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We use Rayleigh-Bénard convection simulations to compare the properties of stationary states
obtained via Principal Orthogonal Decomposition (POD) to those derived by embedding the global
angular momentum of the system. We �nd that the results obtained with POD and embedding
techniques provide the same information. The low computational costs of embedding analysis sug-
gests to use this procedure whenever a global observable re�ecting the symmetry of the system can
be identi�ed, while the POD should be preferred when such information is not available.

INTRODUCTION

In the last decades, the approach to the study of complex systems has shifted from a pure dynamical systems based
approach to a mixture of statistical and statistical-mechanics techniques. This can be justi�ed on both practical and
theoretical levels. At the beginning of the 80s, the abundance of data from measurements as well as from numerical
models was limited. The complex systems studied were mostly laboratory �ows whose laminar or turbulent behavior
depended on a control parameter[1, 2]. The use of numerical weather forecasts was limited to few days[3] and climate
models were mostly conceptual[4]. At that time, new results in dynamical systems theory seemed to convince the
scienti�c community that a su�ciently long time series could be su�cient to reconstruct the dynamics of the system
via its attractor. This object is a geometric set toward which the system tends to evolve, even when starting from
di�erent initial conditions.
The Takens [5, 6] reconstruction theorem was then used to determine the dynamics of climate attractors as well as
of complex �ows. Initially the dimensions of these objects was set to be extremely low, usually smaller than 10 [7].
However, from the beginning of the 90s, several authors [8�10] found out that their optimistic estimates were wrong
both because of the length of the time series used and of the nature of the observable used: in fact, despite the
complexity of the systems, the reconstructions were mostly made using time series measured at speci�c points of the
space. In parallel, computational power increased quickly [11] and measurement techniques opened new possibility
to sample complex systems' behavior[12]. While in experiments visualization technology gave rapid access to �elds
measurements instead of local measurements[13, 14], numerical simulations were capable to produce long simulations
of Earth's climate[15], human brain[16], molecules/proteins dynamics [17, 18].
The abundance of �elds rather than single-point time series rapidly demanded for new statistical techniques capable
to identify the metastable states of the systems and eventually forecasts the evolution of the systems. For this
purpose, one of the most popular statistical technique used was (and is still nowadays) the Proper Orthogonal
Decomposition (POD). The idea is to use an orthogonal transformation to transform a dataset with correlated
variables into linearly uncorrelated variables. Geometrically, this is like f �tting an n-dimensional ellipsoid to the
data, where each axis of the ellipsoid represents a principal component.
Principal Component Analysis was invented by Karl Pearson[19], as an analogue of the principal axis theorem in
mechanics. In the 1930s it was developed independently also by Harold Hotelling [20]. Depending on the �eld
of application, it is also named the discrete Kosambi-Karhunen-Loève transform (KLT) in signal processing [21],
the Hotelling transform [20] in multivariate quality control, proper orthogonal decomposition (POD) in turbulence
[22], empirical orthogonal functions (EOF) in meteorological science [23], empirical eigenfunction decomposition
[24], and it is also connected to singular value decomposition (SVD) of X [25], eigenvalue decomposition (EVD) of
XTX in linear algebra, factor analysis, Eckart-Young theorem [26], or Schmidt-Mirsky theorem in psychometrics,
quasiharmonic modes [27], spectral decomposition in noise and vibration, and empirical modal analysis in structural
dynamics [28].

