stationary states and their stability can be recovered by the embedding technique, which can be applied on-line to the time series of a single observable. The results are consistent with the characteristics of reversals provided by POD analysis.

The embedding theory displays a two-dimensional attractor, which is consistent with the idea that the reversals are independent from each other, at least at long-term as suggested by [START_REF] Katepalli R Sreenivasan | Mean wind and its reversal in thermal convection[END_REF]. The existence of a two-dimensional description of the eective turbulent dynamics of the Rayleigh-Bénard ow is the rst main result of this paper. In fact, contrary to Landau's conjecture [START_REF] Landau | On the problem of turbulence[END_REF], low dimensional descriptions of turbulent ow exist, providing that the right observable is embedded. This result also reinforces those found in [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF] for the von Karman turbulent ow and in [START_REF] Nevo | Statistical-mechanical approach to study the hydrodynamic stability of the stably stratied atmospheric boundary layer[END_REF] for the turbulent atmospheric boundary layer. Moreover, the position on the reconstructed attractor can be used as a classier of the dierent phases of the dynamics. The second main achievement of this paper is to show that the embedding/dynamical systems approach is still of interest for studying ow with a complex behavior. The novelty is to perform the embedding using the time series of a global observable tracing the symmetry of the ow, such as the angular momentum in the Rayleigh Bénard convection in the present case or the reduced frequency of rotation in the Von Karman ow [START_REF] Faranda | Stochastic chaos in a turbulent swirling ow[END_REF]. Once the observable is identied it is a matter of seconds to embed the data and only a few minutes of CPU time on a laptop is needed to compute the stability Υ. Finally, our study also suggests that in some phenomena, as those involving the motions of geophysical ows such as the atmosphere or the ocean, it can be dicult to directly identify a single symmetry parameter and in this case POD analysis can be helpful to identify the relevant variables to which the embedding technique could be applied. The use of Empirical Orthogonal Functions, which are analogous to POD modes, is already a common practice in the climate community. When possible, combining Proper Orthogonal Decomposition and embedding theory will therefore provide a robust description of the system. 

  ) diagram: two xed points at |L| | L| + σ(|L|) ( | L| and σ(|L|) being the mean |L| value and its standard deviation over the whole time series), two marginal xed points at |L| | L| -σ(|L|), and six clusters describing particular steps during the cycle limit. As previously mentioned, the most dense clusters (in blue on the gure 16) which are located close to the main diagonal, are closely related to the two main xed points i.e. plateaus. The evolution of the ow pattern between M i-1
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 1245 FIG. 1. Instantaneous ow eld in the 2D Rayleigh-Bénard cell at Ra = 5 • 10 7 for two arbitrary times preceding (a) and following (b) a reversal; Flow streamlines and temperature isocontours.

FIG. 9 .

 9 FIG. 9. Rayleigh-Bénard time series obtained at Ra = 3 • 10 7 (a), Ra = 5 • 10 7 (b), Ra = 1 • 10 8 (c) for ∆t = 6. The colorscale represents the value of Υ

FIG. 12 .

 12 FIG. 12. Histogram of the POD mode a 1 . a) Ra = 3 • 10 7 , b) Ra = 5 • 10 7 , c) Ra = 10 8 .

FIG. 15 .

 15 FIG. 15. Rayleigh-Bénard attractors obtained at Ra = 3 • 10 7 (a), Ra = 5 • 10 7 (b), Ra = 10 8 (c) with a time between subsequent peaks larger than twice the transition time τ d (τ d ∼ 30, 12.5, 15 convective time units for Ra = 3 • 10 7 , 5 • 10 7 , 10 8 respectively). Yellow lines show the paths between two subsequent (Mi-1, Mi) points.

  

  

  

  

  

  

  

  

  

  

  

  

  

TABLE I .

 I Ra (Nx, Nz) ∆t N snapshots ∆T snapshots N total 3 • 10 7 (159,385)6 10 -4 Simulation and POD analysis characteristics ar dierent Rayleigh numbers : numerical resolution, time step, number of snapshots used to extract the POD eigenfunctions, time separation between snapshots, total number of snapshots considered in the time series Ra λ 1 λ 2 λ 3 λ 4 3 • 10 7 0.7 0.13 0.02 0.01 5 • 10 7 1.15 0.26 0.17 0.05 10 8 1.07 0.26 0.15 0.05 TABLE II. POD rst eigenvalues at dierent Rayleigh numbers.

			825	6	12000
	5 • 10 7 (159,385) 6 10 -4	825	6	12000
	10 8 (201,513) 3 10 -4	660	4.5	8000
	Ra	λ≥5 / λ T d rms eq
	3 • 10 7	0.09		1160 0.09
	5 • 10 7	0.12		200 0.38
	10 8	0.10		195 0.30

TABLE III .

 III POD Characteristics at dierent Rayleigh numbers. T is dened as the time-averaged value separating two zeros of a 1 and is expressed in convective time units. d rms eq is dened as the room mean square value of the minimal distance between the POD state vector {a i , 1 ≤ i ≤ 4} and one of the steady states.

FIG. 18. Clusters in Rayleigh-Bénard attractors at Ra = 10 8 and the related mean ow patterns. Same legend as in gure 16.

FIG. 19. Clusters in Rayleigh-Bénard attractors at Ra = 3 • 10 7 and the related mean ow patterns. Same legend as in gure 16.
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