The popularity and usefulness of this technique, the fact that embedding theorems could not be applied either to
systems featuring a large number of degrees of freedom either on �elds time series, caused the data analysis scienti�c
community to prefer the statistical approach based on the POD. On the other hand, there were several theoretical
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developments in dynamical systems theory directed towards understanding how to deal with systems with large
numbers of degrees of freedom[29, 30]. In particular, the framework of stochastic dynamical systems [31, 32] bring
into the �eld the idea that the dynamics of complex systems can be represented by a small number of variables if
one lumps the noise contributions into noise terms and choice as observables for the embedding procedure, global
quantities tracking symmetry properties of the �ow.
On turbulent �ow, as the von Karman swirling �ow, or in atmospheric dynamics, this revised approach produces
phase portraits which allow for the de�nition of low dimensional models capturing the essential featuring of the
dynamics[33] in the fashion of the Lorenz 1963 equations [34]. It is then time to reconcile the POD approach with
the embedding theorems, de�ne a correspondence between the dynamics identi�ed with the two methods and assess
how one approach can complete rather than substitute the other. To this purpose we will use extensive numerical
simulations of the Rayleigh Bénard convection, a problem that motivates Lorenz to de�ne its butter�y[34].
The paper is structured as follow: �rst we will recap the methodologies used, with emphasis on the recent developments
on the embedding strategies for complex systems. Then we will describe the dataset used and outline the results.
Eventually we will discuss the advantage of a combined approach to complex systems analysis.

DYNAMICAL SYSTEMS METHODS

In this section we give some elements of dynamical systems theory and some guidelines derived from recent studies
for reconstructing the attractors using global rather than local observables. We also introduce indicators of stability
derived from the theory of stochastic processes.

Observable choice for embedding

It has beeen proved that it is possible to describe the large scale motion of a fully-developed turbulent �ow with
few degrees of freedom, if an appropriate observable re�ecting the �ow symmetry is selected. The large embedding
dimensions which prevented the applications of dynamical systems theory to turbulence arise from small scale dis-
turbances can be modeled in terms of stochastic perturbations. This general picture reconciles the Landau [35] and
Ruelle-Takens [36] descriptions of turbulence, the former being valid at small scales, and the latter describing the
large scale motions. The observable can be derived as global mean of some local quantities in the �ow (average energy
or momentum), or it can be a single global quantity measured in an experiment (in the von Karman swirling �ow,
the torque applied to the motors has been used for reconstructing the attractor).

Attractor Reconstruction

There are di�erent embedding procedures used to reconstruct phase portrait from a signal. The �rst thing to
determine is the embedding dimension, i.e. the number of variables necessary for the attractor reconstruction. This
can be done using the method by Cao, or by trying to see how much information is added using another dimension.
This kind of information can be also extracted by a POD analysis. The series of the global observable is then embedded
with the methods of the delays [5], or the local peaks procedure [37]. The local peaks method allow to select only
the robust feature of the attractor discarding the noisy part, which will make the attractor looks fuzzy. We prefer
the local peaks embedding procedure , by extraction of the maxima Mm (or minima since the results do not change
signi�cantly) under the condition that subsequent maxima cannot fall within 10 Hz (see Fig. 4 in [32] for the portraits
reconstructed with the delay methods [5]). Once the series of partial maxima is obtained, the attractor is visualized by
plotting in a n-dimensional phase space, Mm, Mm+1, ..., Mm+n. The value of n, known as the embedding dimension,
plays a crucial role in the applications of dynamical systems theory to real data [38].

Stability indicator

To characterize the stability of the attractor, we will use the indicator Υ introduced in [39]. We de�ne our stability
indicator by using a simple example: even for a complex system, the dynamics near a metastable state resembles to
that of a stochastic spring (or of a particle in a quadratic potential). The typical equation associated to those system
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is the Langevin equation:

dX(t)

dt
= − k

m
X(t) +

1

m
ξ(t)

with k a frictional force (e.g. the Stokes' drag), m the mass of the particle and ξ a noise term modeling random
collisions the particle undergoes. The discretized equation then becomes:

Xt = φXt−1 + εt

which is an ARMA(1,0). ARMA stands for Autoregressive Moving-average model, a class of linear processes. It has
been widely used over the past decades, especially in econometrics and �nance to forecast markets trends. We brie�y
show the normal form of an ARMA(p,q) model and some criteria used to �t it to a time series (see [40] for a detailed
review).
Let us consider a series X(t) of an observable with unknown underlying dynamics. We further assume that for a

time scale τ of interest, the time series Xt1 , Xt2 , ..., Xtτ represents a stationary phenomenon. Since Xt is stationary,
we may then model it by an ARMA(p, q) process such that for all t:

Xt =

p∑
i=1

φiXt−i + εt +

q∑
j=1

θjεt−j

with εt ∼ WN(0, σ2) - where WN stands for white noise - and the polynomials φ(z) = 1 − φ1zt−1 − ... − φpzt−p
θ(z) = 1 − θ1zt−1 − ... − θqzt−q, with z ∈ C, have no common factors. Notice that, hereinafter, the noise term εt is
assumed to be a white noise. For a general stationary time series, this model is not unique. However there are several
standard procedures for selecting the model which �ts at best the data. The one we exploit is the Bayesian information
criteria [41]. It is based on the Akaike information criteria (AIC) [42] which was designed to be an approximately
unbiased estimate of the Kullback�Leibler index of the �tted model relative to the true model. Assuming we know
the likelihood estimators β and σ2 of the �tted model model thanks to an innovation algorithm, our ARMA model is
the one where p and q minimize

AIC(β) = −2 lnLX(β, σ2) + 2(p+ q + 1)

In order to correct the tendency of the AIC to prefer complex models, we use the BIC (Bayesian information
criteria) which introduces a penalty for large-order models:

BIC = (τ − p− q) ln

(
τσ2

τ − p− q

)
+ τ(1 + ln

√
2π) + (p+ q) ln

((
τ∑
t=1

X2
t − τσ2

)
/(p+ q)

)

Intuitively, p and q are related to memory lag of the process, while the coe�cients φi and θi represent the persistence:
the higher their sum (in absolute value), the slower the system is in forgetting its past history, the higher the
correlations in the time series. Most of the time ARMA models are used in econometrics �tting the whole time series
and trying to forecast the future trend of the variable. This assumes a correlation with the past and provide some
signi�cant results for the very near future. Our interest is rather to use ARMA to detect the local stability. The
procedure is the same as for �tting the whole time series: after slicing the time series by intervals τ , we obtain a
time series Xt−τ , ..., Xt−1. We then �t each ARMA(p,q) model until p ≤ pmax and q ≤ qmax assessing the best one
(according the BIC criterion). We then compute the stability indicator Υ for the system at time t and then move to
time t+ 1 to perform the same analysis on the time series Xt−τ+1, ..., Xt.
When the system is close to an unstable point, separating multiple basins of attraction, the behavior cannot be

described by a Langevin equation as the underlying potential is not quadratic anymore. The change in the shape of
the potential introduces new correlation in the time series resulting in higher order ARMA terms. The indicator is
then de�ned as:

Υ = 1− exp
|BIC(p, q)− BIC(1, 0)|

τ

Thus, Υ gives us a normalized distance between the stablest state the particle could be in (Υ = 0) and the state
where it really is. The limit Υ −→ 1 correspond to a very unstable state, where the particle is a the edge of a basin
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of attraction and the probability to jump to another connected basin is high.
The only free parameter is the choice of τ . To understand its role, we revert to the spring example: the characteristic
time scale of the problem is the relaxation time of the particle to the basin of attraction. This de�ne the typical
time scale of the system. The ∆t between subsequent observation of the time series should be close to this quantity.
Instead, τ must be a multiple of this quantity but should be smaller than the residence time in the basin of attraction.
In previous works, some of the authors of this paper have shown the validity of the Υ indicator to study �nancial [39]
and climate time series [43].

POD ANALYSIS

Proper Orthogonal Decomposition is a statistical technique that extracts the most energetic spatial �ow patterns.
Any physical �eld can thus be written as the superposition of an in�nite number of spatial modes, the amplitude
of which varies in time. The full state of the �ow at a given time can then be represented by the instantaneous
amplitudes of the spatial eigenfunctions. Any physical quantity q(x, t) can be decomposed into the superposition of
an in�nity of spatial structures φ, the amplitude of which varies in time:

q(x, t) =

∞∑
n=1

an(t)φn(x) (1)

where the φn(x) are eigensolutions of the eigenvalue problem∫
R(x, x′).φ(x′)dx′ = λnφ(x) (2)

where R(x, xx′) is the spatial autocorrelation tensor at zero time lag. The associated eigenvalues λn =< (n)2 >, where
<> represents a temporal average, correspond to the energy level of the n-th spatial eigenfunction. By construction,
the amplitudes an are uncorrelated and the spatial eigenfucntions orthogonal. POD therefore naturally provides a
dynamical systems representation {an(t)} of the �ow. The representation is energetically optimal, to the extent that
any POD truncation of a given dimension captures at least as much energy as any other decomposition.
The spatial eigenfunctions are extracted from the second-order statistics of q, so that Proper Orthogonal Decompo-

sition requires an extensive knowledge of the fully resolved �ow and acts as a powerful data reduction technique. It is
therefore of interest to compare results from this approach with the embedding technique, which is based on limited
data and aims to reconstruct dynamical information from a single time-series.

RAYLEIGH-BÉNARD CONVECTION

We compare POD and dynamical systems based techniques on a turbulent Rayleigh-Bénard convective �ow in a
square (2-D) cell (see �gure 1). This �ow represents a canonical con�guration which displays random large-scale
pattern changes in the presence of small-scale �uctuations. The top and the bottom plate of the cell are maintained
at di�erent temperatures, with a hotter bottom plate and colder top one. This leads to the generation of temperature
plumes along the plates, which detach from the boundary layer and are transported into the �ow. The natural
convection �ow in the square cell is characterized by two parameters. One is the Prandtl number Pr = ν/κ where ν
is the kinematic viscosity and κ the thermal di�usivity. Here we consider water (Pr = 4.3). The other is the Rayleigh

number Ra = αg∆TH3

νκ which measures the ratio of buoyancy and di�usive e�ects, with α the thermal expansion
coe�cient, g the gravity, ∆T the temperature di�erence between the plates, H the dimension of the cell. Adiabatic
boundary conditions are imposed on the cell sides.
The �ow is numerically simulated in the Boussinesq approximation using a spectral code. The simulation parameters

are given in table I. The equations are made nondimensional using as characteristic units the cell height H for length,
the temperature di�erence ∆T for temperature and the convective velocity Ra1/2κ/H for velocity. More details on the
numerical simulation can be found in [44]. Three di�erent Rayleigh numbers Ra = 3 107, Ra = 5 107 and Ra = 108

are considered in the present study. Figure 1 shows two typical �ow realizations at Ra = 5 107. One can see that the
small-scale plumes collect together and form a large-scale circulation. However the large-scale circulation can take two
di�erent orientations. The �ow will take one orientation during a long period of time (for instance �gure 1 a), then
will switch rapidly and apparently randomly towards the state of opposite orientation (�gure 1 b)). The occurrence
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and frequency of reversals depends on the Rayleigh number and the Prandtl number as shown by Sugiyama et al

[45]. Reversal processes in 2-D or near 2-D cells have been the object of several investigations (Sugiyama et al. [45],
Chandra et al., [46], Ni et al. [47]), while several models have also been derived for reversals occuring in a cylinder
cell (Brown and Ahlers [48], Sreenivasan et al. Araujo et al. [49, 50], Benzi [51]). More recently, Podvin and Sergent
[44], [52] have used Proper Orthogonal Decomposition (POD) to construct dynamical systems to reproduce reversals
in the square 2-D cell. By use of a time rescaling of the temporal series, Castillo et al. [53] have evidenced a generic
reversal cycle consisted of three successive phases.

RESULTS

POD spectrum

In previous works [44], [52], we have used POD to investigate the large-scale structure of the �ow. Proper Orthogonal
Decomposition was applied to the joint temperature and velocity �elds at three di�erent Rayleigh numbers. The
number of snapshots and separation between snapshots used in the sudy is given in table I. We checked that at all
Rayleigh numbers the �rst four modes corresponded to the same spatial structures, described in [52]. The amplitude
of the dominant mode a1, which corresponds to a one-cell large-scale circulation all around the square, is shown in
Figure 2 It is well correlated with the global angular momentum L (with a correlation coe�cient larger than 0.95).
This con�rms that the choice of the global angular momentum L is relevant to carry out the analysis. The �rst four
modes of the POD capture more than 85% of the total energy. The full eigenvalue spectrum is represented in Figure
3 and shows that the energy in the �rst modes is similar for Ra = 5 107 and Ra = 108 and larger than at Ra = 3
107. However table II shows that the di�erent behaviors for di�erent Rayleigh numbers do not correspond to a global
increase in the energy of small scales. This suggests that the increase of the reversal frequency is associated with a
higher energy in the low-order modes, and in particular mode 3, which table III is 8 times more energetic at the
two highest Rayleigh numbers, while the energy of all other modes is only twice as large, but does not seem to be
associated with a larger energy content in the small scales.

Phase portraits

POD Phase portraits of the system for normalized coe�cients are given in Figures 4 to 6. The system spends
a large portion of the time near one of the quasi-stable states (corresponding to a set large-scale circulation), then
makes excursions from one of the quasi-stable states to the other. Again, despite similarities, di�erences between
the Rayleigh numbers are clear. As the Rayleigh number increases, the second mode takes negative values during
excursions (Figure 4). The amplitude of the third mode is larger during excursions (Figure 5) for the lowest Rayleigh
number. At Ra = 5 107 (and to some extent for Ra = 3 107), the system appears to spend a good portion of the time
near a1 = 0, which corresponds to a state where the large-scale circulation has disappeared. This is less present at
Ra = 108, where the presence of a limit cycle appears most probable, as can be seen in particular by comparing the
di�erent phase portraits in the (a1, a4) space. The phase portraits can be compared with the embedding portraits
represented for three di�erent ∆t in Figure 9. The dynamics consists of two main �xed points, symmetric and located
at |L| ' 0.06, and two marginal �xed points at |L| ' 0.02. They are connected by two limit cycles. By increasing
the Rayleigh number (bottom panels) it is evident that the stability of the �xed points decreases and the dynamics
consist of limit cycles rather than �xed points. One can see that both limit cycles and �xed points are identi�ed
with the POD representation (Figures 4 to 6). While at Ra = 3 · 107, the two main �xed points are identi�able,
their structure becomes more stretched and circular as Ra increases. It is interesting to relate these �ndings to the
predictions reported in [44] and [52] for two models derived from the POD at Ra = 5 107 with respective dimensions
of 3 and 5. The dynamics of the three-dimensional model was characterized by heteroclinic connections ([44]), which
formed a cycle in the presence of noise, while the �ve-dimensional model (with two extra modes) displayed a limit
cycle ([52]).
In the embedding method, we �nd that the optimal embedding dimension for the attractor is 2, which implies that

two changes from one state to another are independent. This is an important result, which is in agreement with the
idea that reversals occur independently from each other and that the time between reversals can be modeled with a
Poisson distribution, which was experimentally observed for reversals in cylinder cells by Xi and Xia [54] and Brown
et al. [48]. This is in contrast with the results found for the Von Karman �ow [33]. For this �ow, the attractor is 3D



6

which suggests that subsequent reversals are not independent.

Stability analysis

We compute the stability parameter Υ using the following procedure: i) we coarse grain the time series of L at the
three di�erent ∆t = 3, 6, 9 used for the attractor reconstruction, ii) for each of the value L(t) obtained, we used the
time series L(t− τ), L(t+ 1− τ), ...L(t) where t ≥ τ to compute Υ. Note that we �x τ = 50 for the statistical needs
outlined in [39].

The values of Υ for each point of the time series and di�erent ∆t are reported in Figures 10-12. The histogram of
Υ and the bivariate histogram L,Υ are reported in �gure 13. Overall, we remark that there is a general agreement
among the results obtained at di�erent ∆t. For Ra = 3 107, most of the values of Υ are close to 0, as the dynamics
is that of a noisy �xed points. During the reversal and immediately after the values of Υ are higher, indicating the
switching of the dynamics. This is why Υ histograms (Figure 13 left) show a principal mode for low value of Υ and a
small mode at higher values. The dynamics is di�erent for the cases Ra = 5 107 and Ra = 1 108 as for the presence
of the limit cycle. The periodicity of the reversals and the sporadic presence of a noisy �xed points dynamics leads
to a general increase of Υ values.

Time between reversals

A characteristic of the �ow reversals can be given by the time separating zeros of the amplitude of the dominant
mode. The distribution of these times, normalized by their time-averaged value, which can be found in table
II, is shown in Figure 7. The mean values of the separation times are very similar at the two highest Rayleigh
numbers, while the mean value is higher by a factor of 10 in the case Ra = 3 107. However, the shape of the
time distribution changes with each Rayleigh number. The low values of the separation times observed at all
Rayleigh numbers correspond to times which are smaller than a full transition time (i.e a complete switch from
one metastable state to another). This means that there is no real reversal corresponding to these separation
times: either the �ow switches back to its former state, or it remains around zero for a while, which corresponds
to the temporary disappearance of a large-scale circulation. In agreement with the POD and the embedding
phase portraits, these low values are frequent at Ra = 3 107 and Ra = 5 107, but less so at Ra = 108. One
can see that the distributions at Ra = 5 107 and Ra = 108 present two local maxima. One is associated with
the relatively low value mentioned above. The other is associated with a higher value, and corresponds to a
long-lived switch from one metastable state to the other. A restriction of the histograms of the normalized time
separation to the period [0, 1] is represented in Figure 8 for the di�erent Rayleigh numbers. It is of interest to
compare these histograms, which are obtained from the full time-series and over long periods of time, with the
distributions of the indicator Υ shown in Figure 13, which is extracted from application of the autoregressive
model over a short period of time. Strong similarities are present, which supports the idea that the Υ indicator is
able to discriminate between the true reversals of the �ow (higher values) from shorter-lived transitions (lower values).

Attractors and representative �ow patterns

We retain the local peaks method for reconstructing attractors. But taking advantage of previous knowledge
about the physical response of the system [44, 53], we tune the peak identi�cation process accordingly with physical
considerations. First we extract the partial maxima from the time series of the absolute value of the angular momentum
|L|. In order to avoid pointing a local peak during the transition period τd between two plateaus, we add a speci�c
criteria: two successive maxima must be at least separated by twice the transition duration (see [44] for de�nition),
which di�ers with the Rayleigh number. The corresponding attractors are shown in Figure 14.
As expected, most of the points corresponding to the (Mi−1,Mi) pairs are located close to the main diagonal for

large |L| values. This is particularly obvious at Ra = 3 · 107 where the L plateaus (i.e. �xed points) are very extended
in time. Additional points show the path (limit cycle) between the opposite plateaus and point out transitional states
in the quadrants of opposite signs. Fewer points are plotted in the centre of the �gure. They seems approximately
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equally distributed on the four quadrants for smaller |L| values. For the two highest Rayleigh numbers attractors
display more complex patterns. Transition path is still present. But points appears clustering around speci�c locations
along the transition path as well as at the diagram centre.
Figure 15 shows a rough attempt of clustering the (Mi−1,Mi) pairs for Ra = 5 · 107, as well as the representative �ow

patterns of theMi−1 andMi states, estimated from a conditional averaging over each cluster. Twice �ve clusters have
been identi�ed which obey to a centrosymmetry in the (Mi−1,Mi) diagram: two �xed points at |L| ' ¯|L|+σ(|L|) ( ¯|L|
and σ(|L|) being the mean |L| value and its standard deviation over the whole time series), two marginal �xed points
at |L| . ¯|L| − σ(|L|), and six clusters describing particular steps during the cycle limit. As previously mentioned,
the most dense clusters (in blue on the �gure 15) which are located close to the main diagonal, are closely related
to the two main �xed points i.e. plateaus. The evolution of the �ow pattern between Mi−1 and Mi states exhibits
the growth of the corner �ows. This physical phenomenon has been already identi�ed in the literature (for example
see [44, 45]) and associated to the accumulation phase of the generic reversal cycle in [53]. This is clearly shown on
�gure 16, where examples of (Mi−1,Mi) pairs are marked for each cluster on a particular sequence of the angular
momentum time series at Ra = 5 · 107. The orange cluster highlights the �rst part of the transition period (called the
release phase in [53]), as the Mi states point out the rebound instant of the transition on �gure 16. On the contrary
red clusters encompass the whole release phase from the reversal phenomenon to the following step consisting of the
�ow pattern reorganisation into the main diagonal roll surrounding by two smaller corner �ows. The next cluster (in
green) corresponds to the acceleration phase of the reversal cycle, where the large diagonal roll is being strengthened.
Finally central clusters (in magenta) reveal the relative importance of the cessation regime in comparison to the
plateau regime in L time series. This regime is characterized by the disappearance of the main diagonal roll[44].
Figure 16 shows that the magenta points match well with rapid oscillations of |L| peaks close to zero which is typical
of cessations.
The clustering process has been applied similarly to both other attractors (�gures 17, 18). It is noteworthy that

the cluster shapes are quite similar whatever the Rayleigh number, as well as the corresponding representative �ow
patterns. However it can be noted that most clusters at Ra = 3 · 107 does not contain a su�cient number of points
to obtain a clear convergence of the representative �ow patterns. Nonetheless the relative density of the clusters
illustrates the relative time duration of di�erent phases (as seen in �gure 19). It shows shorter plateaus regarding the
transition duration τd (stability decrease of the two main �xed points) as Ra increases, or the infrequency of cessations
at Ra = 3 · 107 and 108 . At all Ra, the Mi−1 representative �ow patterns of the clusters related to the release phase
(in orange or red) point out a speci�c �ow pattern where the corner �ows occupy at least half the cavity width
along the top or bottom wall. This feature is typical of the precursor event as noted in [52, 53]. Consequently this
methodology of snapshots classi�cation appears to be able to discriminate the di�erent regimes of reversal or cessation
[44] and the successive phases of standard reversals[52, 53] as previously identi�ed by using di�erent techniques.

DISCUSSION

In this work we have compared the results obtained with POD and embedding techniques on simulations of the
Rayleigh-Bénard convection in a 2D cell at three di�erent Rayleigh numbers. Our analysis suggests that signi�cant
information on the structure of the stationary states and their stability can be recovered by the embedding technique,
which can be applied on-line to the time series of a single observable. The results are consistent with POD analysis
(phase space characterization of reversals) and also with experimental observations (independence of reversals). More-
over, the position on the attractor can be used as a precursor of the subsequent phases of the dynamics. On the one
hand, the embedding/dynamical systems approach is clearly of interest when the time series corresponds to a global
observable tracing the symmetry of the system, such as the angular momentum in the Rayleigh Benard convection in
the present case or the reduced frequency of rotation in the von Karman Flow [33]. Once the observable is identi�ed
it is a matter of seconds to embed the data and only a few minutes of CPU time on a laptop is needed to compute the
stability Υ. On the other hand, in some systems such as the atmospheric or oceanic circulation, it can be di�cult to
identify directly a single symmetry parameter and, in this case POD analysis can be helpful to identify the relevant
variables to which the embedding technique could be applied. When possible, a robust description of the system can
be obtained by combining the two techniques.
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Ra (Nx, Nz) ∆t Nsnapshots ∆Tsnapshots Ntotal

3 107 (159,385) 6 10−4 825 6 12000

5 107 (159,385) 6 10−4 825 6 12000

108 (201,513) 3 10−4 660 4.5 8000
TABLE I: Simulation and POD analysis characteristics ar di�erent Rayleigh numbers : numerical resolution, time step, number
of snapshots used to extract the POD eigenfunctions, time separation between snapshots, total number of snapshots considered
in the time series

Ra
∑
λ≥5 /

∑
λ < T >

3 107 0.09 1160

5 107 0.12 203

108 0.10 195
TABLE II: POD Characteristics at di�erent Rayleigh numbers. < T > is de�ned as the time-averaged value separating two
zeros of a1 and is expressed in convective time units.

Ra λ1 λ2 λ3 λ4

3 107 0.7 0.13 0.02 0.01

5 107 1.15 0.26 0.17 0.05

108 1.07 0.26 0.15 0.05
TABLE III: POD �rst eigenvalues at di�erent Rayleigh numbers.
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FIG. 1: Flow streamlines and temperature isocontours for two di�erent realizations illustrating of the quasi-steady states of
the �ow at Ra = 5 107.
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FIG. 2: Time evolution of �rst POD mode a1. From top to bottom, Ra = 3 107, Ra = 5 107, Ra = 108.
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FIG. 4: Phase portraits for the �rst two POD modes a1 and a2. From left to right: Ra = 3 107, Ra = 5 107, Ra = 108.
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FIG. 5: Phase portraits for the two POD modes a1 vs a3; From left to right: Ra = 3 107, Ra = 5 107, Ra = 108.
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FIG. 7: Distribution of time (normalized by time-averaged value) between zeros of �rst POD mode a1.

FIG. 8: Distribution of normalized time between zeros of �rst POD mode a1 restricted to the time [0, T/ < T >].
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FIG. 9: Rayleigh Bénard attractors obtained at Ra = 3 · 107 (top panels), Ra = 5 · 107 (central panels), Ra = 1 · 108 (bottom
panels) varying ∆t from ∆t = 3 (left), ∆t = 6 (center) and ∆t = 9 (right).
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FIG. 10: Rayleigh Bénard time series obtained at Ra = 3 · 107 (top panel), Ra = 5 · 107 (central panel), Ra = 1 · 108 (bottom
panels) for ∆t = 3. The colorscale represents the value of Υ.

FIG. 11: Rayleigh Bénard time series obtained at Ra = 3 · 107 (top panel), Ra = 5 · 107 (central panel), Ra = 1 · 108 (bottom
panels) for ∆t = 6. The colorscale represents the value of Υ
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FIG. 12: Rayleigh Bénard time series obtained at Ra = 3 · 107 (top panel), Ra = 5 · 107 (central panel), Ra = 1 · 108 (bottom
panels) for ∆t = 9. The colorscale represents the value of Υ

FIG. 13: Top panels: histograms of Υ for Ra = 3 · 107 (left), Ra = 5 · 107 (center), Ra = 1 · 108 (right). Bottom panels:
bivariate histograms Υ vs L.
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FIG. 14: Rayleigh Bénard attractors obtained at Ra = 3 · 107 (left), Ra = 5 · 107 (middle), Ra = 108 (right) with a time between
subsequent peaks larger than twice the transition time τd (τd ∼ 30, 12.5, 15 convective time units for Ra = 3 · 107, 5 · 107, 108

respectively). Yellow lines show the paths between two subsequent (Mi−1,Mi) points.

FIG. 15: Clusters in the Rayleigh Bénard attractor at Ra = 5 · 107 and the related mean �ow patterns at Mi−1 (left) and Mi

(right). Colour of cluster refers to the di�erent regime or phases of the reversal cycle : �rst part of the release (orange), complete
release (red), acceleration (green), accumulation (blue) and cessation (magenta). Flow pattern is shown by streamlines and
temperature isocontours. Green, orange and black straight solid lines correspond to ¯|L|, ¯|L|−σ(|L|) and ¯|L|+σ(|L|) respectively.
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FIG. 16: Particular sequence of the angular momentum L time series at Ra = 5 · 107. Colours refer to the di�erent regime
or phases of the reversal cycle : release (orange), after rebound (red), acceleration (green), accumulation (blue) and cessation
(magenta). Markers give examples of the pairs (Mi−1,Mi) for each cluster: • (Mi−1), ∗ (Mi).
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FIG. 17: Clusters in Rayleigh Bénard attractors at Ra = 108 and the related mean �ow patterns. Same legend as in �gure 15.

FIG. 18: Clusters in Rayleigh Bénard attractors at Ra = 3 · 107 and the related mean �ow patterns. Same legend as in �gure
15.
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FIG. 19: Particular sequence of the angular momentum L time series at Ra = 3 · 107, Ra = 5 · 107 and Ra = 108. Markers
give locations of all points contained inside the �rst part of release (orange), complete release (red) and accumulation (blue)
clusters. • (Mi−1), ∗ (Mi) peaks.
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